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Abstract In this paper, a fuzzy programming model, incor-
porating fuzzy measures of costs and ore reserves, is devel-
oped to evaluate different design alternatives in the context
of the selection of the underground mine development sys-
tem. The bauxite deposit is usually mined using the sublevel
mining method. This method extracts the ore via sublevels,
which are developed in the ore body at regular vertical spac-
ing. In such an environment, we consider the development
system as a weighted network interconnecting all sublevels
with surface breakout point using the minimum cost of devel-
opment and haulages. Selection of the optimal development
system is based on the application of Convex Index and com-
posite rank. The uncertainties related to the future states of
transportation costs are modeled with a special stochastic
process, the Geometric Brownian Motion. The results indi-
cate that this model can be applied for solving underground
mine development problems.

S. Jovanovic
Concern Farmakom M.B. Sabac, Mine Lece d.o.o. Medvedja,
Bozidara Stojanovica 1, 16240 Medvedja, Republic of Serbia
e-mail: rudniklece@gmail.com

Z. Gligoric (B) · C. Beljic · B. Gluscevic
Faculty of Mining and Geology, University of Belgrade,
Djusina 7, 11000 Belgrade, Republic of Serbia
e-mail: zgligoric@rgf.bg.ac.rs

C. Beljic
e-mail: cedab@rgf.bg.ac.rs

B. Gluscevic
e-mail: brag@rgf.bg.ac.rs

C. Cvijovic
Department of Geodesy, Belgrade University College of Applied
Studies in Civil Engineering and Geodesy, Hajduk Stanka 2,
11000 Belgrade, Republic of Serbia
e-mail: gcedacvijovic@sezampro.rs

Keywords Mining · Development · Networks and graphs ·
Fuzzy sets · Stochastic processes · Decision support system

1 Introduction

The investment environment associated with the mining
industry is unique when compared with the environment
encountered by typical manufacturing industries. Some of
the characteristics of mining which are often proclaimed as
unique are as follows: capital intensity, long preproduction
periods, high risk and nonrenewable resource [1]. Mines’
development system investments provide a good example
of irreversible investment. Such investment requires careful
analysis because, once the investment takes place, it can-
not be recouped without significant loss a value. Obviously,
the selection of an underground mine development system
belongs to strategic planning. Tahernejad et al. [2] empha-
size that a lack of scientific planning, poor management and
a lack of clear strategies are the most important problems of
Iran’s dimensional stone mines.
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The problem discussed in this paper is ‘Kostari’ mine,
a small-scale open-pit bauxite mine located in Bosnia–
Herzegovina. Production of bauxite from the open-pit mine is
approaching the end. The management of the company has
estimated that the remaining reserves of bauxite can only
be mined by an underground method. The question of which
underground mine development system is suitable for access-
ing and exploiting a deposit is one that mine engineers and
planners are faced with, when investigating the most efficient
production system. Basically, there are three main develop-
ment systems to gain access to an ore body: vertical shaft,
decline (ramp) and adit. These three systems can be mutually
combined, and in that, the number of potential alternatives
is increased. Generally speaking, the process of selection of
an underground mine development system encompasses the
identification, evaluation and selection among alternatives.

To solve the problem of selecting a suitable development
system, we consider an underground mine development sys-
tem as a network interconnecting all access points with sur-
face breakout point, using the minimum cost of development
and haulage. The major task is to design the lowest cost-
feasible development system, respecting all operational con-
straints.

Many researches considered an underground mine devel-
opment system as a network optimization problem, [3–7].

In our case, conditions prevailing on the surface and
deposit are not suitable to apply adit as the development
system. Shaft, Decline and Shaft–Decline development sys-
tems are identified as potential alternatives for the evalua-
tion process. From each sublevel access point, we span the
ore transportation network to the surface in three alternative
directions. Each direction corresponds to one development
system. Every section of the network is weighted by an ade-
quate fuzzy cost function, which combines the cost needed to
build up the section and the cost of ore transportation along it.
The values of this function are changed over the project time,
using a stochastic process, Geometric Brownian Motion, to
simulate them. A set of potential alternatives is preference-
ranked, according to the ascending order of Convex Index.
By evaluating the networks spanned from each sublevel, it
can be seen how depth, sublevel ore reserves and fixed pro-
duction rate affect the efficiency of the development system.

2 Fuzzy Sets Theory

In order to deal with vagueness of human thought, Zadeh
[8] first introduced the fuzzy set theory. This theory was ori-
ented to the rationality of uncertainty, owing to imprecision or
vagueness. A fuzzy set is a class of objects with a continuum
of grades of membership. The role of fuzzy sets is significant
when applied to complex phenomena not easily described by
traditional mathematical methods, especially when the goal

is to find a good approximate solution [9]. Modeling using
fuzzy sets has proved to be an effective way of formulating
decision problems, where the information available is sub-
jective and imprecise [10].

2.1 Linguistic Variable

A linguistic variable is a variable whose values are words or
sentences in a natural or artificial language [11]. As an illus-
tration, age is a linguistic variable if its values are assumed
to be fuzzy variables, labeled young, not young, very young,
not very young, etc., rather than the numbers 0, 1, 2, 3…[12].

2.2 Fuzzy Numbers

A fuzzy number M̃ is a convex normalized fuzzy set M̃ of
the real line R [12]:

– it exists such that one x0 ∈ R with μM̃ (x0) = 1 (x0 is
called mean value of M̃)

– μM̃ (x)is piecewise continuous.
Triangular fuzzy number can be defined as a triplet (a,b,c).

The membership function is defined as [13]:

μM̃ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < a
x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c
0, x > c

(1)

3 Methodology

3.1 Problem Formulation

Considering a directed network (in the context of the ore-
haulage direction) that is composed of a finite set of nodes
and a set of directed arcs, we denote each arc by an order pair
(i , j), where i and j are different nodes, respectively. The arc
length is the distance needed to traverse (i , j) from node i to
j . It is denoted by l(i , j). Formally, the problem is to find the
fuzzy least cost path from the origin node (access point) to the
destination node (surface breakout point). Figure 1 shows an
example of the development network with several possible
development paths, and Fig. 2 presents an adequate directed
graph of the possible ore-haulage paths for the production
area (sublevel) 1–2.
The fuzzy least cost path problem can be formulated as the
following form. The objective function

F̃(X, t) =
n∑

i=1

n∑

j=1

(
f̃i + f̃i j

)
.xi j

=
n∑

i=1

n∑

j=1

(
C̃ D A

i + C̃ DH
i j + C̃ H

i j (t)
)

.xi j (2)
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Fig. 2 The graph of the ore-haulage system for the production area
1–2

has to be minimized, subject to:

n∑

j=1

xi j −
n∑

j=1

x ji =
⎧
⎨

⎩

1, i = 1
−1, i = n
0, otherwise

⎫
⎬

⎭
(3)

xi j ∈ {0, 1} ∀(i,j) ∈ A (4)

C̃ D A
i

{= 0 if C̃H
ij > 0

> 0 if C̃H
ij = 0

}

(5)

where f̃i —the triangular fuzzy cost function in node i is
added to the outgoing edge from node i , but not to an incom-
ing edge; f̃i j —the triangular fuzzy cost function between
node i and node j (for i =1, 2,…,n and j = 1, 2, . . . ,
n); xi j —the decision variable defines binary variables xi j ,
where xi j = 1 if the form (i to j) is on the path and xi j = 0
otherwise; C̃ D A

i —total cost of building (driving) of develop-
ment forms that are used only for the purpose of accessing
production area; ore haulage will not be done along them
($); C̃ DH

i —total cost of building (driving) of development
form that is used for the purpose of accessing production
area, and to haul the ore along it ($); C̃ H

i j (t)—the cost of ore
haulage along the development form, which changes over
project time ($).

The objective function, defined by Eq. (2), refers only
to one sublevel. Let G(P) be a graph of P, where P =
{ p1, p2,…, py} is a set of fuzzy possible paths from sublevel
to surface (see Fig. 2). The solution of Eq. (2) is defined by
the least cost path p = min(p1, p2,…,py) having the mini-
mum Convex Index. The path p is the most suitable path, and
we assign rank 1 to it. The rest of the paths are ranked fur-
ther, in ascending order of their Convex Index values, and we
assign values 2, 3,. . .,y to them, respectively. It means there
is one rank order of given paths p1, p2,…,py (for example,
p3, p1, p2; with assigned values p3 →1,p1 →2, p2 →3)
for one sublevel. Suppose there are k sublevels that should
be mined during the planned period. If we take into consid-
eration the previous assumption, then there are k rank orders
of given paths, one for each sublevel.

According to above discussion, our problem can be rep-
resented as an alternatives, attributes, evaluations (A,X ,E)

model. We consider: a finite set of alternatives, i.e., develop-
ment systems A(p1,p2,…,py); a finite set of attributes, i.e.,
assigned values X (x1,x2,…,xk), according to solution of Eq.
(2); and a set of evaluations of alternatives with respect to
attributes.

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11 x12 · · · x1k

x21 x22 · · · x2k

...
...

. . .
...

xy1 xy2 · · · xyk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

The main goal of our model formulation was to determine
the development system that should be used to access all k
sublevels, and to haul ore from them to the surface. The solu-
tion is based on the composite ranking of given alternatives.
The optimal development system for a given ore deposit is
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selected by the following equation:

DS = min

[
∑

k

x1k,
∑

k

x2k, . . . ,
∑

k

xyk

]

(7)

The complete procedure will be described in Sect. 3.3.

3.2 The Cost Functions

The general fuzzy cost function for development form that
is used for access and ore haulage is:

f̃i j (t) = C̃ DH
i j + C̃ H

i j (t) = δ̃ · l · λ−1 + c̃(t) · Q̃ · l (8)

where l = the total length of the development form (m);
Q̃ = the estimated quantity of ore to be transported along
the development form (t), Q̃ = P̃r · R̃.P̃r = estimated
reserves (t); R̃ = reserve recovery ratio (%);δ̃ = the unit
cost of building of a development form ($/m); c̃(t) = the
unit cost of ore haulage ($/tm); λ = number of sublevels that
will be accessed from the specified development form, or
number of sublevels that will use it as a haulage path or both
(λ = 1, 2, . . ., k).

We first analyze the cost of vertical development form,
called ‘shaft’. The length of the vertical shaft is the difference
in height between the top and the base of the shaft. In the
development network, we treat the shaft as a vertical line
segment with variable cost of the form:

f̃s(t) = δ̃ · |z − z0| · λ−1 +
[

ãs(t)

ns
+ b̃s(t) · |z − z0|

]

· Q̃

(9)

where ãs and b̃s are operational parameters associated with
the hoist costs, ns is the number of parts of the shaft
between loading point and surface. For example, for the
(1–2), (2), (3), (4), (5) ore-haulage path (see Fig. 2), ns takes a
value of 2, and for the (1–2), (1–1), (4), (5) ore-haulage path,
ns takes a value of 1. The shaft cost function for the second
ore-haulage path is different from the shaft cost function for
the first ore-haulage path, and its value is represented by a
‘bold curve’ between nodes (4) and (5).

The cost function of the horizontal development form,
called the ‘drive’, is:

f̃D(t) = (δ̃D · λ−1 + c̃D(t) · Q̃) ·
√

(x − x0)2 + (y − y0)2

(10)

When we define the cost function of the declined develop-
ment form called the ‘ramp’, the physical constraint related
to transportation path gradient has to be involved. This opera-
tional constraint shows that each ramp must have a maximum
allowable absolute gradient of r , where r depends on the type
of mining transportation equipment, such as haulage trucks.
Let xo,yo,zo denote coordinates of point A, and x ,y,z denote
coordinates of point B in 3-D space. The gradient of the line

Table 1 The transformation of linguistic terms to positive triangular
fuzzy numbers

Description Fuzzy number

VL (30,40,50) or (0.3,0.4,0.5)

L (40,50,60) or (0.4,0.5,0.6)

M (50,60,70) or (0.5,0.6,0.7)

H (60,70,80) or (0.6,0.7,0.8)

VH (70,80,90) or (0.7,0.8,0.9)

Table 2 Expert estimation of reserve recovery ratio

Expert Aggregated value

E1 E2 … Ep

R̃1 R̃2 · · · R̃p 1/p ⊗ (R̃1 ⊕ R̃2 ⊕ · · · ⊕ R̃p)

(β), connecting these two points, is equal to absolute value
of the slope from A to B. The cost function of the ramp is:

f̃ R(t) =

·

⎧
⎪⎨

⎪⎩

(δ̃R · λ−1 + c̃R(t) · Q̃)√
(x−x0)2+(y−y0)2+(z−z0)2 i f β ≤r

(δ̃R · λ−1 + c̃R(t) · Q̃) · |z − z0| · √
1 + r−2 i f β > r

(11)

The cost function of the ore-pass is a little bit different
from the general cost function because there is no second
term related to haulage cost. Gravitation is used as a way to
transport ore. The cost function of the ore-pass is:

f̃ p =
{

(δ̃p ·λ−1
√

(x−x0)2+(y−y0)2+(z−z0)2 i f α≤900

δ̃p · λ−1 · |z − z0| i f α ≤ 900

(12)

where α is the gradient of the ore-pass.
The ore reserve quantities to be excavated and transported

depend directly on the way of stoping, called the ‘mining
method’. Efficiency of the mining method can be expressed
by the reserve recovery ratio. Fuzzy linguistic variables used
to describe recovery ratio are as follows: very low (VL), low
(L), medium (M), high (H) and very high (VH). The next step
transforms the fuzzy linguistic variables to triangular fuzzy
numbers, as shown in Table 1.

To estimate an adequate value for the reserve recovery
ratio, it is necessary to get opinions of experts dealing with
underground mining methods. Suppose we have p experts
and each of them has given their opinion. The final value
is expressed by an aggregated fuzzy number obtained by
averaging the fuzzy opinions of the experts. Table 2 presents
the expert estimation process.

The concept of the triangular fuzzy numbers is also applied
to the estimation of the unit cost of construction of develop-
ment form. For example, the cost of a shaft-sinking operation
depends directly on rock mass properties. Generally, it is very
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hard to predict with certainty what may happen when sinking
at depth. Accordingly, we cannot define the cost of sinking
as a crisp value; we use triangular fuzzy number δ̃(δ1, δ2, δ3)

to define it.
The uncertainties related to the future states of costs of

transportation are modeled using a special stochastic process,
Geometric Brownian Motion. Certain stochastic processes
are functions of a Brownian motion process and have many
applications in finance, engineering and the sciences. Some
special processes are solutions of Itô-Doob-type stochastic
differential equations [14]. We applied a continuous time
process using the Itô-Doob-type stochastic differential equa-
tion to describe movement of unit costs of transportation in
this study:

dct = μct dt + σct dWt (13)

where μ is the drift and σ is the volatility, Wt is a normal-
ized Brownian motion. In order to estimate the parameters
of the Brownian motion process (μ,σ ), we run the following
regression:

dxt+1 = β0 + β1xt + ε.

The main objective of using simulation in the selection of
the development system is to determine the distribution of
the unit costs of transportation for every year of the project.
In this way, we obtain the sequence of probability density
functions of unit costs, ci ∼(pdfi ,μi ,σi ), i = 1, 2, .., T ,
where T is a total project time. Sequence of obtained pdfi
of unit costs can be transformed into a sequence of triangu-
lar fuzzy numbers of unit costs, ci ∼TFNi , i = 1, 2, .., T ,
i.e, c1 ∼pdf1 → c1 ∼TFN1; c2 ∼pdf2 → c2 ∼TFN2;…;
ci ∼pdfi → ci ∼TFNi . The way of transformation is based
on the following fact;

the support of the membership function and the pdf are
the same, and the point with higher probability (likelihood)
has the higher possibility. For more details, see [15]. The
uncertainty in the parameter is modeled by triangular fuzzy
number with the membership function, which has the support
of η−2σ < X < η+2σ, set up for around 95 % confidence
interval of normal distribution function. If we take into con-
sideration that the triangular fuzzy number is defined as a
triplet (a,b,c), then a and c are lower bound and upper bound
obtained from lower and upper bound of 5 % of the distribu-
tion, and the most promising value b is equal to mean value
of the distribution [16].

The production plan can be defined approximately, as fol-
lows:

t̃φ ∈ [t̃φ−1, t̃φ−1 + t̃s] φ = 1, 2, . . . , k (14)

where

t̃φ−1 = t̃c +
∑k

φ=1 Q̃φ−1

Yp
(15)

t̃s = Q̃φ

Yp
(16)

t̃φ−1—point when the previous sublevel is mined and φ-th
sublevel is started to be mined (year);

t̃φ−1 + t̃s—point when the φ-th sublevel is mined and φ

+1 sublevel is started to be mined (year);
t̃c—construction period (year); Yp—yearly production

rate (t/year); t̃s—time of mining of φ-th sublevel (year); k—
total number of sublevels.

According to the defined production plan, unit costs of
transportation related to the φ-th sublevel are expressed as
follows:

c̃ = f (E(t̃φ)) (17)

where E(t̃φ)—de-fuzzified value of fuzzy triangular num-
ber t̃φ = (a, b, c) It is obtained according to the following
equation: (a + b + c)/3.

In this way, the interval of time within each sublevel to be
mined is transformed into a crisp interval time; i.e.:

tφ ∈ [E(t̃φ−1), E(t̃φ−1 + t̃s)] φ = 1, 2, . . . , k (18)

Unit costs of transportation related to mining of the φ-th
sublevel are calculated as follows:

c̃ϕ(t) = c̃
[
E(t̃ϕ−1)

] + c̃
[
E(t̃ϕ−1 + t̃s)

]

2
ϕ = 1, 2, . . . k

(19)

where c̃[E(t̃φ−1)]—unit costs of transportation in the year
when mining of the φ-th sublevel is started; c̃[E(t̃φ−1+t̃s)]—
unit costs of transportation in the year when mining of the
φ-th sublevel is over.

3.3 Model of Selection of Development System

The selection of the underground mine development system
in a fuzzy environment is the task of finding the shortest
path in a fuzzy weighted network. In this paper, we apply an
algorithm for the fuzzy shortest path problem based on the
Convex Index [17]. To apply this algorithm, it is necessary
to introduce the following definitions.

Definition 1 The α–cut interval is obtained as follows for
all α ∈ [0, 1]:
M L

α = α · (b − a) + a; MU
α = c − α · (c − b)

Definition 2 Convex Index (CoI); Let M̃ be a triangular
fuzzy number, then CoI (M̃) = λ · (M L

α ) + (1 − λ) · (MU
α )

where [M L
α , MU

α ] is the α–cut interval of M̃ = (a, b, c), for
all α, λ ∈ [0, 1] , where λ is the index of optimism. If Ã and
B̃ are two triangular numbers, then in the Convex Index, we
have Ã < B̃ if CoI ( Ã) < CoI (B̃)
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According to the above derivation, we can pose our prob-
lem for one access point (sublevel) as follows: Input:
for each access point (sublevel), a mine designer creates a
directed haulage network of n nodes with fuzzy edge cost
functions. Out put : the fuzzy least cost function and corre-
sponding least cost development haulage path.

Algorithm for solving the problem of selection of under-
ground mine development system is composed of the follow-
ing steps:

1. Step1. For every year of the project time, simulate unit
costs ci (t), i = 1, 2, .., T of transportation, with respect
to the form of development (shaft, decline,. . . ), using Eq.
(13).

2. Step2. Transform ci ∼(pdfi ,μi ,σi ), i = 1, 2, .., T into
adequate fuzzy triangular number ci ∼TFNi .

3. Step3. Construct a haulage network from first sublevel
to the surface.

4. Step4. Form the possible haulage paths from source ver-
tex (access point) to destination node (surface breakout
point), and compute the corresponding cost functions
Fi (X, t) = (ai (t),bi (t),ci (t)), i =1,2,…,y, for possible
y paths.

5. Step5. Calculate α–cut interval for triangular fuzzy num-
ber for all possible path cost functions Fi (X, t)=(ai (t),bi (t),
ci (t)), i =1,2,. . . ,y, using Definition 1. Set Fi(α) =
[F L

i(α), FU
i(α)], i =1,2,. . . ,y.

6. Step6. Calculate Convex Index CoI (F̃i ) = λ · (F L
i(α) +

(1 − λ) · (FU
i(α)), for all possible path cost functions

Fi (X, t)=(ai (t),bi (t),ci (t)), i =1,2,…,y, using Defini-
tion 2.

7. Step7. Determine the actual least cost development
haulage path with the minimum CoIi and assign a value
of 1 to it.

8. Step8. Make a rank order of the rest of paths according
to ascending order of Convex Index, and assign value to
each path (2,3,…,y).

9. Step9. As the ore body is dipping, repeat Step 3 to Step
8 for all defined access points (for k sublevels).

10. Step10. Create (S,CoIi ) diagram where x-axis denotes
sublevel where the access point is located (S), and y-axis
denotes the Convex Index (CoIi ).

11. Step11. According to Step 10, create (S,Av) diagram,
where x-axis denotes the sublevel where the access point
is located (S), and y-axis denotes the assigned value (Av).

12. Step12. Form the set of evaluations of alternatives E [see
Eq. (6)].

13. Step13. For each row of E matrix, compute the sum of
all the terms in the row. The alternative that corresponds
to the row with the minimum sum of the terms is the
optimal development system for given ore deposit [see
Eq. (7)].

4 Numerical Example

4.1 A Numerical Example Statement

To illustrate the proposed procedure, we applied it to a study
considering the selection of an underground mine develop-
ment system needed for the exploitation of a bauxite deposit.
Since the stripping ratio is approaching the planned value,
the management of the company is faced with the problem
of increasing production costs at an active open-pit mine.
The management has decided to start a project of under-
ground mining of the remaining bauxite reserves. Part of the
deposit that should be mined is located between level 710
and level 494. Deposit is inclined at an angle of about 70o.
The underground mine should be designed for the capacity
of production of 200,000 t/year. According to geological and
mining conditions, the sublevel mining method is selected.
The height of sublevel is 8 m. Two geological and two min-
ing experts (Ep = 4) were consulted to estimate the adequate
values of reserve recovery ratio for each sublevel separately.
The relevant operational data related to bauxite reserves are
shown in Table 3. Data related to costs of construction and
transportation are given in Table 4.

4.2 Numerical Example Solution

Three development systems have been evaluated: Decline
development system; Shaft development system; and Shaft-
Decline development system.

Decl ine development system: main decline starts from
level 768 and ends on level 718. The length of the main
decline is 452 m and the gradient is 1:9. First sublevel access
decline starts from level 718 and ends on the first mining level
710. The ore is removed from stope using Load Haul Dump
vehicles. The ore is then dumped into a mine truck to be
hauled to the surface via main decline. Construction period
is t̃c = (1 1, 2 1, 5) year. There is no need to interrupt the
production when lower levels are developed for mining.

Sha f t development system: the shaft is sunk from level
768 to level 662. On level 718, the horizontal drive is con-
structed from the shaft to the deposit. Access decline is con-
structed from the horizontal drive to sublevel 710, and further
via sublevels 702, 694, 686, 678 and 670, to the main trans-
port level 662. Ore-pass connects sublevels 710, 702, 694,
686, 678 and 670 with the main transport level 662. Main
transport level 662 connects ore-pass with the loading point
located near the shaft. The ore is removed from the stope
using Load Haul Dump vehicles and dumped down an ore-
pass, where it falls to the main transport level 662. The ore is
then dumped into a mine truck and transported to the shaft,
to be hoisted up to the surface in skips and emptied into bins
at the surface. Construction period is t̃c = (1, 5 1, 7 2) year.
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Table 3 Bauxite reserves
Sublevel Estimated reserves (t) Reserve recovery

ratio (%)
Recoverable reserves (t)

ai bi ci ai bi ci ai bi ci

710 115,067 121,123 127,179 55 65 75 63,287 78,730 95,384

702 123,160 129,642 136,124 47.5 57.5 67.5 58,501 74,544 91,884

694 87,392 91,992 96,592 52.5 62.5 72.5 45,881 57495 70,029

686 107,449 113,105 118,760 55 65 75 59,097 73,518 89,070

678 150,927 158,870 166,814 52.5 62.5 72.5 79,237 99,294 120,940

670 188,269 198,178 208,086 52.5 62.5 72.5 98,841 123,861 150,863

662 217,348 228,787 240,227 52.5 62.5 72.5 114,108 142,992 174,164

654 194,815 205,069 215,322 52.5 62.5 72.5 102,278 128,168 156,109

646 158,617 166,965 175,313 52.5 62.5 72.5 83,274 104,353 127,102

638 103,038 108,461 113,884 52.5 62.5 72.5 54,095 67,788 82,566

630 63,956 67,322 70,688 47.5 57.5 67.5 30,379 38,710 47,714

622 44,488 46,829 49,171 55 65 75 24468 30,439 36,878

614 42,542 44,782 47,021 55 65 75 23398 29,108 35,265

606 54,808 57,692 60,577 55 65 75 30144 37,500 45,433

598 76,494 80,520 84,546 47.5 57.5 67.5 36,335 46,299 57,069

590 80,859 85,115 89,371 47.5 57.5 67.5 38,408 48,941 60,325

582 78,660 82,800 86,940 47.5 57.5 67.5 37,364 47,610 58,685

574 53,375 56,184 58,994 60 70 80 32,025 39,329 47,195

566 67,426 70,974 74,523 60 70 80 40,455 49,682 59,618

558 130,343 137,203 144,063 60 70 80 78,206 96,042 115,250

550 221,008 232,640 244,272 52.5 62.5 72.5 116,029 145,400 177,097

542 296,061 311,643 327,225 52.5 62.5 72.5 155,432 194,777 237,238

534 305,941 322,043 338,145 60 70 80 183,564 225,430 270,516

526 424,721 447,075 469,429 47.5 57.5 67.5 201,742 257,068 316,864

518 558,222 587,602 616,982 47.5 57.5 67.5 265,155 337,871 416,463

510 599,442 630,992 662,542 52.5 62.5 72.5 314,707 394,370 480,343

502 547,060 575,853 604,645 52.5 62.5 72.5 287,207 359,908 438,368

494 371,424 390,973 410,521 52.5 62.5 72.5 194,998 244,358 297,628

When lower levels are developed, it is necessary to interrupt
the production. Construction period is t̃c = (0, 8 1 1, 2)year.

Sha f t-Decl ine development system: this development
system is the combination of the two previously described
systems. The ore is removed from the stope using Load Haul
Dump vehicles. The ore is then dumped into a mine truck
to be hauled up to the main transport level via decline, and
transported to the shaft to be hoisted up to the surface in skips
and emptied into bins at the surface. Construction period is
t̃c = (1, 4 1, 6 1, 9) year. When lower levels are developed, it
is necessary to interrupt the production. Construction period
is t̃c = (0, 6 0, 8 1, 1) year.

The procedure of finding the optimal development system
for the given example is executed as follows:

Step1 and Step2. Simulation of unit costs ci (t), i =1,2,..,T
of transportation with respect to the form of development and
transformation of ci ∼(pdfi ,μi ,σi ), i =1,2,..,T into adequate

triangular fuzzy number ci ∼TFNi is presented in Tables 5,
6, 7 and 8.

Step3. Construction of haulage network from the first
sublevel S-710 to the surface is presented in Fig. 3.

Step4. Possible haulage paths from sublevel S-710 to
the surface and corresponding cost functions. Path p1: Ore-
pass 710–662; main transport level 662–662; Shaft 662–718–
768; corresponding fuzzy cost function: F1(278023 313664
352924) $; path p2: access decline 710–718; main decline
718–768; corresponding fuzzy cost function: F2(72520
93826 119664) $; path p3: access decline 710–718; main
transport level 718–718; Shaft 718–768; corresponding
fuzzy cost function: F3(95217 112967 130693) $. Step 5.
α–cut interval of triangular fuzzy cost function for α = 0,5;
see Table 9.

Step6. Convex Index of triangular fuzzy cost function for
λ = 1; see Table 10.
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Table 4 Costs

Cost

Haulage and Hoist

Drive (mine truck). Simulation
of Geometric Brownian
Motion, yearly time resolution
Eq. (13)

Spot value 0.8 $/tkm
Cost volatility 0.04
Drift 0.02

Decline (mine truck).
Simulation of Geometric
Brownian Motion, yearly time
resolution, Eq. (13)

Spot value 1.2 $/tkm
Drift 0.03
Cost volatility 0.06

Shaft (skip system). Simulation
of Geometric Brownian
Motion, yearly time resolution,
Eq. (13)

Parameter as
Spot value 0.4 $/t
Drift 0.006
Cost volatility 0.014
Parameter bs

Spot value 0.6 $/tkm

Drift 0.0012

Cost volatility 0.024

Construction

Drive (1,400 1,600 1,900) $/m

Decline (2,000 2,200 2,400) $/m

Shaft (20,000 23,000 26,000) $/m

Ore-pass (200 250 300) $/m

Step7 and Step8. Rank order of the haulage paths
according to ascending order of Convex Index; see Table
11.

Step9. Rank order of the haulage paths for all sublevels;
see Table 12.

Step10. S , CoIi diagram (see Fig. 4).
Step11. S,Av diagram according to data from Table 12

(see Fig. 5).

Step12. Set of evaluations of underground mine develop-
ment systems composed of assigned values, i.e., ranks.

E =
∣
∣
∣
∣
∣
∣

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 1 2
1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3
2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1

∣
∣
∣
∣
∣
∣

Step13. For the raw data of matrix E, we obtain the sums
presented in Table 13.

Haulage paths, from sublevel S-710 to the surface, are
weighted by corresponding fuzzy cost functions. Since they
are represented in fuzzy format, a ranking procedure based
on fuzzy number comparison needs to be applied. Compari-
son procedure was carried out in Step 5 and 6, where α-cut
interval and Convex Index of fuzzy number were used as a
basis for comparison. We assigned value of 1 to the haulage
path p2, value of 2 to p3, and value of 3 to p1, according to
ascending order of Convex Index; Step 7 and 8. The proce-
dures of comparison and assignation were repeated for the
rest sublevels (S-702,…,S-494), and S,CoIi and S,Av dia-
grams were created on the basis of obtained outcomes; Steps
9–11. The number of columns of matrix E is equal to the
total number of sublevels, while the number of rows cor-
responds to the number of underground mine development
systems which we evaluated. Elements of matrix E are equal
to numerical outcomes (ranks) of the assignation procedure;
Step 12.

Obtained composite rank order indicates the following
rank of underground mine development systems: Shaft-
Decline development system; Decline development system;
and Shaft development system.

For comparison purposes, Fig. 6 shows the changeover
points between proposed underground mine development
systems, with respect to mine depth and sublevel ore reserves.

Table 5 Simulation and
transformation of costs related
to Drive development form

Year 0 1 2 … 25

η ($/tkm) 0.80000 0.81494 0.83128 … 1.31495

σ 0.00000 0.03260 0.04799 … 0.25327

TFNi

ai = η-2×σ 0.80000 0.74974 0.73531 … 0.80840

bi = η 0.80000 0.81494 0.83128 … 1.31495

ci = η+2×σ 0.80000 0.88013 0.92725 … 1.82150

Table 6 Simulation and
transformation of costs related
to Decline development form

Year 0 1 2 … 25

η ($/tkm) 1.20000 1.23811 1.27721 … 2.46461

σ 0.00000 0.07611 0.11310 … 0.73440
TFNi

ai = η-2×σ 1.20000 1.08588 1.05101 … 0.99581

bi = η 1.20000 1.23811 1.27721 … 2.46461

ci = η+2×σ 1.20000 1.39034 1.50341 … 3.93340
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Table 7 Simulation and
transformation of costs related
to Shaft development form-as
parameter

Year 0 1 2 … 25

η ($/t) 0.40000 0.40272 0.40538 … 0.46522

σ 0.00000 0.00550 0.00803 … 0.03229

TFNi

ai = η-2×σ 0.40000 0.39172 0.38932 … 0.40062

bi = η 0.40000 0.40272 0.40538 … 0.46522

ci = η+2×σ 0.40000 0.41373 0.42144 … 0.52981

Table 8 Simulation and
transformation of costs related
to Shaft development form-b s
parameter

Year 0 1 2 … 25

η ($/tkm) 0.60000 0.60818 0.61562 … 0.80731

σ 0.00000 0.01483 0.02141 … 0.09427

TFNi

ai = η-2×σ 0.60000 0.57853 0.57280 … 0.61876

bi = η 0.60000 0.60818 0.61562 … 0.80731

ci = η+2×σ 0.60000 0.63783 0.65845 … 0.99585

Figures 4, 5, 6 indicate the various changeover points, for
various mine depths, sublevel ore reserves and fixed pro-
duction rates, among the Decline, Shaft and Shaft-Decline
development systems. As seen from the mentioned figures,
at 200,000 t/year production rate, the first changeover point
is at 82 m mine depth. This indicates that Decline is bet-
ter option up to 82 m than Shaft-Decline, while Shaft option
is completely unfavorable. If we neglect for a moment the
changeover point at 162 m mine depth, where Decline is a
better option than Shaft-Decline, it can be seen that Shaft-
Decline has an advantage over Decline from 82 to 266 m
mine depth. This transition is caused by significant decrease
in ore reserves from sublevel 638 (122 m mine depth) to 598
(162 m mine depth). Although the decrease in ore reserves
from sublevel 638 to sublevel 630 was about 50 %, it was
not enough for instantaneous transition. Five sublevels, with
the same decreased reserves, were needed for the realization
of the transition. It indicates the mine depth has a greater
influence on the transition than the decrease in ore reserves
at deeper sublevels. A very important changeover point is at
210 m mine depth, where Shaft becomes a better option than
Decline. It indicates that Decline is a cheaper option up to
210 m, while the Shaft option is economically viable beyond
210 m. With increasing mine depth and sublevel ore reserves,
the Shaft development system becomes the more economical
system. Supremacy of the Shaft over Decline option, beyond
210 m, is also confirmed by the changeover point at 258 m
mine depth, where Shaft is even better than the Shaft-Decline
option.

The dynamic and fuzzyfied nature of the model makes the
decision-making environment more realistic and the obtained
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Fig. 3 Haulage network from sublevel S-710 to surface

Table 9 α–cut interval

Triangular
fuzzy cost
function

Value Fi(0,5) = [F L
i(0,50), FU

i(0,5)]

F1 (278,023 313,664 352,924) [295,843, 333,294]

F2 (72,520 93,826 119,664) [83,172, 106,745]

F3 (95,217 112,967 130,693) [104,091, 121,830]

Table 10 Convex Index

Triangular fuzzy cost function CoI (F̃i )

F1 295,844

F2 83,173

F3 104,092
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Table 11 Rank order of the haulage paths for sublevel S-710

Triangular fuzzy cost function CoI (F̃i ) Rank order

F1 295844 3

F2 83173 1

F3 104092 2

Table 12 Rank order of the haulage paths

Sublevel System Rank Sublevel System Rank

710 S;D;SD 3;1;2 598 S;D;SD 3;1;2

702 S;D;SD 3;1;2 590 S;D;SD 3;2;1

694 S;D;SD 3;1;2 582 S;D;SD 3;2;1

686 S;D;SD 3;1;2 574 S;D;SD 3;2;1

678 S;D;SD 3;2;1 566 S;D;SD 3;2;1

670 S;D;SD 3;2;1 558 S;D;SD 3;2;1

662 S;D;SD 3;2;1 550 S;D;SD 2;3;1

654 S;D;SD 3;2;1 542 S;D;SD 2;3;1

646 S;D;SD 3;2;1 534 S;D;SD 2;3;1

638 S;D;SD 3;2;1 526 S;D;SD 2;3;1

630 S;D;SD 3;2;1 518 S;D;SD 2;3;1

622 S;D;SD 3;2;1 510 S;D;SD 2;3;1

614 S;D;SD 3;2;1 502 S;D;SD 1;3;2

606 S;D;SD 3;2;1 494 S;D;SD 2;3;1

Legend: S-shaft; D-decline; SD-shaft-decline

Fig. 4 Convex Index diagram

results more reliable. Network modeling gives the opportu-
nity for the underground mine to be presented almost as a
real physical model.

Fig. 5 Rank order diagram

Table 13 Sums of all terms in the rows

Shaft Decline Shaft-Decline

Sum of assigned ranks 75 59 34

Composite rank 3 2 1

Fig. 6 Changeover points between development systems

5 Conclusion

The selection of an underground mine development system is
classified as a strategic decision-making process, which has
the most influence on the future of a mine. A major design
task is to determine the mine development system needed to
provide access to each sublevel and provide haulage paths
to transport excavated ore to the surface. We consider the
development system as a network interconnecting all sub-
levels with surface breakout point, using the minimum costs
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of development and haulage. The selection model takes into
account costs related to the construction of the develop-
ment system, quantities of ore to be transported, lengths of
transportation paths and unit costs of ore transportation. In
essence, the selection of the underground mine development
system corresponds to the selection of any other investment
proposal. If we take into consideration this fact, then the net-
work model enables a decision maker, who is not familiar
with underground mining, to view this problem in a com-
pletely understandable way. The relevance of the proposed
model is supported by the fact that the results were obtained
under uncertainty. One of the main advantages of the pro-
posed methodology is the quantification of uncertainties by
fuzzification of the input data. In this way, we included risks
into the process of strategic decision making, such as the
selection of underground mine development system. Future
scope of the work may consider to the extension of the model
in the sense of a multi-criteria decision-making process,
where composite rank is retained as one criterion and new
criteria are added. New criteria can include indicators such as
equipment reliability, complexity of construction and com-
plexity of transportation route.
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