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Abstract
Mobile health (mHealth) applications provide an excellent
opportunity for collecting rich, fine-grained data neces-
sary for understanding and predicting day-to-day health
behavior change dynamics. A computational predictive
model (ACT-R-DStress) is presented and fit to individual
daily adherence in 28-day mHealth exercise programs.
The ACT-R-DStress model refines the psychological con-
struct of self-efficacy. To explain and predict the dynamics
of self-efficacy and predict individual performance of tar-
geted behaviors, the self-efficacy construct is imple-
mented as a theory-based neurocognitive simulation of
the interaction of behavioral goals, memories of past
experiences, and behavioral performance.
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A COMPUTATIONAL COGNITIVE MODEL OF SELF-EFFICACY
AND DAILY ADHERENCE IN mHEALTH
There is a pressing need to extend the reach of existing
health behavior change programs in areas such as diet,
fitness, and stress and to intensify and prolong their
impact. Mobile health (mHealth) platforms provide an
excellent opportunity for projecting supportive motiva-
tional, cognitive, and social interventions for behavior
change into everyday life at great economies of scale.
Especially promising is the opportunity for precisely
measuring the dynamics of psychosocial factors as peo-
ple participate in mHealth programs and, based on
those assessments, providing personalized interactions
that optimize desirable achievements. The challenge
posed by these opportunities for detailed measurement
and intervention is that current theorizing andmodeling
of individual health behavior change is not equally fine-
grained and predictive [1, 2].
In this paper, I present a computational model,

called ACT-R-DStress, of individual daily adherence
data from a study [3] of an mHealth app, called
DStress. The DStress app provides personalized exer-
cise and meditation goals that can adjust in difficulty
based on past adherence. The ACT-R-DStress model
refines the psychological construct of self-efficacy [4]
that is core to social cognitive theory and conceptually
equivalent to the construct of perceived behavioral control
(PBC) in the theory of planned behavior [5]. Self-

efficacy is an individual’s belief that he or she is capa-
ble of performing a behavioral goal. In general, the
higher the level of self-efficacy, the greater the confi-
dence in one’s ability to succeed at a goal and the
greater the likelihood of achieving the goal. The mod-
el also refines a construct of intended effort proposed by
Kukla [6, 7] that modulates intensity of goal striving
based on differences between self-efficacy and the
perceived difficulty of a goal. Levels of self-efficacy
and goal striving effort are often strong predictors of
success in programs aimed at changing behavior in a
wide range of areas [8].
ACT-R-DStress is instantiated as simulations in the

ACT-R neurocognitive architecture [9, 10]. ACT-R is
a theory of how the functions of the mind arise from
the structure of the brain. ACT-R is also a computa-
tional architecture for simulating and understanding
learning and cognition. More generally, ACT-R
explains how the mind organizes knowledge and ex-
perience to produce behavior. The ACT-R-DStress
simulations are used to predict each individual’s suc-
cess in performing each assigned exercise in a con-
trolled 28-day study reported in Konrad et al. [3], in
which the difficulty of exercise goals varied from day
to day. In addition to the detailed ACT-R-DStress
simulation model, I also present a mathematical
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Implications
Practice: Changes in self-efficacy have character-
istics common to human memory: Self-efficacy
improves with the frequency and recency of posi-
tive experiences in achieving goals and improves
with the Bsize^ of the achievement.

Policy: Precision behavioral medicine can be ad-
vanced by predictive models of individual self-
efficacy and behavior change adherence that are
based on theoretical models of human cognition.

Research: Computational cognitive models of hu-
man memory can provide a basis for modeling
changes in self-efficacy and adherence to personal-
ized behavioral goals in e-health behavior change
systems.
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model based on ACT-R-DStress that also provides
good fits to the daily adherence data but without the
need for full-scale ACT-R-DStress simulation. These
models can be used to predict the likelihood of a given
person performing behavioral goals of varying diffi-
culty, which could be useful in tailoring daily goals in
mHealth apps to maximize expected gains.

BACKGROUND

The DStress system
DStress [3] is a web- and mobile-based system that
provides a simple form of automated coaching on
exercise and meditation goals aimed at reducing per-
ceived stress. The coaching algorithms modulate the
difficulty of daily exercise and meditation goals based
on individuals’ performance on the immediately pre-
ceding goals. An overarching aim of the automated
coaching is to progressively increase the difficulty of
exercise and meditation goals. Over the course of
several weeks, individuals can achieve goals that they
could not do at the beginning of the program.
Figure 1 presents several screenshots from the

DStress system. Over the course of a multi-week pro-
gram, users are sent an email every morning with a
reminder to login to DStress. On the DStress home-
screen (Fig. 1a), users are presented with their current
goals, as well as previous activities and their comple-
tion status. Clicking on any activity takes the user to
pictures and detailed instructions of how to safely and
properly perform each activity (Fig. 1b). Users can also
click on an activity to report whether or not they per-
formed their goal for the day (Fig. 1c), and users are sent
an email reminder in the evening if they fail to report.
The current DStress programs have three kinds of

days: exercise days (occurring on Mondays,

Wednesdays, and Fridays), meditation days (Tuesdays,
Thursdays, and Saturdays), and rest days (Sundays).
Three certified personal trainers developed a pool of
46 exercises such as wall push-ups, standing knee lifts,
squats, and burpees and also rated the difficulty of the
exercises. The personal trainers proposed the exer-
cises for a target population of adults interested in
reducing stress.
The details of the DStress coaching heuristics for

progressing people tomore difficult goals or regressing
them to easier goals are described in detail in Konrad
et al. [3]. Generally, if a person successfully completes
all exercises assigned for a day, they advance to the
next level. If they do not succeed at exercises or med-
itation activities, then they are regressed to exercises or
meditation activities at an easier level.

Self-efficacy and enactive mastery
The rationale for the automated personalization of
goal difficulties in DStress can be derived from several
social-psychological and individual-health theories, in-
cluding goal-setting theory [11], social cognitive theory
[4], and the theory of planned behavior [5]. Goal-
setting theory predicts that goals need to be challeng-
ing enough to be motivating. However, the construct
of self-efficacy in social cognitive theory (or PBC in the
theory of planned behavior) predicts that goals that are
perceived as too difficult are unlikely to be attempted.
So, one challenge for coaching (automated or not) is to
provide goals that are difficult enough to bemotivating
but easy enough to be successfully achieved.
In addition to selecting specific daily goals that

achieve high success rates, there is the problem of
increasing individuals’ levels of self-efficacy so that
more difficult goals can be achieved in the future. This

Fig. 1 | The DStress application for reducing stress: (a) the home screen showing daily goals and part adherence, (b) instruction
screen, and (c) reporting screen
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can be achieved through guided enactive mastery, in which
individuals are supported in achieving progressively
difficult goals: BEnactive mastery experiences are the
most important source of efficacy information because
they provide the most authentic evidence of whether
one can muster whatever it takes to succeed…A resil-
ient sense of efficacy requires experience in overcoming
obstacles through perseverant effort…The relative
power of guided enactive mastery…produces stronger
and more generalized efficacy beliefs than do modes of
influence relying solely on vicarious experience, cogni-
tive simulations, or verbal instruction.^ [4].

Relevant computational theories
For a system such as DStress, it seems desirable to be
able to make precise predictions of the probability of
success of a given individual on a given exercise on a
given day. More generally, mHealth interventions are
expected to operate in intensive interactions with indi-
viduals, perhaps multiple times per day, and possibly
instrumenting behavior in a nearly continuous fashion.
By contrast, widely used health behavior theories at
the level of the individual [12] involve explanatory
constructs related by linear functions to static snap-
shots of behavioral data taken at much coarser time-
scales [2]. In general, there have been few attempts to
refine goal-setting theory, social cognitive theory, or
the theory of planned behavior to develop precise,
predictive models of the fine-grained daily dynamics
of motivation, self-efficacy, and ultimately goal
achievement. It has been argued [2] that such refine-
ment and precision is needed to better support foun-
dational science in behavior change and support new
technologies such as mHealth.
Although lacking detail and precision, many of the

high-level constructs at the core of current behavior
change theory are defined by reference to underlying
cognitive processes. For instance, the construct of self-
efficacy in social cognitive theory has been defined in
terms of an underlying learning process, whether from
one’s own experience or by observation of others [4].
Cognitive expectations and evaluations about changing
one’s behavior are at the core of the theory of planned
behavior and are assumed to be based on past experi-
ences (perceptions and memories) [5]. Implementation
intentions are a form of prospective memory [13, 14].
Martín et al. [15] describe a dynamical system model

of social cognitive theory, including self-efficacy.
Navarro-Barrientos et al. [16] present a similar model
of the theory of planned behavior, including PBC. Both
of these models are based on a fluid analogy (specifical-
ly a fluid inventory control system analogy) in which
inventories represent quantities of a psychological con-
struct such as self-efficacy, and inflows and outflows cap-
ture relations among components and factors. These
models are specified in a set of differential equations
that capture the dynamics of the system at the granular-
ity of day-to-day changes (in principle, suchmodels can
track changes at smaller or larger timescales). Aspects of
the behavior of these models have been explored in

simulations. Martín et al. [15] reported the percentage
fit of model predictions to average physical activity
levels (%fit=49.54 %) and self-reported self-efficacy
(%fit=34.95 %) that were promising.
Vancouver and colleagues [17, 18] have proposed a

more integrative computational model, implementing
aspects of multiple theories. Theirs is an approach draw-
ing upon cybernetic perceptual control theory [19] that
has provided concrete dynamical predictions in linewith
goal setting theory [11], self-efficacy [4], and a discontin-
uous trade-off between self-efficacy and intensity of effort
[6, 7]. Bandura [20, 21] has criticized the perceptual
control theory approach on a number of grounds, in-
cluding the lack of internal self-representation and lack
of rich cognitive habits and skills for self-regulation (or
self-disruption) ([20, 22], pp 22–23).

Motivations for applying ACT-R
The predictive computational models of self-efficacy
in both Martín et al. [15] and Vancouver et al. [18] are
variations on control theory, which is often used to
understand and control (e.g., optimize) complex dy-
namical systems whose input-output behavior is mod-
ified by feedback. In contrast to these control-theoretic
approaches, I propose that the high-level constructs
found in social cognitive theory and other behavior
change theories can be refined to be more precise and
dynamical via ACT-R [9], which specifies the time
course of cognition and learning in reaction to
moment-by-moment interactions with the environ-
ment. ACT-R also supports a more complete (and
psychologically plausible) range of cognitive represen-
tation and processing capabilities and richer learning
capabilities than basic control theories [9].
ACT-R [9, 10] is a unified theory of how the struc-

ture and dynamics of the brain give rise to the func-
tioning of the mind. The ACT-R simulation environ-
ment is a computational neurocognitive architecture
that specifies the theory and supports the development
of specific models of individuals. As a unified theory of
cognition, ACT-R has been used to explain a wide
range of psychological processes [23]. The theory is
constrained not only by tests against behavioral data
but also by physiological data about underlying neural
processing (i.e., from fMRI studies [9]) and mathemat-
ical analysis of the adaptive fitness of ACT-R mecha-
nisms given the evolutionary ecology of human cog-
nition [22]. The use of ACT-R to address behavior
change is also motivated by the theory’s previous
successes in developing applications—particularly in
the development of automated intelligent tutoring sys-
tems [24–27]. By using the ACT-R simulation archi-
tecture, we immediately gain purchase on theoretical
mechanisms and constraints that have been studied
and refined by a large community of psychological
scientists and an established framework for integrated
multi-timescale and multi-module explanation.
These motivations for using ACT-R to refine and

develop predictive theories of behavior change can be
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restated as four theses articulated in Newell [23] and
Anderson [28]: (a) the integration thesis, that neurocog-
nitive architectures provide a unified account of how
the modules of the mind function together to produce
coherent behavior and provide a basis for an integra-
tive explanation of data produced across specialized
domains of psychology [23]; (b) the decomposition thesis
that longer term behavior change occurring over days,
weeks, or months can be decomposed to learning
events occupying much briefer units of time and in-
volving smaller chunks of belief, experience, or knowl-
edge; (c) the modeling thesis that models in neurocogni-
tive architectures provides a basis for bridging the
events at the small scale to the dynamics of behavior
change occurring at the large scale; and (d) the relevance
thesis, that longer term changes and outcomes can be
improved by modeling, predicting, and intervening in
behavioral events that are occurring at the smaller
timescales.

Summary of the DStress study
Konrad et al. [3] describe an experiment investigating
the effects of adaptive (individualized) daily goal
assignments. Adult participants (N=65; 19–59 years)
were randomly assigned to three conditions with dif-
ferent 28-day goal progressions: (1) a DStress-adaptive
(N=19) condition using the adaptive coaching system
in which goal difficulties adjusted to the user based on
past performance, (2) an easy-fixed (N=24) condition in
which the difficulty of daily goals increased at the
same slow rate for all participants assigned to that
condition, and (3) a difficult-fixed (N=22) condition in
which the goal difficulties increased at a greater rate.
Konrad et al. [3] found that the adaptive DStress-
adaptive condition produced significant reductions in
self-reported stress levels compared to the easy-fixed
and difficult-fixed goal schedules. Here, the focus is on
the success rates in performing assigned daily goals.

A measurement model for exercise difficulty levels in DStress
adherence
The ACT-R neurocognitive model uses estimates of
exercise difficulties that are measured from the success
(or failure) of DStress participants in executing the
specific exercises given as goals. These difficulty esti-
mates were obtained through the application of a
Raschmeasurement model [29, 30] to the DStress data
presented in Konrad et al. [3]. Rasch models are fre-
quently used in the analysis of responses to psycho-
metric or educational test items in order to understand
latent (unobserved) properties of the test items and
characteristics of the individuals.1 Rasch models have
also been extended to learning data from computer
tutoring systems [31]. Rasch models, when applicable,

have a property called specific objectivity, which implies,
in the DStress case, that the scaling of difficulty levels
of different exercises within the given frame of refer-
ence is independent of the participants used in
estimation.
The difficulty, δj, of each exercise, j, was empirically

estimated post hoc from the compliance data using a
Rasch measurement model [29, 30, 32]. For the exer-
cise difficulty analysis, the performance of any
assigned exercise goal on any given day is coded as a
dichotomous variable (Bsuccess^=1 and Bfailure^=0),
and the model is

P r X i j ¼ 1
� � ¼ exp θi−δ j

� �
1þ exp θi−δ j

� � ð1Þ

whereXij is the success/failure of person i on exercise j,
θi is a general ability parameter estimate for the person,
and δj is the exercise difficulty estimate. In this formu-
lation, the ability and difficulty parameters take on any
real values and are measured on the same logit (log
odds) scale. Equation 1 is similar to the kinds of mod-
els that are often fit to data using ordinary least squares
logistic regression; however, the parameter estimation
for the Rasch model uses a generalized linear mixed
model in which the participant ability parameters are
treated as random coefficients [33].
Figure 2 provides a graphical visualization of the

measurement model. Figure 2a shows how the differ-
ence between person ability and exercise difficulty,
θi− δj, is scored on a logit scale (x-axis) and is related
to the probability of success Pr(Xij=1) as a logistic func-
tion. In Fig. 2b, the logit scale is on the y-axis and the
location on that scale of specific person ability scores,
and specific exercise scores, is indicated by boxes (i.e.,
boxes with scores of 0 are higher up than boxes with
scores of −1). To predict the probability of success of
Person 1 on Exercise 1, one subtracts θ−δ (left oval in
Fig. 2b), which yields zero, which can then be located on
the x-axis of Fig. 2a (left arrow in Fig. 2b) and
mapped onto a prediction of a probability of success
of 0.5 (dotted line in Fig. 2a). By similar graphical
reasoning on the right side of Fig. 2, one can predict
that Person 2 on Exercise 2 will have a probability
of success of 0.73. In general, the probability of
success Pr(Xij=1)=0.5 when ability is equal to difficulty,
θ= δ; the Pr(Xij=1)>0.5 when ability is greater than
the difficulty, θ> δ; and the Pr(Xij=1)<0.5 when the
ability is less than the difficulty, θ< δ.
Figure 3 presents histograms of the person ability

parameters and exercise difficulty parameters estimat-
ed from the daily DStress exercise adherence data in
Konrad et al. [3]. Note that the individual ability scores
are approximately normally distributed and centered
on zero, whereas the difficulty scores are slightly
skewed to be less than zero (δ median=−0.21)—i.e.,
easy enough for the average participant to complete
with greater than 50 % success. Figure 4 shows the
correlation of the estimated exercise difficulties against
the average difficulty ratings (10-point scale) of three
experts in Konrad et al. [3].

1 The Raschmodel used here is sometimes referred to as
a one-parameter logistic (1PL) model as it has just one
parameter for the difficulty of test items. Item response
theory models in psychometrics may have multiple
parameters (e.g., 2PL or 3PL models are common) or
have multidimensional item parameters.
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Figure 5a presents an analysis showing how the
manipulations in Konrad et al. [3] produced different
ramp-ups in exercise difficulty, as was intended. The
daily average difficulties (in logits) in Fig. 5a average
over the exercise difficulties actually assigned to par-
ticipants on each day in each condition. Notably, the
DStress-adjustable exercise difficulties remain mostly
between the levels assigned in the easy-fixed and
difficult-fixed conditions.
Figure 5b shows the corresponding success of par-

ticipants in adherence to the assigned goals. As might
be expected, the DStress-adjustable participants hav-
ing easier exercises than the difficult-fixed condition
participants show higher success rates. Notably, by the
end of the 28-day programs, the DStress-adjustable
participants showed higher adherence rates than the
easy-fixed participants, despite being assigned more
difficult exercise goals. This increased ability to tackle
more difficult goals is consistent with a buildup in self-
efficacy through guided enactive mastery.

ACT-R-DStress
A key aspect of the ACT-R-DStress model is a
mechanistic account of how self-efficacy is

Bperceived.^ This Bperception^ is fundamentally
a memory process in which past experiences of
efficacy at behaviors similar to a target goal are
retrieved and blended together to produce a self-
efficacy assessment. This self-efficacy assessment,
in turn, is used to set intended effort levels, and
self-efficacy and intended effort together deter-
mines whether the target behavior will be
attempted. Consequently, we should expect that
the dynamics of self-efficacy and performance
should exhibit the dynamics of the underlying
memory mechanisms and exhibit well-known
memory phenomena.

ACT-R
ACT-R [9, 10] is a unified theory of how the structure
and dynamics of the brain give rise to the functioning
of the mind. The ACT-R simulation environment is a
computational neurocognitive architecture that speci-
fies the theory and supports the development of spe-
cific models. Models are initialized by detailing the
knowledge (or experience) within the system, and the
system can learn through interaction with the environ-
ment (usually also simulated).

a

b

Fig. 2 | The Rasch measurement model for the DStress data assumes that (a) the probability of exercise success is a logistic
function of the difference between an individual’s ability and the difficulty of the exercise (θ − δ) and (b) that the individual ability
parameters (θ) and specific exercise difficulty parameters (δ) can be located on a continuous logit (log odds) scale
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The ACT-R architecture is composed of modules,
processing different kinds of content, which are inte-
grated and coordinated through a centralized produc-
tion module. Each module corresponds to a brain re-
gion: Processing predicted in a specific ACT-R mod-
ule is a prediction of a correlated activation pattern in a
specific brain region. Each module is assumed to ac-
cess and deposit information into buffers associated
with the module, and the central production system
can only respond to the contents of the buffers, not the
internal encapsulated workings of the modules. For
instance, the visual module is correlated with the occip-
ital cortex (and others) and the visual buffer with the
parietal cortex. The visual buffer acts as a link
(pathway) between the visual module and the produc-
tion module.

The ACT-R-DStress simulation involves the follow-
ing modules and buffers:

& Production module (basal ganglia), which matches the
contents of other module buffers and coordinates
their activity.

& Goal buffer (dorsolateral prefrontal cortex), which
keeps track of the goals and internal state of the
system. The goal buffer stores and retrieves infor-
mation that represents the internal intention of the
system and provides local coherence to behavior.

& Declarative module (temporal lobe; hippocampus),
retrieval buffer, and blending buffer (ventrolateral pre-
frontal cortex), associated with the retrieval of
knowledge and past experiences from long-term
declarative memory. The information in the
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declarative memory module corresponds to per-
sonal episodic and semantic knowledge that pro-
motes long-term coherence in behavior.

& Imaginal module (posterior parietal cortex), which
serves as amental scratchpad for temporarymemory.

Knowledge is specified in the production module as
production rules. A production rule can be thought of as a
formal specification of the flow of information from buf-
fers in the cortex to the basal ganglia and back again. In
general, multiple production rules can apply at any
point in time, but only one production may execute.
Productions have a utility property that is used to select
the single rule that is executed. Knowledge in the de-
clarative, goal, and imaginal modules (and other
modules in ACT-R) is represented formally in terms
of chunks [34, 35]. A chunk represents a cognitive unit of
information encoding a collection of elements—for in-
stance, the elements of an experienced event or the
components making up a fact (e.g., the numbers in a
friend’s telephone number). Each module is limited to
placing a single chunk in a buffer. Chunks have activa-
tion levels that determine how chunks are retrieved.
Production utilities and chunk activations are real-

valued quantities produced by subsymbolic mechanisms
in ACT-R. These subsymbolic mechanisms reflect
neural-like processes that determine the time course
and probability of cognitive activity and behavioral
performance. The dynamics of declarative memory
retrieval and production selection are determined by
these subsymbolic mechanisms.
The following is a simulation printout of a memory

chunk used in the ACT-R-DStress simulation:

BEHAVIOR-EXPERIENCE100-0
ISA BEHAVIOR-EXPERIENCE
BEHAVIOR MARCHING_IN_PLACE
DIFFICULTY −0.013206851
ABILITY 0.025988732
EFFORT 0.242358
OUTCOME SUCCESS

The first line is just a name used for conve-
nience to identify the chunk. Each subsequent
line contains a slot with a value. The isa slot
indicates that this chunk is a type of behavior
experience, and the following behavior slot indicates
that the experience was for the Bmarching in
place^ exercise. The difficulty, ability, and effort
slots contain values that link to subjective somatic
experiences discussed below. The final outcome
slot indicates that in the case of this particular
exper ience , the exerc i se was per formed
successfully.
The following is a simulation printout of a produc-

tion rule (with some nonessential elements omitted):
(p request-perceived-ability
=goal>
isa behavior-goal
difficulty =difficulty
behavior =behavior
ability nil

==>
+blending>
isa behavior-experience
behavior =behavior
outcome success)

The first line is just a convenient name used for
identification. The next five lines before the B==>^
arrow are the conditions of the production rule that
must match the current state of the ACT-R buffers.
The labels proceeded by an equal sign, such as =
behavior, are variables and canmatch arbitrary symbols
in a buffer. In this case, the conditions specify a match
to a chunk in the goal buffer (second line), which is a
behavior goal to do a behavior for which the ability slot
(self-efficacy) has not been assessed (is Bnil^). The lines
following the ==> arrow are the actions of the produc-
tion. In this production, the action is to try to retrieve
from memory (using blending, discussed below) infor-
mation about behavior experiences similar to the goal
behavior. In essence, the rule says, BIF my goal is to
do an exercise, and I have not assessedmy self-efficacy

Fig. 5 | Summary data from Konrad et al. [3]: (a) estimated mean daily difficulty of exercises and (b) the mean rate of successfully
completing assigned exercises
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THEN try to remember similar exercises on which I
was successful.^

Somatic markers
A recent extension [36] of ACT-R is the incorporation
of somatic markers [37] that encode associations among
experiential chunks to physiological affective states
(Bbodily feelings^). These somatic markers, when as-
sociated with experiences of various outcomes of pri-
or responses, produce emotional reactions when a
person faces situations or decisions that invoke recall
of those past experiences. In the ACT-R-DStress mod-
el, I assume that a variation of somatic markers repre-
sent remembrances of efficacy at past performances
(i.e., how difficult something was to do) and motiva-
tional effort experiences (i.e., how much effort was it
necessary to put in). This assumption is also consistent
with those of Kukla’s [6] attributional theory of
performance.

Declarative memory and blended retrieval
Table 1 presents a subset of the ACT-R subsymbolic
mechanisms that are relevant to the current ACT-R-
DStress model. These key mechanisms are involved
in the strengthening of declarative memories for re-
peated experiences and the processes of memory re-
trieval and blending. The probability of retrieval of a
memory chunk is dependent on the current activation
level of that chunk in comparison to the summed
activation of all chunks. The activation values, in turn,
are dependent on a base-level learning mechanism that
captures the history of experience for each chunk.
Each experience involving a chunk produces a gain
of activation that decays as a power function of time,
and multiple experiences produce a summation of
activation impulses. This produces a power law of for-
getting: The success and speed of retrieving memories
decline in a lawful way with time (a lag effect). Base-
level learning also yields a power law of practice: Success
and speed of memory retrieval improve in a lawful
way with repetition (a frequency effect).
Blending [38] is an extension of declarative memo-

ry retrieval in which values from multiple retrieved
chunks are combined to produce a compromise value.
Each experiential chunk in memory may encode
some specific value, Vi —for instance, the difficulty of
a specific exercise experience. A blended memory
retrieval of the difficulty of past experiences would
weigh the contribution of each memory by the prob-
ability of retrieval of each chunk. The compromise
value is also determined by a psychological similarity
function Sim(V,Vi) between the compromise value and
the specific values encoded in memory chunks.
As experiences of overcoming more difficult goals

are added to memory, those experiences will alter the
blended self-efficacy value to become greater. The
frequency, recency, and difficulty of those experiences
have effects on the final blended value of self-efficacy,
because of the mechanisms of base-level learning. Ta
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Process model
In outline, the model involves the following steps:

& A behavioral goal is considered for doing one or
more activities that are believed to have some level
of difficulty, δ, to being performed.

& Blending an assessment of self-efficacy. A blended retrieval
process is initiated in long-term declarative memory
to recall successful experiences involving ac-
tivities similar to the behavioral goal activities.
This process blends the difficulty levels of
those past experiences into a composite assess-
ment of the difficulty levels achieved in past
(similar, recalled) experiences, and this is
mapped directly to set an assessment of self-
efficacy, θ, for the behavioral goal. So, self-
efficacy is set by remembering the difficulties
overcome in the past on activities similar to
the goal.

& Blending an intended effort2 level. A blended retrieval
process is initiated to recall past experiences
of success with similar levels of perceived self-
efficacy and perceived activity difficulty for
the goal. This process blends an assessment
of intended effort levels, ψ, which had been
required to achieve success in those past expe-
riences. In general, higher levels of intended
effort will be recalled for experiences in which
the difficulties overcome were well beyond the
levels of self-efficacy at the time.

& Predicting success. Based on the goal difficulty, δ,
perceived self-efficacy, θ, and intended effort, ψ,
the model makes a prediction about the likelihood
of success.

& Doing it. If the expected probability of success is
above a threshold, it is attempted.

& Storing the new experience. If the activity is attempted,
the experience is stored in memory and influences
future attempts.

The model makes the strong assumption that the
psychological prediction of performance can be char-
acterized as a subsymbolic computation of the log
odds (logit) of success as

logit sð Þ ¼ θþΨ−δ ð2Þ

where s is the probability of successful perfor-
mance. So, predicted performance success
increases with self-efficacy and intended effort
and decreases with activity difficulty. This log
odds formulation is consistent with other ACT-R
subsymbolic mechanisms (i.e., activation) and
consistent with measurement approaches that
yield real-valued empirical quantities [31].

Model-tracing the daily adherence of an individual
The individual-level predictions of the model were
compared to the DStress data using a model-tracing
approach [27].
To model-trace each participant in the dataset:

1. Initialize task knowledge about behavioral goals
and exercises

2. Initialize a hypothetical set of background experi-
ences about past behavioral attempts that is consis-
tent with pre-experimental survey measures of self-
efficacy.

3. For each exercise in each session on each day

(a) Set the exercise goal with difficulty, δ,
corresponding to the next assigned exercise
goal in the dataset

(b) Blend a memory-based assessment of self-
efficacy for target goal, θ

(c) Blend amemory-based assessment of intended
effort, ψ

(d) Predict likelihood of success, s
(e) Compare the predicted success to the ob-

served report of success
(f) Store the observed experience in memory

The task knowledge in step 1 is common to all the
simulations of participants. The initialization of back-
ground experiences in step 2 is generated to span
abilities from −1.0 to +1.0 in increments of 0.1, five
levels of exercise difficulties from −1.5 to 0.5, and two
levels of intended effort (0, 0.25). These values were
selected so that range of abilities was balanced around
zero and the difficulties were balanced around −0.5 to
approximate the distributions in Fig. 3. The intended
effort levels were arbitrary choices (assumed to be
bounded below by zero). Small deviations from these
ranges appear to have no major effect on the model
results. Ten background chunks for each combination
of levels of ability, difficulty, and effort were generated,
and the success or failure associated with that experi-
ence was determined by a probability dependent on
ability, difficulty, and intended effort (i.e., the logit
equation above).
The loop specified in step 3 iterates through the

dataset. The goal difficulties of each exercise were set
using the parameter estimates provided by the Rasch
model. On each iteration, the simulation produced a
prediction of success that was compared to the ob-
served report. Each observed success or failure is
stored as a new behavioral experience in ACT-R-
DStress memory.

RESULTS

DStress adherence exhibits core memory phenomena
predicted by ACT-R
Figure 6 re-plots the exercise adherence data in Fig. 5b
to present evidence for memory-like phenomena un-
derlying success. Figure 6a shows that the mean rate of
success increases as a function of the frequency of past

2 Vancouver et al. (2008) use this same construct but call it
Bmotivation.^ Throughout, I revert to the original name
Bintended effort^ used in Kukla (1972) for this construct.
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successes on previous days’ exercise goals. This is
consistent with the frequency effects predicted by
base-level learning. Figure 6b shows that the success
rates decrease as a function of the lag in days since the
last achievement of an exercise goal. This is consistent
with the lag effects predicted by base-level learning.
Figure 6c shows that the rate of success increases as a
function of the stress of the exercises performed on the
last day of successfully achieving goals. This stress is
the increment in difficulty of the attempted exercises
over previously attempted exercises. The improve-
ment of success with size of stress is consistent with
the blending mechanism.

DStress model fit
Figure 7 presents a comparison of the ACT-R-DStress
simulation predictions produced in model-tracing (de-
scribed above) and the observed data summarized in

Fig. 5b. The model produces a predicted success or
failure for each and every exercise on every exercise
day for every participant. Each point in Fig. 7 pools the
observed and predicted success data by day and by
condition (DStress-adaptive, easy-fixed, difficult-
fixed). On any Bexercise day,^ there were three exer-
cise goals assigned to each individual in each of the
three conditions, so the observed success rate for a
particular condition on that day is the proportion of
successful exercise completions by all individuals in
that condition divided by the total number of exercises
assigned to those individuals. The predicted success
rate is similarly computed but uses model-predicted
success/(success + failures) rather than the observed.
ACT-R parameter settings were not systematically ex-
plored and were set in a way consistent with other
ACT-R models [Lebiere, personal communication].
In other words, no free parameters were estimated or
explored to produce the model fits displayed in Fig. 7.
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Fig. 7 | Observed exercise adherence success as a function of the ACT-R-DStress prediction. Each data point is averaged over
observations and model predictions pooled by group condition and day
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The code for the ACT-R-DStress model along with the
parameter settings is available in the Supplemental
Materials for this article. For these averaged points,
RMSE=0.083.

Mathematical model
In many applications, it has been useful to develop
mathematicalmodels that approximate the predictions
of ACT-R. This obviates the need to actually run
complete ACT-R simulations in order to make useful
predictions that guide interventions with individual
people. For instance, intelligent tutoring systems based
on earlier versions of the ACT theory successfully
employed student models that were based on mathe-
matical models of cognitive skill acquisition but ig-
nored (for instance) modeling the details of declarative
memory predictions [27]. Another example is optimal
scheduling of vocabulary memorization [39] for
second-language learning that uses a mathematical
model of base-level learning in declarative memory
(see Table 1). Here, I present a mathematical model
that captures key aspects of base-level learning and
blending in declarative memory.

The model captures the three key signature phe-
nomena presented in Fig. 7: (a) frequency, (b) lag,
and (c) stress (the difference in difficulty between the
best achievement so far and the difficulty of a newly
achieved goal). The ACT-R mechanisms that give rise
to these phenomena are base-level learning (for fre-
quency and lag) and blending (for stress).
The gains in self-efficacy, ς, over the course of t days,

1…t, of behavior change attempts can be represented as

ς tð Þ ¼
Xt

k¼1
t−kð Þ−d β1 þ γΔkð Þ

h i
ð3Þ

where d is the memory decay parameter, γ is a gain
parameter, β1 is an offset parameter, andΔk is the stress
of goal k,

Δk ¼ δk−δm ð4Þ
where δk is the average difficulty of activities on a
particular day k and δm is the average difficulty of
the activities on the last successful day prior to k.
In the model fit below, these difficulties are just
based on the ones estimated by the Rasch model
earlier (Eq. 1).

Fig. 9 | A hypothetical set of successful goal achievements over days for activities at different levels of stress (the two leftmost bars)
and different levels of inter-day lag (bottom). The resultant gains and decays of self-efficacy given those achievements (top). All
scales are arbitrary
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Fig. 8 | Observed exercise adherence success as a function of the mathematical model prediction. Each data point is averaged
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To predict the success, Xij, of person i on behavior
goal j at time t, I incorporate the self-efficacy gain Eq. 3
into the following:

P r X i j ¼ 1jθi ; ai ; δ j ; t
� �
¼ exp β0 þ θi−δ j þ ai t−d þ ς tð Þ� �

1þ exp β0 þ θi−δ j þ ai t−d þ ς tð Þ� � ð5Þ

where θi and δj are the individual abilities and goal
difficulties estimated above and β0 is an intercept pa-
rameter. The term αit

− d is intended to represent a pre-
program initial impulse of intention to change that
decays as a power function of time. As is turns out,
the model-fits suggest that it is zero in the data.
Equation 5 was fit to the DStress data using the port

nonlinear least squares algorithm [40] computed in the
R nls function. The fit of the model to the data is
presented in Fig. 8. Comparison of Figs. 8 to 7 suggests
an improved fit by the mathematical model, which is
to be expected given that the parameters have been
estimated to provide a best fit to the data. The
RMSE=0.060, which is indeed better than that for
the ACT-R-DStress simulation. The parameter esti-
mates are β0 = 0.1223, 95 % CI [−0.1737, 0.2552],
β1= -0.1790, 95 % CI [−0.4461, 0.0578], γ=0.2312,
95 % CI [0, 0.5704], d=0.9394, 95 % CI [0.1204, 1],
and as noted above, α=0.0, 95 % CI [1, 0.2390].3

General discussion and implications
Figure 9 presents a visualization that illustrates the
basic dynamics of ACT-R-DStress and the associated
mathematical model. The models are essentially
Bimpulse^ models in which each impulse decays with
time, and impulses add to prior ones. Larger degrees of
stress produce bigger impulses, and positive impulses
at high frequency and low lags build up rapidly. This
intuition meshes with the general notion that positive
experiences at behavior change build up self-efficacy,
but those can decay with time, and substantial achieve-
ments produce bigger boosts in self-efficacy.
It is worth noting that this impulse model of self-

efficacy is very similar in spirit to the Banister impulse-
response training model [41] proposed for optimizing
physical training schedules for athletes. Whereas the
Banister model is aimed at predicting physical
changes, the ACT-R models presented here are aimed
at predicting psychological changes. But, the form and
dynamics of these two sets of models are virtually the
same. Perhaps the mind and body are actually very
much in harmony.
The aim of this paper was to present an explanatory

and predictive model of behavior change success in an
mHealth study that was specifically aimed at

improving self-efficacy through personalized guided
enactive mastery. The success of this modeling sug-
gests that fine-grained dynamics of other psycho-social
aspects of behavior change might be fruitfully
addressed by models developed in neurocognitive
architectures. Collectively, such models could provide
a basis for user models that drive personalized
mHealth interactions that increase engagement and
success in behavior change.
The specific ACT-R-DStress model illuminates the

four broad theses presented in the introduction. The
modeling of goal, memory, learning, and performance
mechanisms to provide a cohesive account of self-
efficacy, guided enactive mastery, and adherence is
consistent with the integration thesis. Broad gains in
exercise behavior over the course of 28 days can be
refined into finer-grained goal striving and memory
events happening within a day, which is consistent
with the decomposition thesis. The ACT-R architec-
ture provides a theoretical account that explains and
predicts the linkage of the small-scale events to the
large-scale phenomena, in line with the modeling the-
sis. What remains is to demonstrate the relevance
thesis, which would involve using the computational
predictions to interact with individuals in ways that
optimize their success at behavior change.
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