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Abstract The Barth—Krabbe—Hintikka—Hintikka Problem, independently raised by
Barth and Krabbe (From axiom to dialogue: a philosophical study of logics and argu-
mentation. Walter de Gruyter, Berlin, 1982) and Hintikka and Hintikka (The sign of
three: Peirce, Dupin, Holmes. In: Eco U, Sebeok TA (eds) Sherlock Holmes confronts
modern logic: Toward a theory of information-seeking through questioning. Indiana
University Press, Bloomington, 1983), is the problem of characterizing the strategic
reasoning of the players of dialogical logic and game-theoretic semantics games from
rational preferences rather than rules. We solve the problem by providing a set of pref-
erences for players with bounded rationality and specifying strategic inferences from
those preferences, for a variant of logical dialogues. This solution is generalized to both
game-theoretic semantics and orthodox dialogical logic (classical and intuitionistic).

Keywords Game-theoretic semantics - Dialogical logic

1 Introduction: An Open Problem

In the 1930s, Wittgenstein articulated the view that logic is one of the many language
games that can be played in natural or formal languages. He also suggested an analogy
between having a proof and winning a game. Dialogical logic and game-theoretic
semantics have provided formal interpretations of this analogy. Dialogical logic defines
2-player games in which Proponent has a winning strategy for defending a formula
against the attacks of Opponent if the formula follows deductively from a (possibly
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empty) set of premises. Game-theoretic semantics defines 2-player games in which
Eloise (Abelard) has a winning strategy for a formula if the formula is true (false) in an
underlying model. [For an overview of dialogical logic, see Rahman and Keiff (2005);
for game-theoretic semantics, see Hintikka and Sandu (1997)]. In both cases, the
games are defined by sets of rules that specify explicitly the action sets of the players,
and implicitly restrict the admissible strategies to those that emulate systematic proof
construction and model-checking procedures.

Specifying a game by means of sets of rules is a slight departure from the stan-
dard practice in game theory. ‘Game rules’ are indeed either reduced to definitions
(action sets) or to the players’ best response to some game configuration (strategic
inferences). A game is defined by a set of players, a set of actions available to these
players, and a preference relation for each player over the outcomes of their actions,
that is very often represented by a payoff (utility) function for each player from their
action set onto the set of real numbers. Of particular importance here is the absence of
“rules” properly speaking. The underlying assumption of players’ rationality suffices
to explain how to choose actions throughout the game by strategic reasoning over
preferences, and when to stop the game. However, it is easy enough to translate these
legal actions and strategic reasoning into rules enforcing certain preferences and good
inferential practice. For instance, in the game of chess, rules for moving pieces define
legal actions, while the checkmate rule expresses when it is rational to quit moving
the king around the board because the payoff will not change.

Alternative formulations of dialogical logic and game-theoretic semantics based
on preferences or utilities have been investigated in the 1980s respectively by Barth
and Krabbe (1982) and Hintikka and Hintikka (1983). Barth and Krabbe suggested
that rules that govern the end-game configuration of a dialogical game translate the
preferences of rational arguers. They formulated closing rules in terms of what is
rational for arguers to do, namely: the losing party has to acknowledge that the other
party has won by rational means, and therefore acknowledges that it is irrational to keep
arguing (Barth and Krabbe 1982, p. 71). This explicitly introduces rational preferences
for conceding defeat under particular circumstances in a play (as opposed to continuing
arguing and extending that play). Rather than being told when to stop by rules, as in
orthodox dialogical logic, Barth and Krabbe’s rational arguers stop arguing because
they agree that one player has won. However, Barth and Krabbe did not characterize
preferences over outcomes, and thus could not fully illuminate the relation between
the preferences and the rules [see Jacot et al. (2016) for further details].

Hintikka and Hintikka (1983) hit closer to the mark, when they characterized the
utility function for the construction of a tableau proof played relative to an under-
lying first-order model. The Hintikkas attached an incremental cost for each new
individual name introduced in a proof that could not be assigned a denotation in
the underlying model, yielding costs for both regular tableau construction and pure
model checking as limit cases. The utility function formalized the intuition that
sequences of moves that impose a lower load on working memory incur a lower cost,
and expressed preferences over the outcome of a tableau-building process. Unfortu-
nately, the Hintikkas formulated the utility function for Player in a game against
Nature, and Nature is a non-strategic player whose moves are limited to provid-
ing information about its own state. Subsequently, the game is in fact a 1-player
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game, that is, a sequential decision problem [see Genot (2017, Sect. 3.3) for further
details]. The Hintikkas did not suggest how to extend their 1-player decision-making
problem to a 2-player model-checking game a /a game-theoretic semantics. Fur-
thermore, maximizing expected utility is tantamount in this context to solving the
Halting Problem (Genot 2017, Sect. 2.3), so that a decision-maker with a prefer-
ence for low cognitive costs must perform hypercomputations in order to satisfy her
preference.

Subsequently, Barth, Krabbe and the Hintikkas have left us with an open problem,
namely specifying explicit preferences and strategy selection inferences for rational
players of a dialogical logic game for validity, or a game-theoretic semantics game
for truth in a model. Let us from now on refer to this problem as the Barth—Krabbe—
Hintikka—Hintikka problem (BKHH for short). In order to solve this problem, one must
characterize preferences over strategies, derived from preferences over the outcome
of strategy profiles (pairs of strategies). The selection of a strategy by a player must
depend on the desirability of the possible outcomes of that strategy for that player.
And finally, the preferences and strategic inferences from those preferences must be
suitable for reasoners with bounded computational resources.

In this paper, we solve the BKHH problem for a proprietary format of logical
dialogues for classical first-order logic. This format is chosen so that our results apply to
game-theoretic semantics and orthodox dialogical logic for classical and intuitionistic
logic with minimal changes. Our format borrows heavily from dialogical logic, because
the rules of the orthodox dialogical games can be interpreted as enforcing preferences
for certain strategies. Our main contribution solves the difficulties mentioned above
by characterizing those preferences over outcomes and the strategic inferences from
those preferences that yield preferences over strategies.

The remainder of this paper is organized as follows. Section 2 presents signed
semantic trees for logical games (2.1 and 2.2), develops our format of game trees
for logical dialogues (2.3) and explains the differences with standard dialogues (2.4).
Section 3 exposes a standard argument for the completeness of logical dialogues (3.1)
and shows how to handle players with preferences (3.2). Section 4 turns to these
preferences, first characterizing players’ bounded rationality (4.1), and second artic-
ulating the form of strategic reasoning appropriate for them (4.2 and 4.3). Section 5
implements these preferences in logical dialogues, provides representation results for
players’ reasoning to optimal choices of moves (5.1), and for players’ reasoning to
end-of-play and end-of-game choices (5.2), before returning to completeness (5.3).
Section 6 extends the solution to orthodox game-theoretic semantics (6.1), and ortho-
dox dialogical logic for both the classical and intuitionistic cases (6.2). An appendix
collects the proofs of the propositions discussed in Sects.4 and 5.

2 Of Proof Trees and Game Trees
2.1 Preliminaries

Logical dialogues are 2-player games presented as two-column tableaux [one column
for each player’s moves, cf. Rahman and Keiff (2005) or Keiff (2009)], reminiscent of
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semantic tableaux introduced by Beth (1955), which are also the formal representation
of 1-player proof games discussed by Hintikka and Hintikka (1983). The completeness
of logical dialogues is proved by mapping their extensive form (game tree) onto signed
semantic trees, introduced in Smullyan (1968), which are in all effect single-column
versions of Beth tableaux. Our main concern is with strategic reasoning in logical
dialogues qua extensive games. Hence, we consider their tree form rather than their
tableau form. The rest of this section assumes no familiarity with logical dialogues
and a passing familiarity with semantic tableaux. Knowledgeable readers may skip
it, with the exception of the last paragraph, which accounts for some deviations from
standard semantic trees methods. As mentioned in the introduction, we reconstruct
classical first-order logic, and will later generalize our solution.

Given a first-order language £ of arbitrary signature with its standard compositional
semantics, a semantic tree formalizes an attempt at proving by reductio that some
(possibly empty) set I” of sentences of L entails a single sentence ¢ of £, or that ¢ is
a logical truth when I = &. (Everything we say hereafter about semantic trees holds
mutatis mutandis for two-columns Beth tableaux.) Tree-building rules: (1) interpret
all elements of I" as true, and ¢ as false; and: (2) allow for decomposing elements
of I" and ¢ into subformulas using rewriting rules that preserve this interpretation. A
semantic tree is analytic if every formula that occurs at a position is a subformula of
¢ or some element of I", in which case the truth-value of any formula at any position
depends uniquely on the truth-values assigned to elements of I" and to ¢. Selective
violations of the subformula principle are possible via the Cut rule (cf. Sect. 2.4).
If I" does not entail ¢, the rules yield at least one branch in which the assignment
satisfies the reductio assumption (the branch is said to be open); and if I" entails ¢,
the rules generate contradictory assignments in every branch (the branches are said
to be closed, and so is the tree). The rules can be applied systematically so that every
closed branch is finite, but some open branches may be infinite (see Smullyan 1968,
p. 59).

Formally, I" and ¢ are placed at the root of a proof tree, and tree-building rules
are then applied to a formula at a given node n, generating new nodes, possibly in
parallel branches. I" is listed when finite, otherwise, the systematic methods rely
on enumerations of the premises that guarantee that none of them will be omitted.
Semantic trees come in two flavors, signed, and unsigned. In signed semantic trees,
any formula that occurs at a node of the tree is ‘signed” with one truth-value, true (T) or
false (F). Specifically, every y € I' introduced in the proof tree is T-signed, whereas
(by the reductio hypothesis), ¢ is F-signed, and tree-building rules reflect this initial
assignment. Unsigned semantic trees dispense with explicit truth values, by placing
the negation —¢ of the conclusion ¢ at the root, while elements of I" are introduced
as they are. The tree-building rules incorporate duality laws, i.e. push negation in.
In either type of trees, the number of successor nodes to a node n, generated by
a tree-building rule applied to that node, is always finite. However, some rules can
be applied iteratively, and thus some branches may have infinitely many nodes. In
technical jargon, semantic trees are finitely generated but are not always finite.

The next section introduces a ‘hybrid’ of signed and unsigned semantic trees. The
purpose of this modification is to make possible to solve the BKHH problem for both
game-theoretic semantics and orthodox dialogical logic, which we will do in Sect. 6.
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For now, suffice to say that this modification is intended to obtain logical dialogues
where the commitments of the players are kept apart. The first assertion of a logical
dialogue is the rthesis asserted by Proponent (P), and mapped to the conclusion ¢ of a
proof tree. I (when not empty) is treated as a set of concessions of the Opponent (O)
to the thesis that P can use to back her assertion. Therefore, the thesis is mapped to a
F-signed formula, and the premises to T-signed formulas. Legal moves are specified
as attacks and defenses, and may result in P (respectively O) attacking a O-labeled (P-
labeled) formula i by asserting a subformula of . This sequence would be mapped
to tree-building rules that change sign between a formula at one node and some of
its subformulas at successor nodes. However, assuming duality laws, legal moves for
logical dialogues can also be specified so that P’s assertions depend only on ¢, and
O’s assertions, only on I". This is tantamount to using both the T-signed and F-signed
formulas and rewriting rules to ‘push negation in’. We examine some consequences
relative to logical dialogues in Sect. 2.4, and come clean about our motivations in
Sect. 6.1.

2.2 Signed Semantic Trees (A Solitaire Game)

Tree-building rules for a language £ with propositional operators — (negation), A
(conjunction) and V (disjunction) are represented in Fig. 1 (where v; and v, are
formulas of £ of arbitrary complexity). T and F ‘sign’ formulas (resp.) as true and
false (as with signed semantic trees), and prefixed negation operators distribute over
formulas in their scope according to duality laws (as with unsigned semantic trees).
The material conditional can be introduced by the usual definition ¥; — ¥ =ges
=1 V2, and is omitted. Although the rules reflect the compositional semantics for £,
they are more economical than semantic clauses. For instance, for a true disjunction
T Vv Y, there is no branch for the alternative where both v and v, hold, and
the same goes for its dual Fyr; A ¥. The rules mimic informal reasoning by cases,
where the third branch of the alternative can be omitted when the two others have
been explored. However, the existence of a third alternative will matter for logical
dialogues. Unrepresented alternatives also exist in the case of rules for existential
(3) and universal (V) quantifiers, represented in Fig. 2, which introduce individual
parameters in the proof.! These rules can in principle be applied arbitrarily many
times, and their systematic application is critical for proving the completeness of
semantic tableaux [again, see Smullyan (1968, p. 59)].

A branch b generated by successive applications of tree-building rules of
Figs. 1 and 2 is said to be open if the constraints on the assignment of truth-values to
T- and F- signed formulas occurring in b are jointly satisfiable. Otherwise, the branch
is said to be closed. More explicitly, if for some formula v, both Xy and X— or
both Xy and Yy occur in b (with X, Y € {T,F}, X # Y), then the rules impose

! Parameters can be interpreted as their own domain, in which case there is no need to assume an underlying
domain (substitutional semantics), or as variables of a special type that always occur free, and can be
assigned denotations in an underlying domain of objects (objectual semantics). The former is more natural
in dialogical logic (no underlying domain is presupposed), and the latter is more natural in game-theoretic
semantics (an underlying domain is presupposed).
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Ty Ty Vo T=(1 V ¢2) Ty Ay T=(1 Ay2)
I P I I RN
Ty Ty Tyo T-y Ty Ty, Ty
Ty Ty
F--y Fyi vy F-(y1 V ¢2) Fyi A F=(y1 A y2)
I I N P I
Fy Fyy F-y1  F-yn Fyi Fi F-yy
Fyo F-y
Fig. 1 Building rules for hybrid trees—operators
T3x Y(x) T-3x ¥(x) TVx ¥(x) T=Vx ¥(x)
I I I I
Ty(a) T-y(a) Ty(a) T-y(a)
(a is new) (a is arbitrary) (a is arbitrary) (a is new)
Fax y(x) F-3x y(x) FVx y(x) F-Vx y(x)
I I I I
Fy(a) F-y(a) Fy(a) F-y(a)
(a is arbitrary) (a is new) (a is new) (a is arbitrary)

Fig. 2 Building rules for hybrid trees II—quantifiers

constraints that are not jointly satisfiable according to the semantics of L. Closure
rules then halt the construction of a branch because closed branches cannot yield
counterexamples. When all branches are closed, there is no admissible assignment
under the initial assumptions: the whole tree is declared closed by extension, and (by
the reductio assumption) I entails ¢.

A theorem prover has some leeway for applying tree-building and closure rules
relative to some particular 1" and ¢. Different proof strategies can result in proofs of
different length and complexity, and there is no general solution to the problem of
finding the best strategy to prove whether I” entails ¢ or not.> However, the problem
of finding a strategy that outputs a closed tree whenever I" entails ¢ has a solution.
This solution guarantees that a tableau with premises I" and conclusion ¢ closes iff I”

2 The notion of ‘strategy’ in theorem-proving is defined by Smullyan (1968). Intuitively, the optimal
strategy is the strategy that applies the rules to the smallest set of premises necessary to close the tableau.
Assume now that there is a strategy for building a closed tableau with conclusion ¢ in a tableau with premises
I, and that there is a subset I’ C I" such that I"" does not entail ¢. If the theorem prover reasons by
elimination of dominated strategies, she must be able to eliminate every strategy where she applies tableaux
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entails ¢. In technical jargon, semantic trees are sound and complete with respect to
the semantics of first-order logic. Moreover, the solution is constructive: completeness
proofs can exhibit systematic strategies that yield a finite closed tree with I" and ¢ at
its root whenever I entails ¢. Insights into proof construction may yield more elegant
proofs that those obtained by systematic constructions, but they are not necessary
because these systematic constructions can be implemented mechanically. Building a
proof tree can be compared to a game of solitaire, with the aim of learning whether or
not some set of premises I entails ¢, and is a ‘language game’ insofar as the ‘game
rules’ (the tree-building and closure rules) reflect the semantics of L. Proof trees,
therefore, offer a first approximation of a formal interpretation of Wittgenstein’s game
metaphor (Jacot et al. 2016).

2.3 Logical Dialogues (A Two-Player Game)

Logical dialogues are akin to a pro-and-contra argumentation, with an immediate
relation to proofs: Proponent (P) is committed to prove that thesis ¢ follows from
some I". Symmetrically, Opponent (O) is committed to prove that ¢ does not follow
from I". Whichever player fulfills successfully their initial commitment according to
the rules wins the game. These rules are of two types, particle rules and structural
rules. Particle rules encode the semantics of the language in which the game is played
and contribute to determine legal moves—attacks and defenses—that follow O’s initial
concession of I, and P’s initial statement of ¢. Following the Wittgensteinian motto
that “meaning is use”, particle rules specify the meaning of logical operators according
to how they can be used in the game, and govern what player X can ask player Y
following Y’s assertion of some sentence ¢ € L, based on the main operator of .
Equivalently, they express the constraints on Y’s future statements, imposed by Y’s
statement of 1. Structural rules govern the general set-up of the game, such as the
order of play and the winning conditions, but also further restrict the legal attacks and
defenses, and thus are best discussed after the particle rules have been introduced.?
Figure 3 presents rules for attacks and defenses with the following conventions:
X represents a position where X has stated v; Y2 represent Y’s attack against v/;
options for attacks and defenses determine ‘branching’ histories. If the rule allows
Y to constrain the defense, a branching results from Y’s move and the constraint
is specified between ‘<’ and ‘>’; otherwise, X retains the options for defenses. In
either case, the options determine equally many branching histories. As previously
mentioned, dialogical logic typically does not keep a strictly parallel track of O’s and

Footnote 2 continued

rules only to I"’. Assume now that the only models of I where ¢ does not hold are infinite. Then all the
open branches of a tableau with premises I"” and conclusion ¢ are also infinite. The strategic problem of
eliminating dominated strategies where the theorem prover applies tableaux rules only to I’ is equivalent
to the Halting Problem, which is not effectively solvable.

3 0 and P need not have any understanding of the rules for attacking and defending assertions, or the
structural rules, other than the understanding needed to apply them correctly. In particular, truth-functional
semantics is not assumed to be in the common ground when playing with the set of rules for classical logic,
no more than any semantic interpretation of intuitionistic logic, when playing with the rules for that logic.
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Xy Xy1 Vo X=(1 V)
Y2y Y21 Vi Y2-(01 v )
I
X
u Xy Xgo Xy
leZ <L//]> <(,02> <(//1,lﬂ2>
I I I
X—yq Xy, X—yy
X=yra
Xy A X=(y1 A y2)
Y21 Ay Y241 A )
/’\ X—-/XJ\X—-
<Wi> <> <uidn> n e
I I I
Xyry Xy Xy
Xiyp

Fig. 3 Particle rules I: propositional connectives

P’s commitments: Y can attack X— with Y and Xvyr; — v, with Y. We will
discuss some consequences of the modifications we have introduced in Sect. 2.4, but
a complete explanation of the reasons behind our choice will be delayed until Sect. 6.

Particle rules are not among the ‘rules’ that a solution to the BKHH problem need
to get rid of. The reason is that they are merely a representation of the players’ action
set in the game. However, the terminology of ‘tree-building rules’ and ‘particle rules’
is nicely parallel and well entrenched, and it is of no consequence for our argument to
keep referring to the action set of players relative to formulas as ‘particle rules’ (we
will use the phrase ‘action set’ on occasion as a reminder). Particle rules for binary
connectives generate a topology that is rather similar to that of semantic trees, with
the exception of the additional options for attacks and defenses. In particular, the tree
remains finitely generated. However, the quantifier rules introduce major changes in
the topology, as soon as £ has (countably) infinitely many parameters, that is when the
set of parametersin Lis K={k; : i € N} 4 1In that case, if XYx v/ (x) occurs at a position,
then Y can in principle ask X to commit to arbitrarily many instantiations of ¥ (x), or
equivalently, chose any subset of K for X to defend XVx v (x) with. And similarly, if
X3x 1y (x) occurs at a position in the game, and is challenged by Y, then X can commit
to as many instantiations of v (x) as X wishes. When the set of options for attacks or
defenses is the powerset of K, not only do game trees cease to be finitely generated,

4 The assumption, which is not expressible in £, and thus cannot be made explicit in I", must be assumed
to be part of the common ground in the same sense as the grammar of L.
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X3xy(x) XVYxy(x)
Y?H)‘cw(x) Y?V);w(x)

Xy(ki) — Xur(kj) <K > <K;>
: : Xy(ki) — Xp(ky)

Xp(ky)  Xii(hon) : :
. . Xo(k)  Xi(kn)

Fig. 4 Particle rules II: quantifiers

but the number of options becomes in principle uncountable. Figure 4 represents
partially attacks and defenses for the unnegated existential quantifier, where X can
choose K; € K, and for the universal quantifier, where the choice of K; is Y’s. The
representation is partial because the set of options can be diagonalized (left to the
reader). Rules for quantifiers within the scope of negation operators are omitted, but
straightforward.

The number and order of structural rules tend to vary [Rahman and Keiff (2005)
list six rules, and Keiff (2009), seven], but these differences are of little consequence
for our exposition. Structural rules specify, inter alia, who plays first; under which
condition a play is won; when and how O is authorized to start a new play (see Sect. 3);
whether or not players are allowed to delay their defenses, to change them at a later
stage, or to repeat some attacks. Thus, some of these rules govern the game set-up, some
are merely definitions, and others actually restrict players’ strategies. Our concern will
be two rules of the latter kind. The first restricts P’s strategies by forbidding her to
state an atomic formula of £ if O has not stated that atom at an earlier position, which
Rahman and Keiff (2005, p. 369) list as fourth (SR-4 “formal use of prime formulae™)
and Keiff (2009) as fifth (SR-5 “Formal Use of Atomic Formulas™). Because the rules
of Figs. 3 and 4 incorporate duality laws, our formulation is modified to cover both
atoms and negated atoms, or literals, as such:

Structural Rule-Use of Literals (SR-L): P cannot state a literal sentence { of
L at a position of a play unless O has already stated ¥ at an earlier position in
that play.

The second structural rule of interest restricts ‘strict’ repetitions of attacks, which
Rahman and Keiff (2005, p. 370) list as fifth (SR-5 “no delaying tactics rule”) and
Keiff (2009) as sixth (SR-6 “Classical No-Delaying-Tactics Rule”). The following
informal formulation, which avoids the details of what counts as ‘strict’ repetition,
will suffice for our purpose:
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Structural Rule-Repetitions (SR-R): If player X has already attacked a state-
ment Y, X cannot target Yy again, unless: (1) the attack has an optional
argument; (2) X chooses a new value for that argument; and: (3) the attack does
not simply delay the application of another rule, in particular an end-of-play
rule.

Other structural rules of interest are end-of-play rules, which enforce the closure
of a play if: (1) P answers a literal attack from O and O cannot repeat the attack in
compliance with (SR-R), and: (2) either O or P states a contradiction. Moves that
open alternatives may give rise to alternative courses of the game, or plays (as referred
to in SR-L). In keeping with simple intuitions about argumentation, a play goes to
the player who has the last word in that play, but it does not always settle the game:
winning conditions for O and P are asymmetrical, and winning a play is not sufficient
for P but suffices for O. More precisely, a winning strategy for P is a strategy that
responds to any sequence of attacks on the thesis ¢, using only the information that
she can extract from elements of I". Equivalently, a winning strategy for P is a strategy
that allows P to win every play that O can force her to play. Symmetrically, a winning
strategy for O is one that generates (at least) one sequence of attacks such that P
cannot answer them all without requiring more than what is conceded in I".

2.4 Remarks on Our Action Set for Logical Dialogues

We conclude this section with two remarks about the rules of Figs. 3 and 4. The first
remark is that the main interest of those rules is to keep O’s and P’s commitments apart.
Namely, with these rules, a statement is O-labeled (P-labeled) iff it is a subformula of
some y € I" (a subformula of ¢). This property will allow us to extend our solution
to the BKHH problem to orthodox game-theoretic semantics and dialogical logic. On
the surface, our rules reflect a classical understanding of propositional connectives.
And yet, while assuming duality laws and double negation, the rules of Fig. 3 are too
weak to guarantee that P can win a dialogue where the thesis is a classical tautology.
To see this, consider a logical dialogue with I" = @ and ¢ = (p v —p) where p
(—p) is an atom (negative literal). By (SR-L), P cannot defend herself against an
attack on ¢. In fact, the rules are also too weak for P to win a dialogue with I' = &
and either ¢’ = (—=—p — p) or ¢" = (p — ——p). The double negation rule is
indeed not strong enough to win either ¢, which is classically valid, or ¢”, which is
intuitionistically valid.

There is an easy fix to this situation, which consists in allowing P to ask O for con-
cessions of instances of the Excluded Middle. If O always answers, then P can win all
classically valid tautologies.’ If O can refuse to answer some of those questions, then

5 Sketch of proof: assume that ¢ € L is a classically valid tautology. Hence, ¢ is interpreted as true in
all assignments of truth values to its atomic subformulas. Conversely, —¢ is false in all those assignments.
Hence, in a logical dialogue about ¢ in which P is allowed to ask for instances of the excluded middle, P
can ask for ¢ v —¢. If O answers O—¢, P can force him to state a contradiction. If O answers O¢, P can
play a ‘copycat’ strategy, in which she attacks O’s statement that ¢ with the same attacks, and in the same
order as O has attacked P¢, and copies O’s defenses. o.
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XYy Vv —y]
; ; |
| | Yy v -y
Ty Vv -y Fy A=y |
PN N X?-(y VvV )
Ty Ty Fy  F-y

Yo Y-¢ Yo
Y-¢

Fig. 5 Cut rule for tableaux and logical dialogues

O can deny victory over classical tautologies that are not constructively (intuitionis-
tically) valid, although in our above examples, (¢’ v —¢") should not be conceded
but (¢” v —¢") should. However, we need not be concerned with this complication,
since the introduction of instances of the Excluded Middle is necessary to extend
our solution to game-theoretic semantics, while the extension to logical dialogues for
intuitionistic logic will only assume the action set specified by standard particle rules.
As for the addition to the players’ action set, it is the counterpart of the Cur Rule for
tableaux systems, represented in Fig. 5 on the left-hand side, with the corresponding
sequence of moves for logical dialogues on the right-hand side, where X?[Y¢ v —/]
represents the demand by X of a concession of (¢ vV =) from Y.

Our second and last remark concerns the departure of the particle rules of Fig. 4 from
the quantifier rules given in standard expositions of logical dialogues such as Rahman
and Keiff (2005); Keiff (2009). Standard particle rules restrict the legal strategies
to those that introduce one parameter at a time, with (SR-R) allowing for multiple
attacks under the condition that the optional parameter is new. Hence, standard particle
rules alone do not actually specify the meaning of logical operators: in the case of
quantifiers, meaning is actually given by the interplay of particle and structural rules.

3 Completeness of Logical Dialogues
3.1 The Standard Completeness Argument

Logical dialogues are complete for classical first-order logic if for any first-order
language £, I' C L, and ¢ € L, the two conditions are equivalent:

1. I' entails ¢, that is: all the models of I are models of ¢.
2. P has a winning strategy in a logical dialogue where the thesis is ¢, and where O
concedes I as part of the common ground.

Alternatively, condition (1) can be formulated in terms of syntactic consequence,
relative to the set of classical theorems. The above formulation is however more intu-
itive, because the equivalence of conditions (1) and (2) is established by mapping the
game trees for logical dialogues to signed semantic proof trees. Intuitively, game trees

@ Springer



272 E. J. Genot, J. Jacot

for logical dialogues where P plays her ‘best’ strategy against O are equivalent (mod-
ulo the mapping) to proof trees resulting from the implementation of some procedure
that guarantees a closed tree exactly when I” entails ¢. This section summarizes the
procedure by which the mapping is obtained. Formal details can be found in Rahman
and Keiff (2005, Sect. 2, pp. 371-375).

The first step of the mapping relies on an informal argument about O’s and P’s
preferences between alternative moves, based on their respective goals. Schematically,
O is better off selecting attacks that force P to obtain as many concessions as possible,
and defenses that concede as little as possible. Symmetrically, P is better off asking as
much as possible, and choosing defenses that could be backed with fewer concessions.
Subsequently, O’s and P’s best options among the player-independent options of
Figs. 3 and 4 correspond, respectively, to T-cases and F-cases for semantic trees of
Figs. 1 and 2. Therefore, the local topology of a proof tree and the local topology of
a logical dialogue game tree are equivalent to one-another modulo the substitution of
O to T and of P to F, and the omission of ?-prefixed nodes.

The first step does not guarantee that a play of a logical dialogue terminates with a
victory for P exactly when the corresponding branch in the semantic tree closes. The
second step of the mapping is thus to establish a correspondence between closure rules
and end-of-play rules, and faces two minor issues, both related to (SR-L). First, closure
rules for signed semantic trees apply to pairs of sentences of arbitrary complexity, but
(SR-L) prevents logical dialogues to stop until atoms (or in our formulation, literals)
are reached. Second, (SR-L) prevents P to state Py in a play for some atom (literal)
¥ if Oy has not occurred in that play, but Fyr can be obtained with tree-building
rules in a branch even when T/ has not occurred in the same branch. The first issue is
solved by appeal to the proof that every closed branch of a signed semantic tree can be
extended to an atomically closed branch (Smullyan 1968, p. 47), and remarking that
plays of logical dialogues won by P map to atromically closed branches. The second
is solved by showing that omission of T-signed formulas corresponding to statements
that (SR-L) prevents P to make is never sufficient to open a closed branch (Rahman
and Keiff 2005, Sect. 2). Therefore, a branch-to-branch correspondence is established:
the branch of a signed semantic tree is closed if the play it is mapped to terminates
with P’s victory.

A third step is needed to extend the branch-to-branch correspondence to a tree-
to-tree correspondence, and its importance is easily overlooked. Learning whether I”
entails ¢ is always parasitic on the full tree, be it a proof tree or a game tree.® In the
solitaire version of the game, there is no difference between a play and a game, because
systematic strategies build branches in parallel. But in a logical dialogue, the outcome
of a play is a branch, and since learning whether I" entails ¢ supervenes on learning
whether or not P has a winning strategy in the whole game, multiple plays have to

6 Learning whether I" entails ¢ is possible even when the proof tree or game tree is infinite. In semantic
tableaux, this is a consequence of the reductio assumption, since one conjectures that I" does not entail
¢. If the tree construction never ends, one’s conjecture remains correct; it the tree construction ends and
the tree is open, it is also correct; if it terminates and the tree is closed, it is not, but one can change one’s
mind. Similarly, in a dialogical game, the initial conjecture is that I" does not entail ¢, which is why P has
the burden of the proof. For a formal explication of the appropriate notion of ‘learning’ in that context, see
Kelly (2004).
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be played. A technical solution is to define so-called “strategy games” (Rahman and
Keiff 2005, pp. 371-375) that introduce an ad hoc rule, taking effect when a play
terminates with a victory for P. The rule allows O to go back to the last position
where O had to select an option for either an attack or a defense, and to explore any
option left unexplored. This rule is actually equivalent to stipulating that O and P play
a sequence of plays, keeping memory of the past plays, and play as many plays as
necessary to assess whether P has a winning strategy or not. Together with the first
two steps, this last step is sufficient to complete the mapping of game trees to signed
semantic trees.

3.2 Some Difficulties (and How to Solve Them)

Game trees for “strategy games” are constructed sequentially, while the construction
of signed semantic trees is parallel, which complicates further the mapping between
the two.” The issue is however minor, as shown by the completeness proof proposed by
Rahman and Keiff (2005), which maps the logical dialogues game trees to the output
of a ‘sequential’ (depth-first) algorithm to build semantic proof trees, rather than the
usual parallel (breadth-first) one. A more serious difference is that the systematic
construction of a signed semantic tree is a mechanical task for a single agent, whereas
the game tree of a logical dialogue represents the outcome of the interaction between
two agents. In order to solve the BKHH problem, one must explain why a game tree
for a logical dialogue where the players best respond to one another’s strategy maps
to a signed semantic tree generated by a (depth-first) systematic method.

This task can be solved by ‘reverse engineering’ preferences from logical dialogues.
First, dialogical logic explicitly defines preferences that affect the local topology of
the game tree (why O and P prefer different attacks and defenses). These prefer-
ences are not yet sufficient to explain the global topology of the tree (why O and
P would select a pair of strategies realizing a proof tree). But (SR-L) and (SR-R)
impose constraints at the intermediate level of branches that are equivalent to rational
preferences for arguers in the sense of Barth and Krabbe (1982). For instance, the
strongest possible justification an arguer can have for a claim in a pro- and contra-
argumentation, is a concession from her opponent with the same content. And (SR-L)
is nothing if the formal equivalent for that justification. Barth and Krabbe also suggest
that rational arguers should seek victory by ‘rational means’ alone and avoid delaying
tactics. This excludes in particular delaying tactics to avoid loss, which (SR-R) pro-
hibits. Hence, both (SR-L) and (SR-R) could as well be ‘self imposed’ by rational
arguers. Subsequently, one can treat compliance with (SR-L) and (SR-R) as revealed

7 Assume that I" does not entail ¢, and that there is only one infinite countermodel to ¢. A systematic
signed semantic tree with root I” and ¢ will have one infinite branch, but also finitely many closed branches
corresponding to models of I” satisfying ¢. Furthermore, if I" is finite, the systematic procedure will generate
all the closed branches after finitely many iterations, and if I” is infinite, the procedure will generate them
all in the limit. However, a logical “strategy game” dialogue will lock O and P in an infinite play as soon
as O figures out how to introduce infinitely many parameters in agreement with (SR-R), which is in fact
tantamount to building an infinite countermodel (see Sect. 6). If it is the first play of the game, then the
sequential construction of the game tree will never converge to the parallel construction of the systematic
signed semantic tree.
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preferences for (local) strategies derived from preferences over (global) possible out-
comes of logical dialogues. There remains to identify underlying preferences and
strategic inferences that eliminate strategies violating (SR-L) and (SR-R).

The utility function proposed by Hintikka and Hintikka (1983) identifies pref-
erences for a single agent building a systematic proof tree that are grounded in
preferences for lower cognitive costs (see Genot 2017). However, reasoning from
these preferences cannot be modeled by the standard for strategic inference in exten-
sive games. In a nutshell, a player in an n-player extensive game is assumed to consider,
at any given position where she has to choose an action, all the possible end-states
that could result from her next decision, given what she currently knows about the
state of Nature and the other players’ strategies. Then, she chooses her next move by
eliminating moves that belong to strategies yielding lower payoffs, a process called
elimination of dominated strategies. We have alluded to where the difficulty lies in the
single agent case, namely for eliminating dominated proof strategies in the construc-
tion of a signed semantic tree (n. 2, p. 6). The problem is essentially the same for the
selection of a strategy in a logical dialogue, since both players would have to consider
the outcome of infinite strategies in order to eliminate them, which amounts to solving
the Halting Problem. Fortunately, there are some other means of strategic inference
that are available to players with bounded computational resources, to which we will
now turn.

4 Preferences and Inferences in Logical Dialogues
4.1 Assumptions

Following Barth and Krabbe (1982), we construe logical dialogues as a type of context
of rational argumentation, where P and O have a common goal, namely settle the
matter as to whether I" entails ¢. They have different stakes, namely P is committed
to the position that I" entails ¢, and O is committed the position that it does not.
The common goal takes precedence, that is, both prefer to establish something rather
than nothing, even at the cost of a revision of their initial position vis-a-vis I and
¢. Alternatively, the goal of P and O can be characterized as winning interpreted as
establishing that their initial position vis-a-vis I' and ¢ is correct, but with the
commitment to acknowledging a loss if the initial position is not correct. There are
some difficulties with specifying their goal as winning simpliciter, to which we will
return in conclusion. Notice that if the matter were whether ¢ is frue, the argumentation
would be best modeled by game-theoretic semantics games, that we discuss in Sect. 6.
Below is a set of assumptions that capture logical dialogues so construed.

Assumption 1 (Common Ground) (1) P and O know the syntax of £, and their action
set, that is, their options for attacking and defending sentences of a given syntactic
form. (2) P and O agree that: (a) any sentence y € I is in the common ground; and
(b)if By, ..., By, are sentences in L, and are in the common ground, and if 3, is also
a sentence in £, and must be in the common ground if By, ..., B, are, then B, is in
the common ground; (c) for any 8 € L either 8 or =8 must not be in the common
ground.
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Assumption 2 (Disagreement) P and O disagree about ¢: (1) P contends that ¢ is
in the common ground as soon as I” is; but: (2) O contends that ¢ need not be in the
common ground when [ is.

Assumption 3 (Settlement) P and O both want to know whether ¢ is in the common
ground as soon as I is, and in particular: (1) prefer to know it as soon as possible; (2)
prefer to know rather than not to know, even at the cost of changing their mind; but:
(3) otherwise, prefer to hold to their initial opinion as long as they can.

Assumption 1 translates the agreement on £ and I” as a precondition for logical dia-
logue: 1.1 requires agreement on the particle rules, irrespective of the grounds of this
agreement®; 1.2 sets weak constraints on the content of the common ground, in par-
ticular that O’s defenses against P’s attacks are in the common ground. 1.2 expresses
the principle of non-contradiction (without commitment to a semantic interpretation).
It does not entail that I" is always consistent, only that I" must not be inconsistent. If
it turns out that I" is inconsistent, then the common ground for the dialogue must be
revised. How this revision should be handled is not part of the game.’

Assumption 2 characterizes P’s and O’s epistemic position relative to ¢, in terms
of their initial opinion (guess, conjecture, or whatnot). Together with Assumption 1, 2
entails an asymmetry between O and P: both P and O know that O’s defenses against
P’s attacks can induce different sequences of O-labeled sentences, and P has to show
that ¢ is in the common ground relative to all these alternative sequences, whereas O
only has to exhibit one sequence that does not support ¢. Assumption 3 completes the
characterization of P’s and O’s epistemic position relative to ¢, and commits them
to examine the issue as efficiently as possible (3.1), settle it if possible (3.2), and not
give up without definitive reasons (3.3). Assumptions 1-3 do not suffice for either O
or P to form anticipations about each others’ moves and their best response to those
moves. The following assumption does the job:

Assumption 4 (Common Knowledge) The content of Assumptions 1-3 is common
knowledge between O and P.

Assumption 4 does not entail that the structure of the game (the complete game
tree) is common knowledge unless O and P have unbounded computational resources.
Therefore, even if common knowledge is a strong idealization, Assumption 4 does not
sneak in elimination of dominated strategies.

8 Arguers need to share £ as a common language for the game to be possible, but need not know more than
rules for attacks an defenses, because they suffice to characterize their action set. Alternatively, these rules
can be viewed as means to feach £ and its semantics [on this Wittgensteinian interpretation of the rules,
see Jacot et al. (2016)]. However, the cardinality of the domain of discourse must somehow be included in
the common ground, because it cannot be expressed in £ (cf. n. 4, p. 7).

%A particularly insightful reader could object that ruling out contradictions re-introduces normative con-
siderations, and thus rules. To that reader, we respond that we are merely assuming that O and P agree not
to be dialetheists, and thus that we are merely introducing a convention, and modeling players that conform
to 1t.
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4.2 Strategic Reasoning (I): The Elimination of SR-L

The thesis ¢ is a single finite sentence that O can only challenge finitely many times
before he is forced to re-iterate some attacks he has already used (possibly with another
optional argument). By Assumption 1.1, P can expect that if during a given play: (1)
O targets ¢ with a sequence of attacks and does not repeat any of them; and (2) she
defends herself against all these attacks, then there will be a position where her defense
must be a literal. By Assumptions 4 and 3.1, P expects that O will not repeat any attack
unless necessary. By Assumption 1 she knows that in order to support her claim that ¢
follows from I” in that play, it suffices that the literal she has to defend herself with is
in the common ground for that play. If furthermore P manages to do so for any literal
that O could ask her in that play, then O would have good reasons to also accept ¢, and
by Assumption 3, to change his mind and concede the play. Hence, P’s best strategy
is to let O ask her for literals, and then obtain them from I.

By Assumption 4, O knows P’s preferences and therefore can put himself in her
shoes and simulate her strategic reasoning as characterized above. Thus, O knows that
his best response to P’s strategy is to make it as difficult for her as possible to succeed,
without preventing the settlement of the issue. In particular, O’s best response to P,
when P defends with a literal, is to never state that literal if he has the option not
to. By Assumption 4, P can also put herself in O’s shoes and anticipate O’s strat-
egy. Therefore, she can infer that her best strategy is to always delay a literal defense
until after she has obtained the literal from O, unless she can force him to state the
literal with an attack for which she can constrain the defense. And again, by Assump-
tion 4, O can infer that P can infer this much, etc. As a consequence, we have the
following:

Observation 1 (Strategic Reasoning for Literals) The following is common knowl-
edge between O and P:

1. P’s best strategy recommends to delay the statement of a literal v in a given play
until O has stated  in the same play, unless P knows that she can force O fo
defend with \ at a later stage.

2. O'’s best strategy recommends not to state a literal  if P has already stated v in
the same play, unless abstaining to do so would delay the settlement of the issue.

Assuming that P always tries to play her best strategy, Observation 1.1 entails
that she should in general avoid to state literals unless O has already stated them.
Therefore, she should behave ‘as if” she were complying with (SR-L), in particular
when her anticipations of O’s moves are limited. Observation 1.2 constrains O’s
strategies to a lesser extent, essentially due to Assumptions 3.1 and 3.3. Notice that
the contribution of Assumptions 3.1 and 3.3. to Observation 1.1 is marginal. If P states
a literal but fails to obtain it, and then obtains another that she can substitute to the
first, she has delayed the settlement of the play by one move. By contrast, O has the
ability to indefinitely prevent the settlement of the issue by repeating attacks, instead
of answering with literals.
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4.3 Strategic Reasoning (II): Harsanyi Maximin Principle

Observation 1.1 has a straightforward corollary: in the absence of anticipation about
O’s strategy in a given play, P’s best strategy complies with (SR-L) because it is P’s
best response to what would be the worst case for her: a play where O could avoid
indefinitely stating literal(s) P needs. Furthermore, as mentioned above, complying
with (SR-L) requires one less move than stating a literal first and substituting it for
another, even if P can anticipate obtaining the other. Hence, compliance with (SR-L)
is a valuable principle for strategy selection, in particular if P’s ability to anticipate
O’s moves is limited. This corollary can be reformulated with a modicum of game-
theoretic jargon: in any 2-player non-cooperative game, a strategy for player X that is
X’s best response to Y’s strategy most detrimental to X, is called X’s maximin strategy,
which yields:

Remark 2 (Corollary of Observation 1) P’s maximin strategy never recommends to
state a literal v in a given play, unless O has already stated v in the same play.

Maximin strategies are central to the theory of 2-player zero-sum games of which
logical dialogues are a special case. In those games, the maximin solution, which
obtains when both players play their maximin strategies, always coincides with a Nash
Equilibrium solution. Thus, assuming that both P and O should play their maximin
strategy in a logical dialogue, we can conclude that a logical dialogue will reach a
Nash Equilibrium. We have just seen that the assumption is justified for P when P’s
anticipations about O’s moves are limited. In fact, both P’s and O’s anticipations are
limited when we assume that they have bounded cognitive resources. And we have
argued following Hintikka and Hintikka (1983) that O and P should be conceived of
as rationally bounded (cf. Sect. 3.2). In that case, choosing among strategic options
becomes a problem of strategic decision under uncertainty about the future states
of the game. An early result of game theory [proved by Neumann and Morgenstern
(1944)] is that every non-cooperative game has a maximin solution. Based on this
result, Harsanyi (1977) has proposed that players who reason under uncertainty about
each other’s strategy in competitive games should comply with the following:

Definition 3 [Harsanyi Maximin Principle] In a 2-player zero-sum game, if X can-
not form rational expectations about Y’s strategies, then X should play her maximin
strategy.

In the classical treatment of extensive games, X’s rational expectations about Y’s
strategies are modeled by a (subjective) probability distribution for X over Y’s strate-
gies. If X’s anticipations about Y’s strategies are limited, then X cannot have a complete
representation of Y’s strategy space. Therefore, X cannot form a representation of the
possible histories of the game. Also, X cannot distribute meaningful probabilities over
a partition of Y’s strategies, and update her subjective probability that Y is playing
this or that strategy, based on the moves she witnesses. Consequently, in a game in
extensive form were X cannot anticipate all of Y’s moves, X cannot either ascribe
meaningful probabilities to Y’s next move. The rationale for the Harsanyi Maximin
Principle (HMP) is therefore that, if X cannot form rational expectations about Y, then
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she cannot rationally expect Y to play any strategy other than the most harmful for
X. If we assume that both O’s and P’s representations of the structure of the game
are partial, HMP becomes a natural candidate for guiding their strategic inferences.
The other option would be the elimination of dominated strategies, which we have
dismissed in Sect. 3.2. Therefore, we have justified the following assumption:

Assumption 5 (Strategic Anticipations) (1) In the context of a logical dialogue, P’s
and O’s ability to form rational anticipations about each other’s strategy is limited. (2)
Subsequently, both P and O select their strategy according to the Harsanyi Maximin
Principle.

5 Solving Logical Dialogues
5.1 Knowing What to Choose

Assumption 1-5 warrant a reformulation of the argument that underlies the first step
of the completeness proof for logical dialogues (discussed in Sect. 3.1) from explicit
preferences:

Observation 4 Under Assumption 1-5, tree-building rules for signed semantic trees
express P’s and O’s preferences for attacks and defenses among options in their action
sets. Equivalently, and omitting attacks, O’s best moves map to T-cases, and P’s, to
F-cases.

The proof of Observation 4 (given in “Appendix: Proof” section) establishes that
maximin strategies under uncertainty for P and O always recommend options that
map on tree-building rules for F and T cases, respectively. Assuming Assumption 5
guarantees that P and O play their maximin strategy, and therefore that Observation
4 holds. Although the rationale for P’s and O’s best options is the same as in the
informal arguments, the proof of Observation 4 proceeds from explicit preferences,
and is thus the first part of a solution to the BKHH problem.

Observation 4 does not tell the whole story about how O and P choose their
strategies. First, in cases where there is more than one option for attack or defense,
Observation 4 makes no recommendation, which amounts to recommending equivo-
cation (lottery with equal weights), although memory of the current play may warrant
further recommendations. Assumption 3 entails that O and P have to engage in more
than one play (cf. Sects. 3.1, 3.2) thereby realizing the “strategy games” of Rahman
and Keiff (2005). Hence, memory of earlier plays may also warrant additional recom-
mendations. Finally, anticipations about the future of the game, in particular given the
preference that both O and P have for not delaying settlement of the issue at stake (by
Assumption 3.1), may also warrant additional recommendations. Since Assumption
3.1 takes care of (SR-R), the only issue remaining for solving the BKHH problem is
to reconstruct the reasoning of O and P about whether or not they should stop a play
(and possibly the whole game).
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5.2 Knowing When to Stop

In a logical dialogue, O plays first, and he can either attack ¢ or immediately quit
playing, thereby conceding a defeat in the game. Notice that concession of defeat
in a play is an action available to players, otherwise termination of a play must be
decided by a rule, and the solution to the BKHH problem would be incomplete. By
Assumption 2, conceding from the beginning is tantamount to concede that ¢ is in
the common ground. But O clearly has insufficient grounds to do so in agreement
with Assumption 3.3. Therefore, O’s best option is to attack. P’s options depend on
I, her anticipations about O’s strategy, and how much she can anticipate of her own
strategy. If those anticipations are limited, the argument we gave for Observation 1
illustrates which rype of strategies P should implement from that point on. In fact, the
less insights she has into O’s strategy, the better off she will be letting O attack, until
a position is reached where she has to defend herself with a literal statement.

After a position is reached where she has to defend with a literal, P can in principle
implement a strategy whose outcome will be similar to the output of a depth-first
systematic method for building tableaux proofs (cf. Sect. 3.2). This follows in particular
from Observation 4, which guarantees that the local topology of a tree will always
coincide with that of a signed semantic tree. Hence, the only choices that matter are:
(1) the order in which the premises in I" are attacked; and (2) the order of attacks
over each premise. Systematic methods for tableaux construction, be they breadth-
first as those of Smullyan (1968), or depth-first as those of Rahman and Keiff (2005),
prescribe both (1) and (2), and thus are blueprints for systematic strategies for P, past
the point where she has to defend with a literal.

Some time after P has begun to implement a strategy for obtaining literal statements
from O, a position may be reached where P manages to counter O using only O’s
previous statements. Positions of this type are reminiscent of Socrates’ typical argu-
mentation strategy, which uses only concessions made by his opponents to support his
arguments. Hence, we propose to call them Socratic Positions:

Definition 5 (Socratic Positions) A Socratic Position is a position m in some play of
a logical dialogue such that: (a) at some position m’ occurring earlier than m in the
same play, O has already attacked every P-labeled statement at least once; and () at
position m, P has defended against all of O’s attacks as recommended by her maximin
strategy.

Socratic positions (hereafter SP) have an important property that makes them of special
interest: once a SP is reached in a play, and whatever O’s strategy is after the SP is
reached, P can always force the play to reach another SP (for a proof, see Lemma
10 in “Appendix: Observations 6 and 7" section). Given Definition 3, we have the
following:

Observation 6 If a Socratic Position is reached in a given play of a logical dialogue,
O’s maximin strategy recommends to concede the play to P and start a new play if
possible.

The proof of Observation 6 (also in “Appendix: Observations 6 and 7” section) is
straightforward from the repeatability of SPs. In a nutshell, as soon as a SP is reached,
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by Assumption 5 and Definition 3, O should behave as if P will force another SP. By

Assumption 3.1, O then prefers to concede the play to P, rather than keep playing. By

Assumption 3.2, O also prefers to concede the game to P if he cannot start a new play.
By Assumption 5 and Observation 6, the following is immediate:

Observation 7 If a Socratic Position is reached in a given play of a logical dialogue,
O should concede defeat to P in that play.

By Observation 7, and assuming instrumental rationality, O will concede defeat
in any play that can be mapped to an atomically closed branch of a signed semantic
tree. This takes care of the end-of-play rule for logical dialogues, corresponding to the
closure rule for signed semantic trees that closes a branch where T and Fy appear
together. Thus, there only remains two closure rules, namely those that close a branch
in case a contradictory assignment occurs in that branch. By Observation 1.1 and
Assumption 5, P will never state contradictory literals, unless O has. Furthermore, P
cannot be compelled to state contradictory literals in every play of a game unless ¢ is
a contradiction. Hence, if P states inconsistent literals, and if ¢ is not a contradiction,
there must be some earlier defenses in that play that P can revise in order not to be
committed to state a contradiction. By Assumption 1.2, contradictions are excluded
from the common ground. Therefore, P should concede defeat in the play (and indeed
the game) as soon as she is compelled to state a contradiction that she cannot avoid.
Assumption 3 guarantees that she prefers to know earlier than later whether ¢ is in the
common ground, even at the cost of changing her mind, rather than playing indefinitely.
The same holds mutatis mutandis for O. This suffices to establish the following:

Observation 8 If a position is reached in a play in which player X can be compelled
to state a literal that contradicts another literal that X has stated previously in the
play, then X should stop playing and concede defeat to Y in that play.

Observation 8 takes care of the end-of-play rules for classical logical dialogues that
force players to stop when a contradiction is reached, and completes the replacement
of closure rules by decisions based on preferences.

5.3 The Completeness of Logical Dialogues Revisited

The results of the preceding sections establish that players whose preferences and
strategic inference processes are characterized by Assumption 1-5 behave ‘as if’
bound by (SR-L), (SR-R), and end-of-play rules that mimic tableaux closure rules.
As a consequence, we get:

Theorem 9 For a first-order language L of arbitrary signature, and any I' € L and
¢ € L, the following statements are equivalent:

1. There is a closed signed semantic tree with premises I" and conclusion ¢.

2. T entails p—i.e. all the models of I" are models of ¢.

3. Under Assumptions 1-5, P has a winning strategy in a logical dialogue with
common ground I" and thesis ¢.
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Besides the proviso “Under Assumptions 1-5”, the only difference between Theo-
rem 9 and the completeness theorem for classical logical dialogues given by Rahman
and Keiff (2005), is the mention of the common ground I". However, Keiff (2009)
generalizes the notion of ‘dialogical validity’ to ‘dialogical consequence’, which is
the notion we have taken as primitive. Since the BKHH problem amounts to finding an
alternative account of logical dialogues based on preferences and strategic inferences
that would be equivalent to the rule-based account, near identity is a feature, not a
bug.

6 Extending the Solution
6.1 Game-Theoretic Semantics

The logical dialogues that we have characterized can be viewed as the resource-
bounded realizations of games that idealized players of classical game theory could
play with unbounded computational resources. Let us refer to the idealized versions of
O and P as O* and P*. Obviously, Assumption 5 does not hold for O* and P*: they
can form anticipations of any depth, and they can reason from a complete representa-
tion of the game. For simplicity, we also assume that Assumption 3.1 does not hold for
them, so that they are indifferent to the length of a play. Under this last simplification,
the strategic form of a logical dialogue with premise I" and conclusion ¢ (in some
language £) is a matrix pairing each of the possible strategies for O* with each of the
possible strategies for P*, and where these strategies are characterized as the choice
of a model for either I" or ¢. Payoffs can be set so that O* gets 1 and P* —1 when the
models are not the same, and conversely O* receives —1 and P* receives 1 when they
are the same, where “sameness” is defined as verifying exactly the same sentences of
L. Thus, P* has a winning strategy in the strategic game iff, whenever O* chooses a
model for I, P* can choose the same model for ¢.

One can obtain a strategy in the extensive form of the game from a strategy in the
strategic form via the model-theoretic notion of complete diagram of a model. Given
a language £, the diagram of a model 9t in which L is interpreted, is the (possibly
infinite) set of literals formed with all the predicates in £ (once enough constants have
been added to the signature of £ to name all the elements of the domain of the model)
that are frue in 9.0 A fundamental result of model theory is that two models with the
same complete diagram satisfy the same sentences. If P* has a winning strategy in
the strategic game, then her winning strategy in the extensive game will always satisfy
the constraint set by (SR-L). Indeed, the model that O* and P* choose as a strategy
for the game in the strategic form determines the literals O* and P* state, as part of
their strategy in the extensive form of the game. But if P* chooses the same model as
O*, then she must choose the same complete diagram. Thus P* will always be able
to state the same literals as O*.

10" Note that there may be no enumeration of these constants, if the domain is uncountable. Abstract model
theory, where the use of complete diagrams originates, routinely deals with arbitrary signatures, including
uncountable sets of constants.
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O* and P* could always extend a play to the point where both are committed to
a fully specified complete diagram for the model they have chosen. For this, players
must be allowed to ask binary questions about sentences in £ (as per the rule of Fig. 5,
p- 10). In principle, these questions could be about sentences of arbitrary complexity,
but letting them be about atoms of £ and their negation is sufficient. In order to prove
that she has chosen the same model as O*, P* must then be able to answer all atomic
questions in the same way as O* has, that is, with the same literal answer as O*, We
can now justify our ‘hybrid’ rules, and why they are necessary to deal with cases where
I' = @ and ¢ is a tautology for O and P: the strategies of O and P are not equivalent
to choosing complete models, but to building partial models. When I = &, P has no
information about any partial model, and therefore must recover enough information
to win a logical dialogue. Furthermore, logical dialogues between O and P, as we
have characterized them, can in principle be extended so as to correspond, in the limit
of an infinite process, to a dialogue between O* and P*: O and P can in principle ask
each other binary questions about all the atoms of £, although they will typically not
do so, essentially because of Assumption 3.!!

‘Hybrid’ logical dialogues are thus ‘model-building’ dialogues, where the partial
diagrams are proxies for incompletely specified models. From these games, the model-
checking procedure of game-theoretic semantics games is easily obtained. First, we
add to the game a third player, Nature, whose strategy is the selection of a model 1.
Second, for a game about ¢, we set I = & initially, but every time P states some
—1; as the result of an attack from O, ; is added to I', and is now open to P’s
attacks. Similarly, every time O states some —v;, ¥; is added to P’s statements, and
is open to O’s attacks. Hence, there is, strictly speaking, no common ground, save
for the interpretation of £ in 9. Since ¢ is a finite sentence, the game is bound to
reach a position where one of P or O is committed to some atom p and the other to
its negation —p. Then, the player whose turn it is to play can ask a binary question
to Nature. If Nature’s answer is the literal that the player who asked the question is
committed to, that player wins and the other player loses. Symmetrically, if Nature’s
answer is not the literal that the player who asked the question is committed to, that
player loses and the other player wins.

Assumption 1-5 must be somewhat reformulated for the above game, but the refor-
mulation amounts essentially to a simplification. Assumption 1.1 remains the same,
with the understanding that the players’ action set includes new (mandatory) actions
for X (X € {P, 0}) when Y= occurs at a node. Assumption 1.2 becomes obso-
lete, as the only common ground is the interpretation of £ in 9. In Assumptions
2 and 3, “is in the common ground” and “is not in the common ground” are sub-

1" 0 would not use binary questions, because P can always adopt a ‘copy-cat’ strategy, and counterattack
asking the same question as O, and copying his answer. In particular, O would never extend a play that has
reached a SP by asking questions repeatedly, because he would merely delay the settlement of the issue.
Consequently, binary questions do not affect Observations 6 and 7. As for P, she would not use binary
questions as a primary means for obtaining a literal from O. Indeed, the worst case for P is when O states
the negation of the literal she needs, and where she is then forced to obtain the literal by attacking earlier
statements of O, in order to force him to contradict himself. But this strategy alone would give her the literal
she needs without the delay of the initial interrogative move. Thus, P would prefer not to use interrogative
moves in the first place, when I” is not empty (by Assumption 3.1).
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stituted with “is true” and “is false”, respectively. Assumption 2 can be rephrased
to refer to the mandatory actions in response to negated statements, characterizing
them as an agreement to disagree. Finally, Assumption 4 remains as it is, and so does
Assumption 5, although the role of the latter is much less critical. Indeed, the game
is simpler, because it involves only attacks on ¢, its subformulas, and the negation
of some of its subformulas. It is easily seen that P’s best strategy is to let O attack
¢ until a literal is reached and then ask Nature about that literal, and that P has a
winning strategy in the game iff ¢ is true in 901 according to the interpretation of £
in 1.

6.2 Back into the Fold: Dialogical Orthodoxy

Dialogical logic was initiated in the 1950s by Lorenzen (1958) as a foundation for
constructive mathematics and intuitionistic logic, a project that was completed two
decades later with Lorenzen and Lorenz (1978). This ‘old school’ of dialogical logic
was supplanted by a ‘new wave’ in the 1990s, where dialogical logic became a plural-
istic framework for capturing and combining a wide variety of logics. The reader will
find a précis of this curious historical turn in Rahman and Keiff (2005), as well as rule
sets for the following logics: classical, intuitionistic, free, paraconsistent, connexive,
modal (normal and non-normal), hybrid (modal with nominals), and independence-
friendly. The new wave combines an ‘everything but the black board’ approach to
logical pluralism with a knack for colorful names, illustrated for instance by Frege’s
Nightmare [Rahman (2001): intuitionistic, paraconsistent and free] or Dialogic for a
Wonderful World [Rahman (2006): non-normal modal logics with nominals]. There
is in principle an instantiation of the BKHH problem for all of the above, and we
hope that we will not disappoint our most demanding readers, if we admit that we
cannot solve them all. However, we will do our best to solve two special cases, namely
vanilla classical dialogues and vanilla intuitionistic dialogues, which differ only by a
few structural rules.

The structural rule for repetition has classical and intuitionistic variants, allowing
for repetitions under conditions, but their formulations are sometimes inconsistent
[Rahman and Keiff (2005) permits ‘strict repetitions’ under classical rules, but Keiff
(2009) does not]. Another difference is a closure rule for exchanges (‘rounds’) spec-
ifying that under classical rules, P can change a past defense but cannot do so under
intuitionistic rules. Structural rules often require hosts of auxiliary notions, with some-
times Byzantine differences between different accounts. We need not however wrestle
with the details, since solving the BKHH problem can be done by looking only at
their effects on game trees. Let us begin with common features of vanilla classical
and intuitionistic dialogues. The main difference with the particle rules we have used
is that player X may incur commitments to formula in addition to I" (if X=0) or ¢
(if X=P). Those commitments are made ‘for the sake of the argument’ and limited
to the current play and are: (1) to X1, as an attack against Yy; — ¥»; and (2) to
X as an attack against Y—. As a consequence of (2), (SR-L) is substituted with a
rule relative to atroms, because the statement of a negative literal X—p can be attacked
with Y p. Now, for the differences: with classical rules, a round is open as long as
P can substitute a P-labeled defense to another at any node, provided that she is not
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merely delaying the completion of the play. With intuitionistic rules, as soon as P has
defended herself against some attack, the node that was attacked becomes unavailable
for application of any rules, making her defense final.

In spite of those differences, our solution to the BKHH problem transfers almost
immediately to vanilla classical dialogues, pending minor adjustments. Assumption 1
needs to make explicit that O can make temporary additions to the common ground,
and Assumption 2 can reflect additions to the action set (as with game-theoretic seman-
tics) as a further elucidation of the disagreement between O and P; and in Observation
1, Remark 2, and Observation 6 (and the proof of Lemma 10), ‘literal’ must be sub-
stituted with ‘atom’. Preferences over options expressed by Observation 4 collapse
player-independent options on the equivalent (modulo translation) of vanilla signed
semantic trees because elementary information is given by atoms. Socratic Positions
are obviously stable relative to atoms (positive literals) as a special case of stability rel-
ative to literals, which entails Observation 6, completing the correspondence between
the branches of game trees for vanilla classical dialogues game trees, and branches of
vanilla signed semantic trees. Finally, the strategy profile that solves a given dialogue
and realizes P’s winning strategy (when there is one) remains the same: it comprises,
for O, the strategy that recommends attacking P¢ and defending against P’s attacks
when they come without delay; and for P, the strategy that lets O attack until O asks
for an atom p, and then implements some systematic (recursive) procedure to extract
p from I".

The solution of the BKHH problem for the orthodox vanilla intuitionistic dialogical
logic is deceptively simple. Neither Rahman and Keiff (2005) nor Keiff (2009) pro-
pose an explicit justification for the rule sets of intuitionistic dialogues. However, the
rule set enforces on P the constraints of the Brouwer-Heyting—Kolmogorov (BHK)
interpretation of intuitionistic logic. For some formula ¢ € £, the BHK imposes the
following constraints:

(1) if Y = (Y1 A V2), a proof of ¥ is a pair (a, b) where a is a proof of | and b is
a proof of ¥r;

(2) if Yy = (Y1 V ¥n), a proof of ¢ is a pair (a, b) where a = 0 and b is a proof of
Y1, ora = 1 and b is a proof of ¥;

) if Y = (Y1 — ¥n), aproof of ¥ is a function f that converts a proof of ¥ into
a proof of ¥r;

(4) if ¢y = Jx0O[x] (where x is free in 0), a proof of ¥ is a pair (a, b) where a is an
element of the domain of discourse assigned to x by some assignation function,
and b is a proof of f[a];

(5) if ¢y = VxO[x] (where x is free in 0), a proof of v is a function f that converts
every possible assignation of denotation a to x into a proof of 6[a];

(6) if ¥ = —, a proof of ¢ is a proof of ¥ — _L, where L denotes an arbitrary
contradiction (absurdum), that is by (3) a function f that converts a proof of ¥
into a ‘proof” of L, that is the statement of some contradiction.

Satisfaction of these constraints follows as a consequence of the closure rule for rounds
(left to the reader). Subsequently, P wins a play if her strategy in that play satisfies
the BHK constraints for every defense of every Py occurring in that play, and P
has a winning strategy in an intuitionistic dialogue if her strategy satisfies the BHK
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constraints in all plays. Since the BHK constraints can apply as a ‘filter’ over proof
strategies, an easy and unsubtle solution to the BKHH problem for vanilla intuitionistic
dialogues is to make the additional assumption that P prefers strategies that comply
with those constraints, as part of Assumption 3, making this preference common
knowledge by Assumption 4. A more subtle suggestion is to interpret the closure
rule for rounds as some form of ‘amnesia’ from P’s part, inducing compliance with
the BHK constraints without explicit commitment to them. We must admit that this
suggestion does not seem to lend itself to any natural interpretation, but it is intriguing
and in the same vein as the philosophical speculations that often accompany dialogics.

7 Concluding Remarks

We defined and motivated an open problem: characterizing explicit preference profiles
and strategy selection as an alternative to sets of rules, relative to both dialogical logic
and game-theoretic semantics. As a tribute to the authors who first came to grip with
this problem, we called it the Barth-Krabbe-Hintikka-Hintikka problem (BKHH). We
turned to dialogical logic for the ease of extracting (implicit) preferences fromrule sets,
and we formulated particle rules defining explicitly action sets, and implicitly model-
building games where players build partial diagrams. A play of those games can be
extended in principle to acomplete diagram, and in the limit coincides with a model (the
game coincides in the limit with a model-matching game played by ideal reasoners).
We obtained a solution to the BKHH problem for those games, and converted it to
solutions for model-checking games of game-theoretic semantics, and for orthodox
logical dialogues of dialogical logic, in both their classical and intuitionistic variants.
We will conclude with two remarks. The first is that our solution can in principle be
extended to any variation of logic, as far as it can be expressed within the dialogical
framework. In this respect, our approach is faithful to the spirit of the new wave of
dialogical logic, which sees the approach as a conceptual framework for logical plu-
ralism. Our contribution to this framework is the specification of genuine players in a
game-theoretic sense, that is, player endowed with preferences for reaching the end-
state of an argumentation. Insofar as the project of dialogical logic can be interpreted as
a precise account of formal argumentation (see Rahman and Keiff 2005; Keiff 2009),
our contribution is thus tantamount to specifying formal argumentation games, com-
plying with the ‘industry standard’ of game-theory. The conceptual benefit of doing
so it that, contrary to the structural rules in orthodox dialogical logic, our assumptions
are not normative per se, and do not intend to a priori prescribe rules of play, but
describe the preferences of rational agents with bounded cognitive resources engaged
in an argumentation procedure. (We did not include rational dialetheists, however.)
Our second remark concerns the difficulties we alluded to in Sect. 4.1 with the notion
that arguers are aiming at winning simpliciter. The second-best outcome to a win is
usually a draw before a loss, and a strict preference for winning over losing may incur
apreference for delaying tactics to force a draw in an infinite play. Subsequently, Barth
and Krabbe acknowledge the need for a higher purpose and suggest that a player should
quit playing when their opponent has won by rationals means. As a reconstruction of
this higher purpose, we proposed that the goal of the player is to learn whether I
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entails ¢, or (equivalently) to learn if one of the players has a winning strategy, with
the understanding that ‘learning’ can mean ‘learning in the limit’, if O has only an
infinite winning strategy (but see n. 6, p. 11). Whether the commitment to a higher
purpose is a consequence of the players’ rationality or an externality is a murky issue,
hotly debated among argumentation theorists. It would be presumptuous from our part
to claim that we have contributed to illuminate it in any substantial way.
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Appendix: Proofs

Note: In all the proofs of this Appendix, we leave implicit the role of the following
consequences of Assumptions 1 and 4: that O and P know that in order to defend that
¢ is in the common ground, it is sufficient to show that all the literal consequences of
¢ are in the common ground; that a literal ¥ is in the common ground if O can be
forced by P to state ¥ after some sequence of attacks, where the first attack targeted
some element y € I".

Observation 4

We give detailed proofs for the unnegated cases of disjunctive and existentially quan-
tified statements, sketch the proofs for their negated cases, leaving the role of our
assumptions implicit whenever possible, and leave conjunctive and universally quan-
tified statements to the reader. We omit attacks on double negations, which have no
optional argument. Finally, we leave implicit the role of Assumption 2, as it is already
factored in Observation 1. The proof is in two parts: the first part shows that P’s and O’s
best response to the worst case are equivalent (modulo the mapping of labels) to tree-
building rules for signed semantic trees; and the second is an immediate consequence
of the first part, and Assumption 5.

Proof of Observation 4 (Part I) Disjunctions (Defense). O-case: By Observation 1,
O should avoid conceding sentences from which P may later obtain literals from. His
best option is thus not to concede either disjunct, and instead counterattack if possible,
unless this causes an unnecessary delay (by Assumption 3.1). In that case, his best
option is to conceded as few sentences as possible. Hence, O should never reply with
both disjuncts. In the absence of particular insight about P’s future moves, there is no
reason for O to favor one disjunct over the other. Hence, O’s best response to the worst
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case (no possible counterattack, and no insights into P’s strategy) is to randomly pick
one of the disjuncts.

P-case: P’s best option is to pick a disjunct that she can ultimately defend using literals
conceded by O. If she lacks insights about which options will be easier to defend, her
best option is to defend with both disjuncts. Given Assumption 1.1, she can later ‘opt
out’ one of them later, if she fails to obtain the literals necessary to defend it, because
the meaning of a disjunction only requires that she shows one of them to hold, given
the common ground. Hence, ence, O’s best response to the worst case (no insights
into which disjunct she will later be able to justify, given O’s strategy) is to defend
with both disjuncts.

Negated disjunction (Attack). O-case: O prefers to minimize length of a play, and is
thus better off asking only one (negated) disjunct in any given play. If P manages
to defend herself, O still has the option to concede victory in the current play, and
ask for the other (negated) disjunct in the next play. In the absence of insights into
P’s strategy, there is no reason to favor one disjunct over the other. Hence, O’s best
response to the worst case (no insight into which disjunct P will later be able to use
to justify herself) is to pick one (negated) disjunct at random.

P-case: In the absence of insights into O’s future moves, P is always better off trying to
obtain as many concessions as possible, in order to increase her options for obtaining
literals later in the play. Hence, P’s best response to the worst case (no insight into
which disjunct she will later be able to use to justify herself) is to pick both disjuncts.

Existential quantifier (Defense). O-case: If £ has infinitely many individual names, O’s
options for asking P for an instantiation of an existential statement are nondenumerable
(see Fig. 4). If O has already attacked some of P’s universally quantified statements,
and/or if P has already been challenged to state a literal, then O’s defense will make
P’s task of stating only literals that O has already stated, if his defense introduces
individual names that have never been introduced already (by Observation 1. However,
if O lacks insights about how P could use literal statements that P could later obtain,
and which would feature the individual names that his defense introduces, his best
option is to introduce new names one at a time. Moreover, by Assumption 1.1, O is
allowed to revise his defense, if necessary, by adding new instances—and he will thus
chose the option to do so, unless he foresees that such an action would delays the
settlement of the issue (by Assumption 3). Hence, O’s best response to the worst case
(no insight into what use P will have for the literal consequences of his defense) is to
defend with a single new individual name, retaining the option to change that name
later.

P-case: By Observation 1 P should prefer using individual names previously intro-
duced by O, which increase her chances to be able to defend the literal consequences
of the resulting statement. Moreover, if later in the game, it appears that she cannot do
so Assumption 1.1 guarantees that she will be allowed to rephrase her defense, so as
to match O’s literal statements. Moreover, the fewer instanciations she conceded, the
fewer literal consequences she will have to defend. Hence, P’s best response to the
worst case (no insight into which literal consequences of her defense she will be able
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to defend at a later stage) is to defend with a single old individual name, retaining the
option to change that name later.

Negated existential quantifier (Attack). O-case: One new individual may be sufficient,
if P cannot later defend the literal consequences of her defense, and may thus keeps the
length of the play a short as possible (which is suitable, by Assumption 3.1); moreover,
if necessary, P retains the option to rephrase his defense (by Assumption 1.1) and to
demand for another instanciation, if P manages to defend the literal consequences
of the first. Hence, O’s best response to the worst case (no insight into which literal
consequences of her defense P will be able to defend at a later stage) is to attack with a
single new individual name, retaining the option to re-iterate his attack at a later stage.

P-case: By Observation 1, P will in general prefer using individual names that O has
used to attack her, as she can use the literal consequences of O’s defenses to defend
herself later in the game. By the same consideration, how many instantiations P’s
attack will demand, depend on how many literals different names she has to use for
defending the literal consequences of ¢. While it is not always the case that she is
better off asking for only one instantiation, she can always ask for them one at a time,
and re-iterate her attacks if necessary (by Assumption 1.1), provided that this does not
delay unnecessarily the settlement of a play. In any case, P should not introduce new
individual names in her attacks, unless she can foresee how she could later use literal
consequences of O’s defense. Hence, P’s best response to the worst case (no insight
into which literal consequences of O’s defense she will be able to defend herself at
a later stage) is to attack with only old individual names (but not necessarily only
one).!2 O

Proof of Observation 4 (Part II) By Assumption 5, both O and P lack insights into
each other’s strategy, and both O and P select their strategy according to HMP. Hence,
they play their maximin strategies. Hence, by Part I of the proof, their best options for
attacks and defenses are equivalent to tree-building rules for signed semantic trees,
modulo the mapping of O’s moves (attacked statements and their defenses, omitting
P’s attacks) to T-cases, and the mapping of P’s moves (similarly omitting O’s attacks)
to F-cases.

Observations 6 and 7

We first prove Observation 6, and then Observation 7. To prove Observation 6, we first
prove the following lemma:

Lemma 10 (Stability of SPs) If, in a given play, a SP has been reached, then P can
force any extension of that play to reach a new SP.

12' Notice that in the case P asks for multiple instantiations, the number of her options is bounded by the
number of individual names that O has introduced in the past history of the game. Assuming that O plays
his maximin strategy, the number of options for O will be, at any given time, finite (since the power set of
a finite set has finitely many elements). Hence, the game tree generated by P and O, when they play their
maximin strategies, is finitely generated, even if the game does not have in principle a finite horizon.

@ Springer



Logical Dialogues with Explicit Preference Profiles and Strategy... 289

The proof of Lemma 10 is by induction on the number of attacks before a SP that
O could repeat without changing play. For the induction clause, we assume that for
the n last attacks before the SP has been reached, and that O could repeat without
changing play, P can force the extension of the play to reach a new SP; and we show
that if O repeats the (n 4 1)-th last attack, P will be able to reach a new SP. We give
a detailed proof for the base step, and sketch the induction step.

Proof of Lemma 10 (Base Step) For the base clause, the proof is by cases, for the last
attack before the SP is reached. For all the cases, we assume that a SP has been reached,
and consider what the last attack was. We divide the case in two types: operators, and
quantifiers.

Case Ia: P-labeled conjunction. If O repeats the attack asking for a different conjunct,
O is de facto generating a new play, and there is nothing to prove.'?

If O repeats the attack asking for the same conjunct, P can simply repeat her
defense. Ex hypothesis, this resulted in a SP the first time. Therefore, the play will
reach a new SP.

Case Ib: P-labeled negated disjunction. Identical to Case Ia, substituting “P-labeled
conjunction” with “P-labeled negated disjunction” and “conjunct” with “negated dis-
junct”.

Case Ic: P-labeled disjunction. If O repeats the attack, P can pick the same disjunct
as the first time. Ex hypothesis, this resulted in a SP the first time. Therefore, the play
will reach a new SP.

Case Id: P-labeled negated conjunction. Identical to Case I¢, substituting “P-labeled
disjunction” with “P-labeled negated conjunction” and “disjunct” with “negated con-
junct”.

Case I1a: P-labeled universal statement. If O attacks the P-labeled existential state-
ment occurring earlier than the SP with the same individual name, O can repeat her
defense. Ex hypothesis, this resulted in a SP the first time. Therefore, the play will reach
anew SP. If O repeats the attack with a different individual name, then P can repeat the
sequence of moves she has made, that lead to the SP, substituting the new individual
name to the one used by O the first time around whenever necessary. Ex hypothesis,
this sequence of moves resulted in a SP the first time for the literals mentioning the
individual name introduced by O the first time. Hence, it will also result into a SP the
second time, for all the literals mentioning the individual name introduced by O the
second time.

Case IIb: P-labeled negated existential statement. Identical to Case Ia, substi-
tuting “P-labeled existential statement” with “P-labeled negated negated universal
statement”.

13 The (‘non-strict’) repetition of an attacks, on a P-labeled conjunction (or a P-labeled negated disjunc-
tions) asking for the other conjunct (negated disjunct) is tantamount for O to: (a) conceding the current
play and closing it; and: () starting a new play in which all the moves of O and P are repeated until the
position is reached where O specifies the new option for the attack.
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Case Ilc: P-labeled existential statement. If O repeats the attack, P can pick the
same individual name for stating her defense as she did the first time. Ex hypothesis,
this resulted in a SP the first time. Therefore, the play will reach a new SP.

Case I1d: P-labeled negated universal statement. Same argument as Case Ilc.

Since cases (I-1I) cover all the cases where O can repeat his last attack in a play
before the play reaches a SP, and since in each of those cases, if the play has reached
a SP, then P can play so as to reach a new SP, then if O repeats the last attack before
a play has reached a SP, then P can force any extension of the play to reach a new SP.

Proof of Lemma 10 (Induction step, sketch) Induction hypothesis: For the n last
attacks made by O before the SP has been reached that O could repeat, without
switching play, P can force the extension of the play that obtains when O repeats any
of those attacks, to reach a new SP.

A complete proof would be by cases, but all cases have the same structure: for
each possible attack for the (n + 1)-th attack, if O repeats the attack and does not
switch play, P can repeat her defense (possibly substituting a new individual name for
the one used the first time around). From that point, she can simply repeat the moves
she played the first time around (up to a possible substitution of individual name).
Since, ex hypothesis, none of the changes that O could make in his attacks between
the (n + 1)-th attack and the SP would prevent P to reach a new SP, if O repeats the
(n + 1)-th attack before a play has reached a SP, then P can force any extension of the
play to reach a new SP.

Since: (1) O cannot prevent a play that has reached a SP by repeating the last attack
he made before the play reached a SP; (2) if O cannot prevent a play that has reached
a SP by repeating the n-th last attack he made before the play reached a SP, then O
cannot prevent that play to reach a SP by repeating the (n + 1) last attack he made
before the play reached a SP; and: (3) there is a first attack in the play; then O cannot
prevent a play that has reached a SP to reach a new SP. Conversely, if a play has
reached a SP, then P can force any extension of that play to reach a new SP.

We now prove Observation 6.

Proof of Observation 6 By Lemma 10, if O attempts to extend a play that has reached
a SP, and if P plays the most harmful strategy for O—namely, forcing the play to reach
a new SP—O cannot improving his prospect for victory in play by extending it. By
Assumption 3, O prefers to know earlier than later, including when he is constrained
to change his mind. Therefore, upon reaching a SP, O’s best response to the worst case
(the strategy whereby P forces the play to reach a new SP) does not recommend to
extend the current play, but instead to concede defeat in that play.

Finally, we prove Observation 7.

Proof of Observation 7 By Observation 6, O’s maximin strategy never recommends
to extend a play where a SP has been reached, but to concede defeat in that play. By
Assumption 5.2, O should play his maximin strategy once a SP is reached. Therefore,
once a SP is reached, O should concede defeat in the play.
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