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Direct reprogramming of porcine fibroblasts
to neural progenitor cells

Dear Editor,
Neural progenitor cells (NPCs) have proven potential to
facilitate mechanistic studies of neurological disorders
in vitro, as well as the discovery of new medicines. In addi-
tion, NPCs have been proposed as promising cell sources
for cell replacement therapy of neurological diseases (Liu
et al., 2012b). For these areas of study, experimental ani-
mals are indispensable models. Among the possible animal
species, pigs are advantageous compared to rodents
because of their physiological and anatomical similarities to
humans (Lind et al., 2007). Despite the shown advantages of
porcine models in different fields, their applications are sig-
nificantly restricted due to the limited access of porcine cells,
including NPCs. To date, encouraging breakthroughs have
been made in obtaining NPCs from a series of species by
different methods, including primary cell isolation from tis-
sues, differentiation from pluripotent stem cells, and direct
reprogramming from other somatic cells (Vierbuchen et al.,
2010; Giorgetti et al., 2012; Lujan et al., 2012; Thier et al.,
2012; Zhang et al., 2013).

Here, we report the successful generation of induced
porcine NPCs (ipNPCs) from porcine fetal fibroblasts (PFFs)
(Fig. S1A, upper panel). Using our method, functional ip-
NPCs can be readily obtained via direct cell reprogramming
without going through a pluripotent state. We show that ip-
NPCs retain the ability for long-term culture and efficient
neural differentiation in vitro. Moreover, ipNPCs could
effectively integrate into the local neural network after cell
transplantation in vivo.

In order to initiate the direct cell reprogramming, we
sought to prime PFFs using non-integrative episomal vectors
expressing reprogramming factors (Oct4, Sox2, Klf4, Lin28,
and L-Myc) (Li et al., 2011) and then subjected the cells to
human embryonic stem cell-amenable culture conditions (Liu
et al., 2011). Three weeks later, ∼ 10 colonies emerged from
5 × 105 transduced PFFs plated on mouse embryonic
fibroblasts (MEFs). These colonies did not exhibit charac-
teristic morphology of porcine induced pluripotent stem cells
(iPSCs) including high nucleus to cytoplasm ratio and clear
colony boundaries, as reported in porcine iPSCs generated
by viral vector-mediated methods (Ezashi et al., 2009; Wu
et al., 2009). Instead, they exhibited irregular and unclear
boundaries with filament-like cells spreading out (Fig. S1A,

bottom panel). When a treatment of 50 μmol/L sodium
butyrate (an inhibitor of histone deacetylases) was applied
during the reprogramming, a slightly higher number of col-
onies with similar morphology emerged (data not shown).
Immunofluorescence staining showed that these colonies
expressed Sox2 at low levels and were negative for pluri-
potency markers Oct4 and Nanog (Fig. S1B). To initiate the
neural commitment, these colonies were mechanically
picked and seeded to MEFs supplied with neural stem cell
culture medium (NSM) (Liu et al., 2012a). After a 10-day
induction in NSM, the formation of neural rosettes was
observed (Fig. 1A), which resembles an early stage of
neurodevelopment. Immunofluorescence staining of neural
rosettes confirmed the presence of an ipNPC population by
expression of both Sox2 and Nestin (Fig. 1A). These neural
rosette ipNPCs were then individualized, and subcultured in
NSM on Matrigel. Under this condition, ipNPCs expanded in
monolayer and over 95% of them were positive for Pax6
(Fig. 1B). Quantitative real-time PCR (qPCR) analysis further
demonstrated the induction of NPC markers (NCAM, Nestin,
and Pax6) in ipNPCs compared to their parental PFFs
(Fig. 1C). We further determined the possible presence of
residual or integrated episomal vectors in ipNPCs by geno-
mic qPCR analysis of EBNA-1, a viral element of episomal
vectors originating from Epstein-Barr virus (Li et al., 2011).
The results showed that ipNPCs and PFFs contained almost
undetectable levels of EBNA-1 (∼ 0.0001–0.001 copies per
cell), while episomal vector-transfected PFFs showed nearly
100 copies per cell, implying the absence of EBNA-1 in the
ipNPC genome (Fig. S1C). The negative readout from this
analysis relieved safety concerns to use ipNPCs for cell
transplantation in the future. Also, ipNPCs had been robustly
maintained for over 12 passages without significant signs of
losing potency, suggesting an ability of long term self-
renewal of ipNPCs in vitro. Meanwhile, when cultured on
low-attachment plates, ipNPCs formed neurospheres spon-
taneously (Fig. S1D), further demonstrating neural stem cell
identity and robust viability.

Next, in order to assess the neural differentiation potency
of ipNPCs, in vitro spontaneous neural differentiation was
performed. After three weeks of culturing in spontaneous
neural differentiation medium (NDM), the cell bodies of most
cells were clustered and long neurites protruded.
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Immunofluorescence staining showed that the majority of
differentiated cells were Tuj1 positive neurons while GFAP
positive glial cells were also present (Fig. 1D). Correspond-
ingly, the mRNA levels of Tuj1 and GFAP significantly
increased after ipNPCs spontaneous differentiation
(Fig. 1E). In addition, up-regulation of myelin basic protein
(MBP), which is enriched in oligodendrocytes, was also
observed by qPCR (Fig. 1E), suggesting a possible exis-
tence of oligodendrocytes in the differentiated derivatives.
Taken together, our data indicated multipotent neural differ-
entiation potential of ipNPCs.

Subsequently, in order to assess the functional membrane
properties of ipNPC-derived neurons (ipNeurons), electrophys-
iology recordings were performed after thirty days of spontane-
ous differentiation. Whole-cell patch-clamp recordings on
ipNeurons revealed voltage-dependent currents including rap-
idly inactivating inward currents and persistent outward currents
in response to depolarization voltage steps, which reflected
open and closed states of sodium channels and potassium
channels respectively (Fig. 1F, left). Current clamp recordings
demonstrated that the ipNeurons could generate action poten-
tials, an evident membrane characteristic of excitable cells
(Fig. 1F, middle). Meanwhile, spontaneous action potentials
were also observed in differentiated ipNeurons (Fig. 1F, right).
Collectively, these data demonstrated that ipNPCs are capable
of differentiating into excitable neurons in vitro.

Finally, we explored the neural differentiation potency of
ipNPCs in vivo. The ipNPCs were labeled with GFP by

lentiviral vectors, and then transplanted into the dentate
gyrus (DG) of NOD/SCID mice. Four weeks after trans-
plantation, brains of recipient mice were sectioned and
analyzed. We found that most GFP-labeled cells were
localized in the DG region, indicating a robust survival of
ipNPCs in vivo (Fig. 1G). We further observed GFP positive
neurons with complex branching morphology that were
present at neighboring zones of the DG region (Fig. 1G),
which suggested that ipNPCs were able to effectively inte-
grate into the local neural network after transplantation. No
teratoma formation was observed in any mouse brains
examined, which further supports the safety of ipNPCs
in vivo. (Data not shown)

In summary, we report here a new strategy to obtain
integration-free functional porcine neural progenitor cells by
direct reprogramming of porcine fetal fibroblasts in vitro. For
the first time, porcine neural progenitor cells were directly
generated from somatic cells, and functionally characterized
both in vitro and in vivo. Considering the importance of pigs
as a model species, a sufficient supply of functional porcine
neural progenitor cells are of great interest in translational
medicine studies of neuroscience. However, the difficulties
to establish porcine pluripotent stem cells including embry-
onic stem cells and integration-free iPSCs limit the produc-
tion of porcine NPCs through traditional cell differentiation
approaches (Wu et al., 2009; Rasmussen et al., 2011; Liu
et al., 2012c; Fan et al., 2013). Therefore, how to obtain
porcine NPCs directly from the somatic cells is attracting a
lot of attention in the field. Similar to many other direct
reprogramming methods, our strategy bypassed obstacles in
establishing porcine pluripotent stem cells. Moreover, our
method provided a robust and efficient way of generating
porcine NPCs with low risk of tumor formation. To our
knowledge, this is the first attempt to direct reprogram
somatic cells into neural progenitor cells using the porcine
species. As a promising species of model animals, the ip-
NPCs generated in our study may provide an exciting tool to
bridge the present gaps in neuroscience studies between
rodents and humans.
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Figure 1. Direct reprogramming of porcine fetal fibroblasts

(PFFs) to induced porcine neural progenitor cells (ipNPCs).

(A) Immunofluorescence staining of ipNPCs derived on MEFs

showing rosette morphology and expressions of neural pro-

genitor cell markers Nestin (in green) and Sox2 (in red). Scale

bars, 75 μm. (B) Immunofluorescence staining of Pax6 positive

ipNPCs cultured on matrigel. Scale bars, 25 μm. (C) Gene

expression analysis showed that the neural progenitor cell

markers (NCAM, Nestin, Pax6) were induced in the direct

conversion of PFFs to ipNPCs. All values are relative to PFFs

and shown as mean ± s.e.m. (n = 3). ***P < 0.001. (D) Differ-

entiation of ipNPCs into neurons (Tuj1, Green) and glial cells

(GFAP, Yellow) in vitro. Scale bars, 100 μm. (E) Quantitative

PCR analysis showed the induction of neuronal specific marker

(Tuj1), glial specific marker (GFAP), and oligodendrocyte

marker (MBP) after spontaneous differentiation of ipNPCs. All

values are relative to PFFs and shown as mean ± s.e.m. (n = 3).

**P < 0.01, ***P < 0.001. (F) Representative traces of

electrophysiology recording of differentiated neurons at day

30. Inward fast inactivating sodium currents and outward

currents were observed in differentiated neurons by whole cell

current recording (left). Action potentials (APs) were elicited by

step-current injections (middle). Spontaneous APs firing from

ipNeuron were recorded (right). (G) In vivo transplantation of

ipNPCs. Overview of transplanted ipNPCs (GFP + , Green)

cells in the dentate gyrus (DG) of brain from NOD/SCID mice at

4 weeks after ipNPCs transplantation. Blue, DNA; Green, GFP.
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