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Abstract Thermostatically controlled appliances (TCAs)

have great thermal storage capability and are therefore

excellent demand response (DR) resources to solve the

problem of power fluctuation caused by renewable energy.

Traditional centralized management is affected by com-

munication quality severely and thus usually has poor real-

time control performance. To tackle this problem, a hier-

archical and distributed control strategy for TCAs is

established. In the proposed control strategy, target

assignment has the feature of self-regulating, owing to the

designed target assignment and compensating algorithm

which can utilize DR resources maximally in the controlled

regions and get better control effects. Besides, the model

prediction strategy and customers’ responsive behavior

model are integrated into the original optimal temperature

regulation (OTR-O), and OTR-O will be evolved into

improved optimal temperature regulation. A series of case

studies have been given to demonstrate the control effec-

tiveness of the proposed control strategy.

Keywords Demand response, Hierarchical and distributed

control, Resources maximum utilization, Model prediction,

Customers’ responsive behavior

1 Introduction

As the increasing tension of power supply, it becomes

more important to balance power supply and demand

effectively, and improve safety, reliability and economics

of power system at the same time. Since conventional

energy resources are depleting at an alarming rate, the

penetration of renewable energy is increasing greatly [1],

but most of them has the characteristics of randomness and

intermittency, leading to negative effects on power quality

and reliability. In order to counteract the negative effect,

some methods were proposed to forecast the output of

photovoltaic stations or wind farms [2–4], and some solu-

tions were proposed to balance power fluctuation by using

storage devices [5] as well. In [6], the energy storage

technology profile was analyzed and summarized, in terms

of technology maturity, efficiency, scale, lifespan, cost and

applications, taking into consideration their impact on the

whole power system. However, high cost of storage devi-

ces hinders their wide applications. By contrast, DR is a

promising alternative technology that takes advantage of

all types of flexible demands and thus need much less
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investment. Therefore, it is very attractive to use DR to

integrate more renewable energy.

Demand side management (DSM) [7] has become an

important measure to reduce power consumption, alleviate

the pressure of electricity dearth, and reduce power supply

cost without increasing power supply capacity. DR pro-

grams have been extensively investigated in recent years to

provide multiple types of ancillary services [8], including

primary frequency regulation [9–11], spinning reserve

[12–14], system security improvements [15–17], etc.

Generally, there are two typical categories of DR approa-

ches: indirect load control [17–24] and direct load control

[11, 25]. TCAs [20] are ideal demand resources for direct

load control due to their great thermal storage capability

which allows the load shifting from peak hours to off-peak

time [21]. The cooperative control of TCAs can constitute

a highly controllable distributed energy storage system to

provide ancillary services.

In order to deal with the various problems caused by

renewable energy, a variety of DR control strategies can be

applied. A multi-objective day-ahead optimal scheduling

model for wind farm integrated power systems was pro-

posed in [16], introducing DR into traditional unit com-

mitment (UC) strategy. A centralized DR control algorithm

was proposed in [18, 19] to balance power fluctuation

while considering customer comfort constraints at the same

time. A resilient strategy for optimal DR control based on

the management of highly-distributed electric loads was

presented in [20]. In [11], researchers put forward a tem-

perature priority list and dispatch algorithm based on state-

queuing model to optimize the control sequence of TCAs.

The communication and computation burdens between

centralized controller and individual devices were reduced.

Besides, a regulation strategy based on power flow tracing

and comfort-constrained DR strategy was demonstrated in

[23] to balance the fluctuation of wind farm output.

However, the previous research works mostly focused

on centralized control strategies, which relied on large-

scale information exchange between the centralized con-

troller and DR devices. On the customer side and even the

power system side, low cost communication techniques are

usually preferred, which may incurs serious packet loss and

bit errors during data transmission. In addition, both the

customers’ private information and control decisions may

be intercepted during the communication process, thus may

result in security and privacy problems [26].

To surmount these deficiencies of centralized control,

this paper aims to develop a hierarchical and distributed

DR control strategy. It is nearly a center-free algorithm and

there is no need to collect information of all DR devices or

send control signal to them. Instead, all participators are

divided into different regions according to their geo-

graphical positions, and one aggregator is set in each

region. Each region is regarded as a virtual power plant

(VPP), and the VPPs are connected to the upstream power

system. Therefore, power system only needs to exchange

the total power information with VPPs. The amount of

communication data is decreased, and then the occurrence

of packet loss and bit errors in the signal transmission is

reduced.

Besides, regulation capacities of VPPs are taken into

account so that the control targets can be assigned in a self-

regulating way, making the most use of the DR resources in

the control regions. Moreover, an improved version of the

optimal centralized control strategy—OTR-O [23] is pro-

posed in this paper by considering the model prediction and

customers’ responsive behavior model to further reduce the

amount of communication and improve the control

performance.

The remainder of the paper is organized as follows.

Equivalent thermal parameter (ETP) model, index model

of heat pump and the modeling of VPP are presented in

Sect. 2. Optimization and strategies are introduced in

Sect. 3. The simulation results are discussed in Sect. 4. The

conclusions and future work are summarized in Sect. 5.

2 Modeling methodologies

The ETP model of a heat pump proposed in [23] is used

as the simulation model and the index model in [25] is used

as prediction model in this paper. The VPP model based on

ETP model is also proposed in this section.

2.1 ETP model

In ETP model, thermal dynamics of a single heat pump

can be described as follows:

A ¼
� 1

RmCa

þ 1

RaCa

� �
1

RmCa

1

RmCm

� 1

RmCm

2
664

3
775 ð1Þ

B ¼
1

RaCa

1

Ca
0 0

" #
ð2Þ

T ¼ Ta E

Tm E

� �
ð3Þ

C ¼ To E

K

� �
ð4Þ

_T ¼ AT þ BC ð5Þ

where Ca is the air heat capacity; Cm is the mass heat

capacity; Ra is the air thermal resistant; Rm is the mass

thermal resistant; To_E is the temperature outside; Ta_E and

Hierarchical and distributed demand response control strategy for thermostatically… 31

123



Tm_E are the air temperature and mass temperature inside,

respectively; K is the electric operation rate.

Equations (1)–(5) can be discretized by:

Tk ¼ Tk�1 þ DtðATk�1 þ BCk�1Þ ð6Þ

Since the parameters such as Ca, Cm, Ra, Rm for different

customers are usually various, normal distribution function

N(a, r) is used in this paper for the population of heat

pump units to model the load diversity. The superscript

k and k - 1 of all variables indicate the values at steps

k and k - 1.

According to (1)–(6), the temperature and power con-

sumption have a one-to-one relationship. For a heat pump

numbered i, the relationship can be described as follows:

Qk
i ¼ Zk

E;iQop ¼ Zk
E;i

Pi
rated

gAC
ð7Þ

Zk
E;i ¼

1 Tk�1
a E;i � Tk

� E;i ¼ Tk
s E;i �

d
2

0 Tk�1
a E;i � Tk

þ E;i ¼ Tk
s E;i þ

d
2

Zk�1
E;i otherwise

8>>><
>>>:

ð8Þ

where Qop is the rated heat rate; ZE,i
k is the off/on state (0

for ‘off’, 1 for ‘on’) for ith heat pump at step k; Tk�1
a E;i is the

current temperature inside at step k - 1; Prated
i is the rated

power of ith heat pump; Tk
s E;i; T

k
þ E;i and Tk

� E;i are the

temperature set point, upper and lower limits for ith heat

pump at step k, respectively; d is the temperature range.

Note that (7) and (8) actually give the basic control logic of

a heat pump, i.e. the way the operating status changes.

2.2 Index model

The index model [25] also describes the thermal

dynamics of a heat pump as the ETP model does, but much

more simpler and easier to be calculated. Therefore, it is

used as the prediction model in this paper to forecast the

state evolution of the heat pump population. According to

the index model, the indoor temperature rises and falls

following the below rules:

Tk
a I;i ¼ Tk

o I;i þ Zk
I;iQR

� Tk
o I;i þ Zk

I;iQR� Tk�1
a I;i

� �
e�

1
RC

ð9Þ

Zk
I;i ¼

1 Tk�1
a I;i � Tk

� I ¼ Tk
s I �

d
2

0 Tk�1
a I;i � Tk

þ I ¼ Tk
s I þ

d
2

Zk�1
I;i otherwise

8>>><
>>>:

ð10Þ

where Tk
s I ; T

k
þ I and Tk

� I are the temperature set point,

upper, lower limits at step k, respectively; Tk�1
a I;i and T

k
o I;i are

the measured room temperature and outdoor air temperature

for ith heat pump at step k; C is the indoor air heat capacity; R

is the mean envelope thermal resistance; Q is the operational

heat rate; Zk
I;i is the off/on state for ith heat pump at step k.

2.3 VPP consisting of heat pumps

A population of heat pumps can be modeled as a VPP in

which each heat pump is modelled by the ETP model. The

upper and lower limits of the power output of VPP Pupper

and Plower are time-varying parameters depending on the

temperature states and rated power of every heat pump in

the certain population.

At each step, the temperature of all heat pumps are

collected, based on which the Pk
upper and Pk

lower are calcu-

lated by:

Pk
upper ¼

XN
i¼1

Pi
ratedZ

k
i Tk

þ;i\Tk
i \Tk

þ;i þ Tbuffer

Pk
lower ¼

XN
i¼1

Pi
ratedZ

k
i Tk

�;i � Tbuffer\Tk
i \Tk

�;i

8>>>><
>>>>:

ð11Þ

where Tbuffer is a temperature margin that was defined in

[23] to avoid the violation of temperature limits; N is the

number of heat pumps; Tk
i ; T

k
þ;i; T

k
�;i and Zk

i are the room

temperature, upper, lower limits and off/on state of ith heat

pump at step k, respectively.

Pk
VPP is actual output power of the VPP at step k, which

can be described by:

Pk
VPP ¼

XN
i¼1

Pi
ratedZ

k
i Tk

�\Tk
i \Tk

þ ð12Þ

As shown in Fig. 1, the blue dotted lines represent the

output limits of VPP, and the dark point stands for the

actual output power of the VPP at step k.

In addition, based on the basic parameters such as states

of heat pumps, Pi
rated and so on, two indicators can be

defined to evaluate the performance of the control strategy:

qkr ¼ Pk
upper � Pk

VPP

qkf ¼ Pk
VPP � Pk

lower

(
ð13Þ

Power rising
capacity

Power falling
capacity

Plower
k

Pupper
k

PVPP
k

Fig. 1 VPP model
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where qkr is the power rising capacity; qkf is the power

falling capacity . qkr and qkf represent the feasible region of

power output state of VPP, that is to say, the feasible region

of energy-storage or energy-release at step k. qr and qf will
be two of the most important indicators to evaluate the

effects of control strategy.

3 Optimization and strategies

A schematic drawing of control framework is shown in

Fig. 2 and the proposed hierarchical and distributed

demand response control strategy will be discussed in this

section.

As shown in Fig. 2, the hierarchical control consists of

two levels. First of all, at the upper level, a power target PT

is generated for the whole community to balance the power

fluctuation of the tie line caused by renewable energy such

as wind power. The target PT is passed to the aggregator of

each VPP to start the process of distributed control. With

PT and the total power of the heat pumps of all the other

VPPs PHP_i, a target assignment algorithm based on OTR-I

(with the model prediction and customers’ responsive

behavior considered) inside each aggregator will work. As

a result, all the heat pumps of each VPP will receive the

respective optimal temperature set-point changes u for

them to follow. Under the joint efforts of all the heat pumps

in the community, the overall goal of balancing the power

fluctuation of the tie line is fulfilled.

3.1 OTR-O of the aggregated heat pumps

Considering a large number of heat pumps, a robust

control strategy to regulate the load demand profile by a

common perturbation u to the temperature set-point under a

centralized control strategy could be applied

[18, 20, 23].

To describe the power consumption of the heat pumps

that have the same temperature state, two temperature-

power factors are defined as follows: uk
1 for ‘on’ and uk

0 for

‘off’ states. These functions describe the amount of power

at a given air temperature Tx:

uk
1ðTxÞ ¼

XN
i¼1

Pi
ratedZ

k
i n Tk

i ;Tx
� 	

ð14Þ

uk
0ðTxÞ ¼

XN
i¼1

Pi
rated 1� Zk

i

� 	
n Tk

i ; Tx
� 	

ð15Þ

Zk
i ¼

1 Tk
i � Tk

�;i þ uk

0 Tk
i � Tk

þ;i þ uk

Zk�1
i otherwise

8<
: ð16Þ

n Tk
i ; Tx

� 	
¼ 1 Tk

i ¼ Tx
0 Tk

i 6¼ Tx



ð17Þ

where n(Ti
k, Tx) is a factor represents that only the devices

in Tx will be calculated.

The total power consumption of heat pump population

Pk
HP can be described by:

Pk
HPðukÞ ¼

XTk
�þuk

Tx¼�1
uk
0ðTxÞDhþ

XTk
þþuk

Tx¼�1
uk
1ðTxÞDh ð18Þ

where Dh is the increment of temperature in discrete

integration.

If the target power PT is known for the next step, the

optimal temperature set-point change u can be solved with

the following constrained convex programming:

min F ¼ Pk
T � Pk

HPðukÞ
� 	2

s.t. Tmin � Tk
� þ uk\Tk

þ þ uk � Tmax



ð19Þ

where Tmax and Tmin are the acceptable temperature limits

for customers; Pk
T is total target given by central controller

at step k.

The solution method of this optimization problem can be

found in [20]. In this centralized control strategy, all the

Target assignment

Target assignment
correction

Tie line power fluctuations balance

Bus allocation and aggregation function

Power grid

Distributed
control

Bus level
control

Improved optimal
temperature
regulation

u of regions

u

u u u u u u

Information flow;

Model
prediction

&
customers'
responsive
behavior

PT

PHP_1

PT_1

Improved optimal
temperature
regulation

Regional
aggregator 1

PT PT

Regional
aggregator 2

Regional
aggregator n

Power state
of region

Power flow

PT_1
*

Target assignment
correction

Target assignment

Power state
of region

u of regions

u

PHP_n

PT_n

PT_n
*

Fig. 2 Schematic drawing of control framework
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heat pumps participated in the calculation will get an

identical u to take part in the regulating.

3.2 Balancing algorithm for power fluctuation of tie

line

Considering the distribution network with wind power

generation and heat pump groups, wind powerPW and two load

types are defined: nominal loadPN (load of all electrical energy

demand other than heat pumps) and heat pumps load PHP.

The idealized total net load PL at step k is:

Pk
L ¼ Pk

N þ Pk
HP � Pk

W ð20Þ

Here, we assume that at step k ? 1, the nominal load and

wind power output are known (or can be predicted based on

wind power prediction method [27] and historical demand

data). In order to balance thewind power injection fluctuations,

the power target of heat pumps can be calculated by:

Pkþ1
T ¼ Pkþ1

W � Pkþ1
N þ 1

M

XM
j¼1

P
k�jþ1
L ð21Þ

Then, we set heat-pump power target so as to minimize

the deviations from the average total load over the M

previous sampling intervals (as 1
M

PM
j¼1

P
k�jþ1
L ), using the

average value to balance the fluctuation. This control

method is called M-average control method given by [28].

3.3 Target assignment and compensation strategy

The configuration of the distributed control strategy is

shown in Fig. 3. The only needed signal from the central

controller is the total power target PT. Regional aggregators

will evaluate preliminary target assignment with power

consumption of heat pumps in other VPPs as follows:

Pkþ1
T i ¼

Pk
HP i

Pk
HP total

Pk
T

Pk
HP total ¼

Xm
i¼1

Pk
HP i

8>>>><
>>>>:

ð22Þ

where Pkþ1
T i is the preliminary power target of the ith VPP at

step k ? 1; Pk
HP i is the power consumption of heat pumps

of ith VPP at step k; Pk
HP total is the total power con-

sumption of heat pumps of all controlled VPPs at step k;

m is the number of VPPs; m is the number of VPPs.

In order to make the target assignment more accurate,

the regulating capacity of each VPP is considered in this

paper. Similar to the power rising and falling capacity (qr
and qf ), the definitions of capacity of regulation gup and

gdown according to the optimal temperature set-point

change u are put forward to amend the assignment, as

shown in (23).

gup ¼
uup � uk
��� ���
du up

� 100%

gdown ¼
udown � uk
�� ��
du down

� 100%

8>>>><
>>>>:

ð23Þ

where uup is the upper limit of u; udown is the lower limit of

u; gup is the up regulating capacity; gdown is the down

regulating capacity; du_up and du down are the up and down

deadband of u.

Pkþ1�
T i ¼ ð1� gupÞPkþ1

T i gup � n
Pkþ1
T i n\gup � 100



ð24Þ

Then gup and gdown are used to compensate the target

assignment as follows:

Pkþ1�
T i ¼ ð1þ gdownÞPkþ1

T i gdown � n
Pkþ1�
T i ¼ Pkþ1

T i n\gdown � 100



ð25Þ

where Pkþ1�
T i is the correcting of the preliminary target

assignment for ith VPP; n is the range of g for limiting

capacity.

As shown in Fig. 4, when the optimal temperature set-

point change u goes into the limiting capacity area, the

method of correcting is used to compensate the power

target to each VPP.

After the correcting for the VPPs whose u have gone

into the limiting capacity area, the differences between

Pkþ1
T i and Pkþ1�

T i will be undertook by the other VPPs on

average.

On account of considering regulation capacities of VPPs

in the target assignment and correcting methods, the target

assignment becomes self-regulating and leads VPPs to

yield their greatest self-regulating capability to get better

5

u
u

u

u

u

PHP_i

_ PT

PHP_i

PHP_i PHP_i

PHP_i

1

4
3

2

Fig. 3 Configuration of the distributed control strategy

Fig. 4 Capacity of regulation defined by temperature set-point

change u

34 Wenting WEI et al.

123



control effects. In the centralized strategy, all the controlled

heat pumps will get only one change of temperature setting

u to follow the target. Because of the nature of discrete

integral of OTR-O, all the heat pumps will be taken as a

whole, which is just like all the people in the team will get

the average task assignment ignoring the personal ability.

However, in the new distributed control strategy, heat

pumps are divided into different regions, of which the heat

pumps are aggregated as a VPP with their own u according

to their own target, which is just like people in the team

will get assignment according to their ability.

3.4 Model prediction strategy in OTR-I

In order to further reduce the amount of data transmission,

model prediction strategy is proposed. The predictionmodel is

integrated in OTR-O, which will be evolved into OTR-I. The

strategy will set correction interval depending on the demand

of control accuracy. In the correction interval, index model is

used in OTR-I to predict the equipment states. When the

correction interval reaches, the regional aggregatorwill collect

costumer’s real data to correct the prediction model. The

model prediction strategy can be described in (26) and (27).

If k = nDtcor:

Tx ¼ Ta I

Ts ¼ Ts I

Tþ ¼ Tþ I

T� ¼ T� I

Z ¼ ZI

8>>>><
>>>>:

ð26Þ

If k = nDtcor:

Tx ¼ Ta E

Ts ¼ Ts E

Tþ ¼ Tþ E

T� ¼ T� E

Z ¼ ZE

8>>>><
>>>>:

ð27Þ

where Dtcor is the calibration interval; n is the natural

number; Tx, Ts, T?, T- and Z are the parameters that

applied to the OTR-I algorithm.

3.5 Customers’ responsive behavior model in

OTR-I

Customers’ responsive behavior affects the performance

of control strategy a lot. To describe customers’ responsive

behavior patterns in DR, an algorithm is proposed in this

section to describe the DR behaviors of power customers

given real-time prices and their preferences.

Each power customer is in the electricity market, and

they prefer to turn on heat pumps at lower price and turn off

them at higher price. Considering the different properties of

different customers, the proposed algorithm takes

customers’ preference into consideration. According to

OTR-O, all the factors of customers’ responsive behavior

can be reflected in adjustment range of optimal solution for

the change of temperature setting u, as shown in Fig. 5.

The proportion of effects p caused by customers’

responsive behavior and adjustment range D for u can be

described in (28)–(31).

If erealtime [ ebace:

p ¼ k e
ebase
emax

�1 � e
erealtime
emax

�1
� �

þ Nðb; 0:01Þ ð28Þ

If erealtime \ ebace:

p ¼ k e
ebase
emax

�1 � e
erealtime
emax

�1
� �

� Nðb; 0:01Þ ð29Þ

b / l

It
ð30Þ

D ¼ pTrange ð31Þ

where ebace is the base price at which customers will get full

participation in DR; emax is the max real-time price one day

before; erealtime is the real-time price; k is the weight of price
impact; Trange is the temperature range; b is the customers’

preference [29] which can be set by the customer, according

to equipment switching loss l, DR incentives I and family

economic income t. We use the normal distribution

function to randomize the customers’ preferences to

ensure its diversity (from a statistical point of view, the

customer preference skews towards a particular

concentrated direction is a possibility exist). Considering

the customers’ responsive behavior, (19) comes into (32)

and can be solved with the same solution method [20].

minF ¼ Pk
T � Pk

HPðukÞ
� 	2

s.t. Tmin þ D� Tk
� þ uk\Tk

þ þ uk � Tmax þ D



ð32Þ

3.6 Comparison of centralized and distributed

control strategy

Different from traditional centralized control strategies, in

the hierarchical and distributed DR control strategy proposed

in this paper, the central controller and regional aggregators

make the DR control ‘hierarchical’, and the heat pumps being

divided into different VPPs makes it ‘distributed’.

We also improved OTR-O. The load model prediction

strategy and customers’ responsive behavior model are

designed and integrated into OTR-O. The optimal solution

of regions for the change of temperature setting u is

New u
deadbandOriginal u

deadband
Adjustment range for u
decided by customers
responsive behavior

Tset

Fig. 5 Schematic diagram of customers’ responsive behavior effects
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calculated by OTR-I in regional aggregators according to

the status information S’, including heat pump status

information S (such as indoor temperature and switch

states, the same with OTR-O), real-time price D and cus-

tomers’ preference b, as shown in Fig. 6.

4 Simulation results and analysis

A typical geographic distribution graph is used in this

section, as shown in Fig. 7. The regions surrounded by the

dotted line represent the customers in these VPPs with willing

to participate in DR, and the regions can be regarded as VPPs.

The regions in shadow are inactivated area which means

customers there having not taken part in this DR strategy.

The comparison of target tracking control effects for the

traditional centralized and new distributed control strategy

is discussed initially. Then the distributed control in bal-

ancing power fluctuation of tie line is given in case 2.

Finally, the effects of model prediction and customers’

responsive behavior in OTR-I on control strategy are

analyzed in case 3 and case 4.

The simulation tool used in this paper is MATLAB. In

all cases, the solution time of the proposed strategy is

0.15928 s on average, which justifies the real-time control.

4.1 Case 1: Distributed control strategy for target

tracking

Assume that some residents using electric heat pump

equipment in a certain area, and all the heat pump users

agree to participate in the DR control.

Parameter configuration is shown in Table 1. The dis-

tribution of active heat pumps of VPPs is given in Table 2,

corresponding to the location in Fig. 7. In this case, cus-

tomers’ preference b is supposed to be set by costumers

shown in Table 2.

Fig. 6 Comparison of centralized and distributed control strategy

Fig. 7 Actual graph and result of communication network

optimization

36 Wenting WEI et al.

123



Simulation results of the distributed strategy with given

target are demonstrated in Figs. 8 and 9.

For a more visual representation of the difference

between centralized control and distributed control effect,

we defined the control error ekc at step k as follows:

ekc ¼ Pk
HP total � Pk

T ð33Þ

The control error comparison of the efficiencies gained

by distributed and centralized control strategies is shown in

Fig. 10. From the figure, it can be clearly seen that

distributed control strategy gets better control effects.

Figure 8 illustrates the simulation results of distributed

control strategy in different VPPs and Fig. 9 shows the com-

parison of control effects for the traditional centralized and

new distributed control strategy (all VPPs are aggregated).

As can be seen, under the condition of the same heat

pump resources and total power target, distributed control

strategy has two obvious advantages. First, qr and qf of the
VPPs are bigger, which represents that the customer

comfort will be better guaranteed. Second, in the worse

situation, new distributed control strategy will achieve

target following somewhere centralized control strategy

Table 1 Simulation parameters

Parameters Values

R average R (�C/kW) 2

C average C (kWh/�C) 10

Standard deviation rR 0:2R

Standard deviation rC 0:2C

Equipment number 2100

Temperature set-point (�C) 20

Rated power average (kW) 6

Customer comfort deadband (�C) 1

u deadband (�C) ±0.5

Simulation step (min) 1

Simulation time (day) 1

Note R, C, rR, rC are typical thermodynamic parameters

Table 2 Active heat pumps of VPPs

Location Heat pump number Customers’ preference

1 300 0.100

2 150 0.050

3 100 0.070

4 250 0.150

5 350 0.100

6 250 0.075

7 250 0.120

8 350 0.080

9 100 0.060

Fig. 8 Control effects of distributed control strategy in VPPs
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cannot track (as shown in marked area of Fig. 9). When

u gets into limits boundary, population of heat pumps will

lose their adjustment ability (one population in centralized

strategy and nine populations in distributed control strat-

egy). Taking the marked region in Fig. 9 for example,

Fig. 11 shows simulation results of u. It is clear that in the

shaded area u in centralized strategy keeps at the boundary

and then the population loses adjustment ability. However,

in distributed control strategy, although some of them reach

the boundary, the others will not at the same time. And

that’s why distributed control strategy will get better con-

trol effects.

4.2 Case 2: Distributed control strategy for power

fluctuation of tie line

To balance the power fluctuation of tie line caused by

renewable energy, the balancing algorithm for power

fluctuation of tie line is used. PN comes from normalized

typical residential home data [30] with a standard deviation

equal to 10% of the off-peak levels. PW is generated using

a typical turbine power curve and environmental wind

speed data [24], which can be forecast by existing algo-

rithms. M in the algorithm is 15 in this case.

The simulation results of power fluctuation balancing

curves of tie line power are shown in Fig. 12. The wind

power and nominal power are shown in Fig. 12a, total heat

pump power in controlled and uncontrolled cases are

shown in Fig. 12b and the power fluctuation balancing

curves of tie line power are shown in Fig. 12c. From

Fig. 12, conclusions can be drawn that the distributed

control strategy and balancing algorithm for power fluc-

tuation of tie line can effectively smooth the power fluc-

tuation of tie line caused by wind power.

4.3 Case 3: Effects analysis of model prediction

in OTR-I

On the basis of the above control effects, the model

prediction strategy is introduced. With different correction

intervals, the control effects are shown in Fig. 13. The

simulation results show that the control effect is the best

when the correction interval is 1 min. With the increase of

the correction interval, the control effect is gradually

weakened. But when the correction interval is reached, the

control strategy collects the real-time customer side

information to correct the prediction model. Thus, the

actual response curve can re-fit the target curve to ensure

the effectiveness of control strategies and reduce the

amount of signal transmission as far as possible.

Fig. 9 Control effects of distributed and centralized control strategies

Fig. 10 Control error of centralized control and distributed control

effects

Fig. 11 Optimal temperature set-point change u of centralized and

distributed control strategies
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4.4 Case 4: Customers’ responsive behavior effects

on distributed control strategy

The real-time price in New York [31] is utilized in this

case. Make ebace to be 20 $/MWh (at which customers will

totally take part in DR), k = 0.8 and Trange = 2 �C and d is
given in Table 2 in this case.

Since the number of VPPs in this study is relatively

large, and the properties of each VPP are similar, we only

gives a representative VPP simulation results. The real-

time price and deviation between erealtime and ebase, control
effects and the changing trend of u for some typical VPPs

are shown in Fig. 14 to illustrate the customers’ responsive

behavior on control effect. Figure 15 shows the compar-

ison of aggregated load control effects in distributed con-

trol strategy with or without considering customers’

responsive behavior.

Instead of getting full participation in DR, customers’

responsive behavior brings some adverse effects on control

effects. When the deviation between erealtime and ebase
becomes large, the regulating capacity of VPPs (qr or qf )
will reduce because of the adjustment range of optimal

solution for u changing.

Similarly, customers’ responsive behavior weakens the

fluctuation balancing effects, as shown in Fig. 16.

Under the influence of the price, the costumers’

behavior changes, which will inevitably lead to the corre-

sponding changes in electricity load. This process is in the

case of unconscious energy storage and release in fact.

5 Conclusion

A hierarchical and distributed control strategy of TCAs

is established, which is used to balance the power fluctu-

ation of tie line caused by renewable energy through con-

trolling heat pumps. Target assignment and compensating

Fig. 12 Simulation results of power fluctuation

Fig. 13 Control effects of target following with different correction

intervals
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algorithm are introduced to achieve maximum utilization

of DR resources in controlled regions. Besides, the nearly

center-free hierarchical and distributed control strategy

decreases the amount of communication data. We also

improve OTR-O to OTR-I by integrating model prediction

and customers’ responsive behavior model. The combined

analysis is used to investigate the performance of proposed

method. The results indicate that VPPs composed of heat

pumps can follow the given target, and then balance power

fluctuation of tie line caused by renewable energy, which is

better than centralized control strategy. Moreover, instead

of getting full participation in demand response, customers’

responsive behavior brings some negative influences on

control effects. But considering the customers’ responsive

behavior is much closer to the actual situation, and will be

more customer-friendly.

Fig. 14 Control effects and the changing trend of u for some typical

VPPs

Fig. 15 Aggregated load control effects in distributed control

strategy with or without considering customers’ responsive behavior

Fig. 16 Simulation results of power fluctuations considering cus-

tomers’ responsive behavior
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The possibility of using prediction model in the DR

strategy to further reduce information transmission quan-

tity and the influence of packet loss, bit error and time

delay in the communication system on the DR control

performance, the influence of tariffs change on VPP

charging–discharging mode at the aggregator level, and the

interaction between the pricing of compensation strategy

and the control strategy of VPP charging–discharging

mode will be studied in the future.
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