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Abstract The rigorous equivalence of the Schrödinger and Heisenberg pictures
requires that one uses Born–Jordan quantization in place of Weyl quantization. We
confirm this by showing that the much discussed “ angular momentum dilemma” dis-
appears if one uses Born–Jordan quantization. We argue that the latter is the only
physically correct quantization procedure. We also briefly discuss a possible redefin-
ition of phase space quantum mechanics, where the usual Wigner distribution has to
be replaced with a new quasi-distribution associated with Born–Jordan quantization,
and which has proven to be successful in time-frequency analysis.

Keywords Weyl quantization · Born–Jordan quantization · Angular momentum

1 Introduction

To address quantization problems in these “ Times of Entanglement” is not very fash-
ionable: everything seems to have been said about this old topic, and there is more
or less a consensus about the best way to quantize a physical system: it should be
done using the Weyl transformation. The latter, in addition to being relatively sim-
ple, enjoys several nice properties, one of the most important being its “ symplectic
covariance”, reflecting, at the quantum level, the canonical covariance of Hamiltonian
dynamics. Things are, however, not that simple. If one insists in using Weyl quanti-
zation, one gets inconsistency, because the Schrödinger and Heisenberg pictures are
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then not equivalent. Dirac already notes in the Abstract to his paper [9] that “...the
Heisenberg picture is a good picture, the Schrödinger picture is a bad picture, and
the two pictures are not equivalent...”. This observation has also been confirmed by
Kauffmann’s [17] interesting discussion of the non-physicality of Weyl quantization.
This non-physicality is made strikingly explicit on an annoying contradiction known
as the “ angular momentum dilemma”: the Weyl quantization of the squared classical
angular-momentum is not the squared quantum angular momentum operator, but it
contains an additional term 3

2 h̄
2. This extra term is actually physically significant,

since it accounts for the nonvanishing angular momentum of the ground-state Bohr
orbit in the hydrogen atom. This contradiction has been noted by several authors1, to
begin with Linus Pauling in hisGeneral Chemistry [20]; it is also taken up by Shewell
[21], and discussed in detail by Dahl and Springborg [7] and by Dahl and Schleich
[8].

It turns out that we have shown in a recent work [13] that the Schrö dinger
and Heisenberg pictures cannot be equivalent unless we use the quantization rule
proposed by Born and Jordan [3,4] in 1925, and which predates Weyl’s rule [22]
by almost two years. We will see that using the BJ rule allows to eliminate the
angular momentum, which seems to confirm that Weyl quantization should be
replaced with Born–Jordan (BJ) quantization in the Schrödinger picture. Now, at
first sight, this change of quantization rules does not lead to any earthshaking con-
sequences for the Schrödinger picture, especially since one can prove [12] that
BJ and Weyl quantizations coincide for all Hamiltonian functions of the type “
kinetic energy + potential” or, more generally, for Hamiltonian functions of the
type

H(x, p, t) =
n∑

j=1

1

2m j

(
p j − A j (x, t)

)2 + V (x, t)

even when the potentials A = (A1, . . . , An) and V are irregular (we are using gener-
alized coordinates x = (x1, . . . , xn), p = (p1, . . . , pn)). One can therefore wonder
whether it is really necessary to write yet another paper on quantization rules, just to
deal with a quasi-philosophical problem (the equivalence of two pictures of quantum
mechanics) and one little anomaly (the angular momentum dilemma, we will discuss
below). The quantumworld is however more subtle than that. The problem is that if we
stick to Weyl quantization for general systems, another inconsistency appears, which
could have far-reaching consequences. It is due to the fact the commonly used phase
space picture of quantum mechanics, where the Wigner distribution plays a central
role, is intimately related to Weyl quantization. In short, if we change the quantiza-
tion rules, we also have to change the phase space picture, thus leading not only to a
redefinition of theWigner distribution, but also to substantial changes in related phase
space objects, such as, for instance the Moyal product of two observables, which is at
the heart of deformation quantization.

1 It is also mentioned in Wikipedia’s article [16] on geometric quantization.
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2 BJ Versus Weyl: The Case of Monomials

Born, Jordan, and Heisenberg proved in [4] that the only way to quantize polynomials
in a way consistent with Heisenberg’s ideas was to use the rule

psj x
r
j

BJ−→ 1

s + 1

s∑

�=0

p̂s−�
j x̂rj p̂

�
j ; (1)

or, equivalently,

psj x
r
j

BJ−→ 1

r + 1

r∑

j=0

x̂r− j
j p̂sj x̂

j
j (2)

(see our paper [13] for a careful analysis of their argument). The BJ quantization is
thus the equally weighted average of all the possible operator orderings. Weyl [22]
proposed, independently, some time later a very general rule: elaborating on theFourier
inversion formula, he proposed that the quantization Â of a classical observablea(x, p)
should be given by

Â =
(

1
2π h̄

)n ∫∫
Fa(x, p)e

i
h̄ (x x̂+p p̂)dnxdn p (3)

where Fa(x, p) is the Fourier transform of a(x, p) and dnx = dx1 · · · dxn , dn p =
dp1 · · · dpn ; applying this rule to monomials yields (McCoy [19])

psj x
r
j
Weyl−→ 1

2s

s∑

�=0

(
s

�

)
p̂s−�
j x̂rj p̂

�
j . (4)

It turns out that both the BJ and Weyl rules coincide as long as s + r ≤ 2, but they are
different as soon as s ≥ 2 and r ≥ 2. For instance, to xp corresponds 1

2 (̂x p̂ + p̂x̂ ) in
both cases, but

x2 p2
BJ−→ 1

3
(̂x2 p̂2 + x̂ p̂2 x̂ + p̂2 x̂2)

x2 p2
Weyl−→ 1

4
(̂x2 p̂2 + 2x̂ p̂2 x̂ + p̂2 x̂2)

and both expressions differ by the quantity 1
2 h̄

2 as is easily checked by using several
times the commutation rule [̂x, p̂] = i h̄.We nowmake the following essential remark:
let τ be a real number, and consider the somewhat exotic quantization rule

psj x
r
j

τ−→
s∑

�=0

(
s

�

)
(1 − τ)�τ s−� p̂s−�

j x̂rj p̂
�
j . (5)
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Clearly, the choice τ = 1
2 immediately yields Weyl’s rule (4); if we integrate the

right-hand side of (5), then we get at once the BJ rule (2) since we have

∫ 1

0
(1 − τ)�τ s−�dτ = (s − �)!�!

(s + 1)!

in view of the standard properties of the beta function and

(
s

�

)
= s!

�!(s − �)! .

This remark will allows us to define BJ quantization for arbitrary observables below.

3 Generalized BJ Quantization

Our definition of BJ-quantization is inspired by earlier work in signal theory by Bog-
giato and his coworkers [1,2]; for the necessary background in Weyl correspondence
we refer to Littlejohn’s seminal paper [18], whose notation we use here (also see
[10,11]). Let a = a(x, p) be an observable; writing z = (x, p) the Weyl operator
Â = OpW(a) defined by formula (3) can also be written, performing the change of
variables (x, p) −→ (p,−x), as

Âψ =
(

1
2π h̄

)n ∫
aσ (z)T̂ (z)ψd2nz (6)

where d2nz = dnxdn p and

aσ (z) =
(

1
2π h̄

)n ∫
e− i

h̄ σ(z,z′)a(z′)d2nz′ (7)

is the symplectic Fourier transform of a (see [10,11,18]). Here T̂ (z) = e−iσ (̂z,z)/h̄

is the usual Heisenberg–Weyl operator; σ is the standard symplectic form defined by
σ(z, z′) = px ′ − p′x if z = (x, p), z′ = (x ′, p′). The natural generalization of the
τ -rule (5) is obtained [12,15] by replacing T̂ (z) with = e−iστ (̂z,z)/h̄ where

T̂τ (z) = exp

(
i

2h̄
(2τ − 1)px

)
T̂ (z);

integrating for 0 ≤ τ ≤ 1 one gets the Born–Jordan operator associated with the
observable a:

ÂBJψ =
(

1
2π h̄

)n ∫
aσ (z)�(z)T̂ (z)ψd2nz (8)
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where

�(z) =
∫ 1

0
e

i
2h̄ (2τ−1)pxdτ = sin(px/2h̄)

px/2h̄
(9)

with px = p1x1 + · · · + pnxn . We thus have

(aW)σ (x, p) = aσ (x, p)
sin(px/2h̄)

px/2h̄
. (10)

Taking the symplectic Fourier transform of aσ (z)�(z), this means that ÂBJ is theWeyl
quantization, not of the observable a(x, p), but rather of the observable

aW =
(

1
2π h̄

)n
a ∗ �σ . (11)

The appearance of the function � in the formulas above is interesting; we have

�(z) = sinc(px/2h̄)

where sinc is Whittaker’s sinus cardinalis function familiar from Fraunhofer diffrac-
tion [5].2

We now make an important remark: suppose that we split the phase space point
(x, p) into two sets of independent coordinates z′ = (x ′, p′) and z′′ = (x ′′, p′′).
Let b(z′) be an observable in the first set, and c(z′′) an observable in the second
set, and define a = b ⊗ c; it is an observable depending on the total set variables
(x, p) = (x ′, x ′′, p′, p′′).We obviously have aσ = bσ ⊗cσ and T̂ (z) = T̂ (z′)⊗ T̂ (z′′)
(because the symplectic formσ splits in the sumσ ′⊕σ ′′ of the two standard symplectic
forms σ ′ and σ ′′ defined on, respectively, z′ and z′′ phase spaces). It follows from
formula (6) that we have Â = B̂ ⊗ Ĉ ; i.e.Weyl quantization preserves the separation
of two observables. This property is generically not true for Born–Jordan quantization:
because of the presence in formula (8) of the function �(z) we cannot write the
integrand as a tensor product, and hence we have in general

ÂBJ 	= B̂BJ ⊗ ĈBJ (12)

In this sense, Born–Jordan quantization “ entangles” quantum observables; it would
certainly be interesting to study this phenomenon and its implications.

4 The Angular Momentum Dilemma

Dahl and Springborg’s [7] argument we alluded to in the introduction boils down to
the following observation for the electron in the hydrogen atom in its 1s state. Let

�̂ = (̂x2 p̂3 − x̂3 p̂2) i + (̂x3 p̂1 − x̂1 p̂3) j + (̂x1 p̂2 − x̂2 p̂1)k (13)

2 I thank Basil Hiley for having drawn my attention to this fact.
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be the angular momentum operator and

�̂2 = (
x̂2 p̂3 − x̂3 p̂2

)2 + (
x̂3 p̂1 − x̂1 p̂3

)2 + (
x̂1 p̂2 − x̂2 p̂1

)2 (14)

its square. According to the Bohr model, the square �2 of the classical angular momen-
tum

� = (
x2 p3 − x3 p2, x3 p1 − x1 p3, x1 p2 − x2 p1

)
(15)

should have the value h̄2, while it is zero in the Schrödinger picture. Thus, Dahl and
Springborg contend, the “ dequantization” of �̂2 should yield the Bohr value3. Now, “
dequantizing” �̂2 using theWeyl transformation leads to the function �2+ 3

2 h̄
2 (as was

already remarked by Shewell [21], formula (4.10)), which gives the “ wrong” value
3
2 h̄

2 for the Bohr angular momentum. However, if we view �̂2 as the Born–Jordan
quantization of �2, then we recover the Bohr value h̄2. Let us show this in some detail.
It suffices of course to study one of the three terms appearing in the square of the
vector (15 ), say

�23 = x21 p
2
2 + x22 p

2
1 − 2x1 p1x2 p2. (16)

The two first terms in (16) immediately yield the operators x̂21 p̂
2
2 and x̂22 p̂

2
1 (as they

would in any realistic physical quantization scheme), so let us focus on the third term
a12(z) = 2x1 p1x2 p2 (we are writing here z = (x1, x2, p1, p2)). Using the standard
formula giving the Fourier transform of a monomial we get

a12,σ (z) = 2h̄4(2π h̄)2δ′(z) (17)

where we are using the notation

δ(z) ≡ δ(x1) ⊗ δ(x2) ⊗ δ(p1) ⊗ δ(p2),

δ′(z) ≡ δ′(x1) ⊗ δ′(x2) ⊗ δ′(p1) ⊗ δ′(p2).

Expanding the function sin(px/2h̄) in a Taylor series, we get

�(z) = 1 +
∞∑

k=1

(−1)k

(2k + 1)!
(
px

2h̄

)2k

and hence, observing that (px)2kδ′(z) = 0 for k > 1,

a12,σ (z)�(z) = a12,σ (z)

(
1 − (px)2

24h̄2

)
. (18)

3 Of course, their argument is heuristic, because there is in general no relation between the eigenvalues of
a quantum operator and the values of the corresponding classical observable.
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Comparing the expressions (6) and (8), defining respectively the Weyl and Born–
Jordan quantizations of a, it follows that the difference

	(a12) = OpBJ(a12) − OpW(a12)

is given by

	(a12)ψ = 1

24h̄2

(
1

2π h̄

)2 ∫
a12,σ (z)(px)2T̂ (z)ψd4z

= h̄2

12

∫
δ′(z)(px)2T̂ (z)ψd4z.

Using the elementary properties of the Dirac function we have

δ′(z)(px)2 = 2δ(z) (19)

and hence

	(a12)ψ = h̄2

6

∫
δ(z)T̂ (z)ψd4z = h̄2

6
ψ

the second equality because

δ(z)T̂ (z) = δ(z)e− i
h̄ σ (̂z,z) = δ(z).

A similar calculation for the quantities 	(a23) and 	(a13) corresponding to the terms
�21 and �22 leads to the formula

OpBJ(�
2) − OpW(�2) = 1

2 h̄
2, (20)

hence, taking (14) into account:

OpBJ(�
2) = �̂2 + h̄2 (21)

which is the expected result. We note that Dahl and Springborg [7] get the same
operator �̂2 + h̄2 by averaging the Weyl operator OpW(�2) over what they call a “
classical subspace”; funnily enough the sinc function also appears in their calculations
([7], formula (40)). It would be interesting to see whether this is a mere coincidence,
or if a hidden relation with BJ quantization already is involved in these calculations.

5 The BJ-Wigner Transform

Aswementioned in the introduction, the phase space picture of a quantum system very
much depends on the quantization procedure that is used. In the Wigner formalism, if
ÂW = OpW(a),
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〈
ψ | ÂW|ψ 〉 =

∫
a(z)Wψ(z)d2nz (22)

where ψ is normalized, and

Wψ(z) =
(

1
2π h̄

)n ∫
e− i

h̄ pyψ
(
x + 1

2 y
)
ψ∗(x − 1

2 y
)
dn y

is the usual Wigner quasi distribution [10,11,18]. As we have shown in [12], if we
replace Weyl quantization of the classical observable a with its Born–Jordan quanti-
zation ÂBJ = OpBJ(a), then formula (22) becomes

〈
ψ | ÂBJ|ψ

〉 =
∫

a(z)WBJψ(z)d2nz (23)

where WBJψ is given by the convolution formula

WBJψ(z) =
(

1
2π h̄

)n
Wψ ∗ �σ (24)

(this can easily be proven using formula (11)). Let us compare the expressions
〈ψ | ÂW|ψ〉 and 〈ψ | ÂBJ|ψ〉 where ÂW = OpW(a) and ÂBJ = OpBJ(a). In view
of Parseval’s theorem we can rewrite formulas (22) and (23) as

〈
ψ | ÂW|ψ 〉 =

∫
aσ (z)FσWψ(z)d2nz (25)

〈
ψ | ÂBJ|ψ

〉 =
∫

aσ (z)FσWBJψ(z)d2nz. (26)

Since FσWBJψ(z) = FσWψ(z)�(z) we have

〈
ψ | ÂW|ψ 〉 − 〈

ψ | ÂBJ|ψ
〉 =

∫
aσ (z)FσWψ(z)(1 − �(z))d2nz.

Let us apply this formula to the square �2 of the angular momentum. As above, we
only have to care about the cross term (17); in view of formula (18) above we have

aσ (z)(1 − �(z)) = h̄2

6
(2π h̄)2δ(z)

and hence

〈
ψ | ÂW|ψ 〉 − 〈

ψ | ÂBJ|ψ
〉 = h̄2

6
(2π h̄)2

∫
δ(z)FσWψ(0)dz.

Observing that

FσWψ(0) =
(

1
2π h̄

)2 ∫
Wψ(z)dz =

(
1

2π h̄

)2
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we finally get

〈
ψ | ÂBJ|ψ

〉 − 〈
ψ | ÂW|ψ 〉 = − 1

6 h̄
2.

it follows, taking the two other cross-components of �2 into account, that we have

〈
ψ |�̂2BJ|ψ

〉 − 〈
ψ |�̂2W|ψ 〉 = − 1

2 h̄
2

and hence

〈
ψ |�̂2BJ|ψ

〉 = h̄2 (27)

as predicted by Bohr’s theory.

6 Discussion

We have tried to make it clear that to avoid inconsistencies one has to use BJ quan-
tization instead of the Weyl correspondence in the Schrödinger picture of quantum
mechanics. With hindsight, it somewhat ironic that the “ true” quantization should be
the one which was historically the first to be proposed. There are, however, unexpected
difficulties that appear; themathematics of BJ quantization is not fully understood. For
instance, the generalized Born–Jordan rule (8) does not implement a true “ correspon-
dence”, as the Weyl rule does. In fact, it results from a deep mathematical theorem,
Schwartz’s kernel theorem [11], that every quantum observable Awhich is sufficiently
smooth can be viewed as the Weyl transform of some classical observable a, and con-
versely. However, this is not true of the BJ quantization scheme: it is not true that to
every quantum observable (or “ operator”) one can associate a classical observable.
In fact, rewriting formula (11) as

(aW)σ (x, p) = aσ (x, p)
sin(px/2h̄)

px/2h̄
(28)

we see that we cannot, in general, calculate aσ (x, p) (and hence a(x, p)) if we
know the Weyl transform aW of A, and this because the function �(x, p) =
sin(px/2h̄)/(px/2h̄) has infinitely many zeroes: �(x, p) = 0 for all phase space
points (x, p) such that p1x1 +· · ·+ pnxn = 0. We are thus confronted with a difficult
division problem; see [6]. It is also important to note that we loose uniqueness of
quantization when we use the Born–Jordan “ correspondence”: if (aW)σ (x, p) = 0
there are infinitely many Weyl operators who verify (28). These issues, which might
lead to interesting developments in quantum mechanics, are discussed in detail in our
book [14]. The BJ-Wigner transform and its relation with what we call “ Born–Jordan
quantization” has been discovered independently byBoggiatto and his coworkers [1,2]
who were working on certain questions in signal theory and time-frequency analy-
sis; they show—among other things—that the spectrograms obtained by replacing the
standard Wigner distribution by its modified version WBJψ are much more accurate.
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The properties of WBJψ are very similar to those of Wψ ; it is always a real function,
and it has the “ right” marginals and can thus be treated as a quasi-distribution, exactly
as the traditional Wigner distribution does.
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