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Abstract In this paper, we present a robust fault-
tolerant control scheme to achieve attitude control of
flexible spacecraft with disturbances and actuator fail-
ures. It is shown that the control algorithms are not
only attenuate exogenous bounded disturbances with
attenuation level, but also able to tolerate partial loss of
actuator effectiveness. The proposed controller design
is simple and can guarantee the faulty closed-loop sys-
tem to be quadratically stable with a prescribed upper
bound of the cost function. The design algorithms are
obtained by combining free weighting matrices method
with linear matrix inequality technique. The effective-
ness of the proposed design method is demonstrated in
a spacecraft attitude control system subject to loss of
actuator effectiveness.

Keywords Flexible spacecraft · Fault tolerant ·
H∞ control · LMI

1 Introduction

High precision attitude control has been a difficult and
important problem for flexible spacecraft in commu-
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nication, navigation, remote sensing, and other space-
related missions. It is because modern spacecraft often
employ large, deployed and light damping structures
(such as solar paddles and antenna reflectors) to provide
sufficient power supply and reduce launch costs [1–6].
During the control of the rigid body attitude, actuators
play an important role of linking control commands to
physical actions [7,8]. Normally, the actuators should
execute commands demanded by the controller faith-
fully and completely. In this condition, the actuators
need to be 100 % effective. However, when a fault
occurs in the actuator, the handicapped actuator may
not complete the control command fully. Naturally, the
control channel effectiveness (or lack of it) becomes an
appropriate measure of the severity of the actuator fault
[9]. In an spacecraft, actuator faults may cause discrep-
ancies between the desired and the actual movements
of these control surfaces due to incorrect supply pres-
sure in the hydraulic lines, change in hydraulic com-
pliance, and line leakage [10]. Any of these problems
can prevent the primary control surfaces such as ele-
vators, ailerons, or rudder from moving to the posi-
tions demanded by the controller [9]. On the other
hand, the complex space structure may lead to the
decreased rigidity and low-frequency elastic modes.
However, elastic vibration of the flexible appendages
may cause degradation of the performance of attitude
control [7,11]. Thus, the desired control scheme should
tolerate partial loss of actuator effectiveness and be
robust enough to overcome various disturbances from
structural vibrations of the flexible appendages.
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Due to the increasing demands for high reliabil-
ity and survivability of the complex control systems,
the fault-tolerant control (FTC) has attracted extensive
interests and attention [12–21]. FTC can be divided
into passive FTC [12,13] and active ones [14,15]. An
active FTC uses the diagnosis results provided by the
fault detection and diagnosis to actively adjust the con-
trol efforts, thus is potentially capable of dealing with
a larger number of faults [14,15]. Compared with the
active FTC, the passive one has the advantage of not
requiring the exact actuator fault information; thus, it is
simple to implement. The passive FTC can also ensure
system stability and desired performance after the actu-
ator fault occurs and before the fault detection and diag-
nosis phase finishes [12,13].

Motivated by the preceding discussion, in this paper,
a passive FTC scheme for flexible spacecraft with dis-
turbances and partial loss of actuator effectiveness is
studied. First, the partial loss of actuator effectiveness
problem is transformed into uncertain parameters prob-
lem. Second, the fault tolerant control is designed by
combining H∞ control technique and robust control
method. The proposed control algorithms are not only
attenuate disturbances from structural vibrations of the
flexible appendages with H∞ attenuation level, but also
able to robust to partial loss of actuator effectiveness.
Meanwhile, the resultant FT controller may be simply
designed and can guarantee the faulty closed-loop sys-
tem to be quadratically stable with a prescribed upper
bound of the cost function. Finally, a numerical exam-
ple is shown to demonstrate the good performance of
our method.

The rest of this paper is organized as follows.
The single-axis model of flexible spacecraft model and
partial loss of actuator effectiveness are described in
Sect. 2. The passive FT controller is designed and ana-
lyzed in Sect. 3. Numerical simulations on different
control effectiveness factor situations are presented in
Sect. 4 to demonstrate the performance of the pro-
posed control method. Finally, we conclude the paper
in Sect. 5.

Notation: Throughout this paper, Rn denotes the n-
dimensional Euclidean space; the space of square-
integrable vector functions over [0, ∞) is denoted by
l2[0, ∞); the superscripts “�” and “−1” stand for
matrix transposition and matrix inverse, respectively;
P > (≥ 0) means that P is real symmetric and positive
definite (semidefinite). The identity andzero matrices

are denoted by I and 0, respectively, with appropri-
ate dimensions. In symmetric block matrices or com-
plex matrix expressions, diag{. . .} stands for a block-
diagonal matrix, and ∗ represents a term that is induced
by symmetry. For a vector ν(t), its norm is given by
‖ν(t)‖2 = ∫ ∞

0 ν�(t)ν(t)dt . Matrices, if their dimen-
sions are not explicitly stated, are assumed to be com-
patible for related algebraic operations.

2 Problem formulation and preliminaries

Similarly to the references [11,22], the single-axis
model can be derived from the nonlinear attitude
dynamics of the flexible spacecraft. In this paper, the
problem is simplified and only considers the single-
axis rotational maneuver. It is assumed that this model
includes one rigid body and one flexible appendage,
and the relative elastic spacecraft model is described as:
{

J θ̈ (t) + F η̈(t) = uF (t)
η̈(t) + Cmη̇(t) + Λη(t) + F�θ̈ (t) = 0,

(1)

where θ(t) is the attitude angle, J is the spacecraft
inertia about the pitch axis, η(t) is the flexible modal
coordinate, F is the rigid-elastic coupling matrix,
uF (t) is the control torque generated by the reac-
tion wheels that are installed in the flexible space-
craft. Cm = diag{2ξ1�1, . . . 2ξn�n} is modal damp-
ing matrix, where ξi , (i = 1, . . . n) is the damping
ratio, and �i , (i = 1, . . . n) is the modal frequency.
Λ = diag{� 2

1 , . . . � 2
n } is stiffness matrix. n is their

dimensions. Since vibration energy is concentrated in
low-frequency modes in a flexible structure, its reduced
order model can be obtained by modal truncation. In
this paper, only the first two bending modes are taken
into account. Then we can get
(

J − F F�)
θ̈ = F (Cmη̇(t) + Λη(t)) + uF (t). (2)

To formulate the FTC problem, the fault model must
be established. According to the fault type for flight-
control system established in [15,18], the fault type
considered in this study is the loss of actuator effec-
tiveness. We use uF (t) to describe the control signal as
follows:

uF (t) = ωu(t), (3)

where ω is the control effectiveness factor and satisfied
by the following form:
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ω = diag{ω1, ω2, . . . , ωn}, ωi ∈ [ωi ωi ],
i = 1, 2 . . . , n, 0 ≤ ωi ≤ ωi ≤ 1, (4)

where ωi is an unknown constant, ωi and ωi represent
the known lower and upper bounds of ωi , respectively.
For simplicity, we introduce the following notation:

ω̂ = diag{ω̂1, ω̂2, . . . , ω̂n},
J = diag{ j1, j2, . . . , jn},
L = diag{l1, l2, . . . , ln}, (5)

where

ω̂i = 1

2
(ωi + ωi ), ji = ωi − ωi

ωi + ωi
,

li = ωi − ω̂i

ω̂i
, i = 1, 2, . . . , n.

(6)

Then, we have

ω = ω̂(I + L), |L| ≤ J ≤ I,

|L| = diag {|l1|, |l2|, . . . , |ln|} .
(7)

Remark 1 When ωi = ωi = 1, then the i th actua-
tor is considered to be fault-free. Nevertheless, when
0 ≤ ωi < 1, the considered fault is a partial loss of
control effectiveness. Specially, when ωi = 0, the i th
actuator is considered to be failure and the actuator is
out of order. On the other hand, it is noted that loss of
actuator effectiveness problem may be transformed into
uncertain parameters problem by using fault descrip-
tion method in (7), which will also make the partial
actuator failures problem to easily solve in subsequent
section.

Letting x(t) = [θ�(t) θ̇�(t)]�, then, the system
(2) with actuator faults (7), can be transformed into the
state-space form
{

ẋ(t) = Ax(t) + Bωu(t) + Bw(t)
y(t) = Cx(t),

(8)

where y(t) is measured reference output, w(t) =
F(Cmη̇(t)+Λη(t)) is as the disturbance due to elastic
vibration of the flexible appendages, which is supposed
w(t) belongs to l2[0,∞) and satisfied ||w(t)|| ≤ δ and

A =
[

0 I
0 0

]

, B =
[

0
(J − F F�)−1

]

, C = I.

For system (8), the following FT controller is employed
via state feedback

u(t) = K x(t), (9)

where K is the gain of controller and need to design.
Then, with the control law (9), the system (8) can be
expressed as follows

{
ẋ(t) = (A + BωK )x(t) + Bw(t)
y(t) = Cx(t).

(10)

The objective of this paper is to design FT controller
such that

• The closed-loop system (10) with w(t) = 0 is
asymptotically stable;

• In the case when w(t) = 0, the following cost func-
tion associated with closed-loop system (10) satisfies

Jc =
∞∫

0

x�(t)Z x(t) + u�(t)ω� Rωu(t)dt ≤ J ∗,

(11)

where J ∗ > 0 is a specified constant, Z and R are
given positive definite matrices;

• Under the zero initial condition, the closed-loop sys-
tem (10) satisfies ||y||2 < γ ||w(t)||, for any non-
zero w(t) that belongs to l2[0, 1), where γ > 0 is a
prescribed scalar.

Now, we give the following lemma which are needed
in the proof of main results.

Lemma 1 ([23]) Given matrices M = M�, S and N
of appropriate dimensions, the inequality

M + S�(t)N + N���(t)S� < 0

holds for all �(t) such that ��(t)�(t) ≤ I , if and
only if, there exists δ > 0
⎡

⎣
M δS N�

δS� −δ I 0
N 0 −δ I

⎤

⎦ < 0.

Lemma 2 (Schur complement [23]) Given constant
matrices Ω1,Ω2,Ω3 where Ω1 = Ω�

1 and Ω2 > 0,
then

Ω1 + Ω�
3 Ω−1

2 Ω3 < 0

if only if

[
Ω1 Ω�

3
Ω3 −Ω2

]

< 0, or

[−Ω2 Ω3

Ω�
3 Ω1

]

< 0.
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3 Fault-tolerant control design

In this section, we will give design method based on
LMI to compute the FT controller gain.

3.1 Stability of closed-loop system

Theorem 1 Given a scalar γ > 0 and matrices Z >

0, R > 0, the system (10) is asymptotically stable and
satisfies ‖ y(t) ‖2< γ ‖ w(t) ‖2 for any non-zero
w(t) ∈ l2 [0,∞) under the zero initial condition if
there exist a matrix P > 0, invertible matrices Γ1 and
Γ2 such that the following inequality holds:

⎡

⎢
⎢
⎣

(A + BωK )�Γ1 + Γ �
1 (A + BωK ) + Z + K �ω� RωK P − Γ �

1 + (A + BωK )�Γ2 Γ �
1 B C�

∗ −Γ2 − Γ �
2 Γ �

2 B 0
∗ ∗ −γ 2 I 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎦ < 0.

(12)

Furthermore, an upper bound of performance index
(11) is given by

Jc ≤ x�(0)Px(0). (13)

Proof The first step is to analyze the asymptotic sta-
bility of system (10). Consider system (10) in the
absence of w(t), we choose a Lyapunov function as
V (t) = x�(t)Px(t). For any matrix Γ1 and invertible
matrix Γ2 of appropriate dimensions, we have

[
x�(t)Γ �

1 + ẋ�(t)Γ �
2

]

× [−ẋ(t) + (A + BωK )x(t)] = 0. (14)

Differentiating V (t) along the trajectory of the sys-
tem (10) and adding (14) to it gives

V̇ (t) +
[
x�(t)Γ �

1 + ẋ�(t)Γ �
2

]
[−ẋ(t) + (A + BωK )x(t)]

= 2x�(t)Pẋ(t) + 2
[
x�(t)Γ �

1 + ẋ�(t)Γ �
2

]
[−ẋ(t) + (A + BωK )x(t)]

= 2x�(t)Pẋ(t) − 2x�(t)Γ �
1 ẋ(t)+2x�(t)Γ �

1 (A + BωK )x(t) − 2ẋ�(t)Γ �
2 ẋ(t) + 2ẋ�(t)Γ �

2 (A + BωK )x(t)

= [
x�(t) ẋ�(t)

]
[

(A + BωK )�Γ1 + Γ �
1 (A + BωK ) P − Γ �

1 + (A + BωK )�Γ2

∗ −Γ2 − Γ �
2

] [
x(t)
ẋ(t)

]

(15)

According to (12) and Lemma 2, it implies V̇ (t) <

0. Hence, the system (10) is asymptotically stable.
Next, we consider the upper bound of cost function
(11). It is noted that

V̇ (t)+x�(t)Z x(t)+u�(t)ω� Rωu(t)

= 2x�(t)Pẋ(t)+x�(t)Z x(t)+x�(t)K �ω� RωK x(t)+2[x�(t)Γ �
1 + ẋ�(t)Γ �

2 ][−ẋ(t)+(A+BωK )x(t)]
= [

x�(t) ẋ�(t)
]
[

(A+BωK )�Γ1+Γ �
1 (A+BωK )+Z +K �ω� RωK P−Γ �

1 +(A+BωK )�Γ2

∗ −Γ2−Γ �
2

] [
x(t)
ẋ(t)

]

(16)
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When (12) holds, we have

V̇ (t) + x�(t)Z x(t) + u�(t)ω� Rωu(t) < 0. (17)

Integrating both sides of (17) from t = 0 to t = ∞, we
obtain

Jc =
∞∫

0

x�(t)Z x(t) + u�(t)ω� Rωu(t)dt

≤ −
∞∫

0

V̇ (t)dt ≤ x�(0)Px(0). (18)

At last, we shall establish the H∞ performance of the
system (10) under zero initial condition. Let

Jh =
t∫

0

[y�(s)y(s) − γ 2w�(s)w(s)]ds.

It can be shown that for any non-zero w(t) ∈ l2[0,∞)

and t > 0,

Jh ≤
t∫

0

[y�(s)y(s) − γ 2w�(s)w(s) + V̇ (s)]ds. (19)

It is clear that for any matrix Γ1 and invertible matrix
Γ2 of appropriate dimensions, the following equality
always is true

[x�(t)Γ �
1 + ẋ�(t)Γ �

2 ]
×[−ẋ(t) + (A + BωK )x(t) + Bw(t)] = 0. (20)

Then, we have

y�(s)y(s) − γ 2w�(s)w(s) + V̇ (s) = [
x�(t) ẋ�(t) w�(t)

]

×
⎡

⎣
C�C + (A + BωK )�Γ1 + Γ �

1 (A + BωK ) P − Γ �
1 + (A + BωK )�Γ2 Γ �

1 B
∗ −Γ2 − Γ �

2 Γ �
2 B

∗ ∗ −γ 2 I

⎤

⎦

⎡

⎣
x(t)
ẋ(t)
w(t)

⎤

⎦ (21)

According to (21) and (20), Jh < 0 follows from
(12), which implies that ‖ y(t) ‖2< γ ‖ w(t) ‖2 holds
for any non-zero w(t) ∈ l2[0,∞). This complete the
proof. 	

Remark 2 In Theorem 1, slack variables Γ1 and Γ2

are introduced. It is noted that Γ1 and Γ2 are useless
for reducing the conservatism of stability conditions
in [24,25]. However, they can more relaxed design of
fault tolerant controller later on since they need only be

invertible matrices rather than positive definite matri-
ces. Meanwhile, it is noted that Γ1 and Γ2 are not invert-
ible matrices, equality (14) also is true. Here, in order
to design fault tolerant controller gain, we assume them
to invertible matrices.

3.2 Controller design

On the basis of Theorem 1, we will present a design
method of robust FT controller in the following.

Theorem 2 For given scalars γ > 0, κ and matrices
Z > 0, R > 0, if there exist a scalar δ > 0, a matrix
P̂ > 0, invertible matrix V1 and any matrix W such
that the following inequality holds:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 �12 B V �
1 C� V �

1 W �ω̂ δBω̂ W �
∗ �22 κ B 0 0 0 δκ Bω̂ 0
∗ ∗ −γ 2 I 0 0 0 0 0
∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ −Z−1 0 0 0
∗ ∗ ∗ ∗ ∗ −R−1 δω̂ 0
∗ ∗ ∗ ∗ ∗ ∗ −δ I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −δ I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

<0

(22)

the closed-loop system (10) is asymptotically stable
under the FT controller u(t) = W V −1

1 x(t) and sat-
isfies ‖ y(t) ‖2< γ ‖ w(t) ‖2 for any non-zero
w(t) ∈ l2 [0,∞) with the zero initial condition. More-
over, an upper bound of performance index (11) is given
by

Jc ≤ x�(0)(V −�
1 P̂V −1

1 )x(0) (23)

where

�11 = V �
1 A� + AV1 + W �ω̂B� + Bω̂W

�12 = P̂ − V1 + κV �
1 A� + κW �ω̂B�

�22 = −κV1 − κV �
1 .

Proof Suppose there exists δ > 0 such that the inequal-
ity (22) holds and Let
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M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 �12 B V �
1 C� V �

1 W �ω̂

∗ �22 κ B 0 0 0
∗ ∗ −γ 2 I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −Z−1 0
∗ ∗ ∗ ∗ ∗ −R−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Bω̂

κ Bω̂

0
0
0
ω̂

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, N = [
W 0 0 0 0 0

]

From (7), we can obtain L�L ≤ I . According to
Lemma 1, there are M + SL N + N�L�(t)S� < 0
holds, that is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

V �
1 (A + BωK )� + (A + BωK )V1 P̂ − κV1 + V �

1 (A + BωK )� B V �
1 C� V �

1 V �
1 K �ω

∗ �22 κ B 0 0 0
∗ ∗ −γ 2 I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −Z−1 0
∗ ∗ ∗ ∗ ∗ −R−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (24)

From Schur Complement theory, we have

⎡

⎢
⎢
⎣

V �
1 (A+BωK )�+(A+BωK )V1+V �

1 Z V1+V �
1 K �ωRωK V1 P̂−κV1+V �

1 (A+BωK )� B V �
1 C�

∗ �22 κ B 0
∗ ∗ −γ 2 I 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎦<0

(25)

Then, pre-multiplying (25) by diag{V −�
1 , V −�

1 ,

I, I } and post-multiplying by diag{V −1
1 , V −1

1 , I, I }
and defining some matrices as follows:

V −1
1 = Γ1, κV −1

1 = Γ2, V −�
1 P̂V −1

1 = P

Thus, (25) became to (12). From Theorem 1, it is clear
that the closed-loop system (10) is asymptotically sta-
ble and satisfies ‖ y(t) ‖2< γ ‖ w(t) ‖2. The proof is
completed. 	


Remark 3 By employing Lemma 1 and the fault
description (7), the partial loss of actuator effectiveness
problem is transformed into uncertain parameters prob-
lem. Thus, a feasible robust FTC scheme is obtained in

Theorem 2, which only depends on the control effec-
tiveness factor ω̂. On the other hand, the designed con-
troller is described in form of LMI, which is easy to
solve by using Matlab LMI toolbox.

4 Numerical examples

In this section, the faut tolerant control scheme will be
applied to a spacecraft with one flexible appendage.
Since low-frequency modes are generally dominant in
a flexible system, only the lowest two bending modes
have been considered for the implemented spacecraft
model. Thus, we suppose that ω1 = 3.17 rad/s, ω2 =
7.38 rad/s with damping ξ1 = 0.001, ξ2 = 0.015, We
suppose F = [F1 F2], where the coupling coefficients
of the first two bending modes are F1 = 1.27814, F2 =

Table 1 The corresponding matrices V1 and W under different
control effectiveness factors

Control effectiveness
factor

The corresponding matrices

ω̂ = 1 V1 =
[

0.1179 −0.0105
−0.0123 0.0022

]

,

W = [
0.0319 −0.0302

]

ω̂ = 0.5 V1 =
[

0.1173 −0.0104
−0.0122 0.0022

]

,

W =
[

0.0639 −0.0606
]

ω̂ = 0.2 V1 =
[

0.1046 −0.0083
−0.0095 0.0015

]

,

W = [
0.1299 −0.1162

]
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Robust FTC for flexible spacecraft 1759

Table 2 The controller
parameters under different
control effectiveness factors

Control effec-
tiveness factor

Fault-tolerant
controller gain

Upper bound of
performance index

ω̂ = 1 K = [ −2.3129 −24.8248
]

J ∗ = 11.7992

ω̂ = 0.5 K = [ −4.6242 −49.7914
]

J ∗ = 11.8874

ω̂ = 0.2 K = [ −11.0067 −134.4086
]

J ∗ = 11.0721
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Fig. 1 The responses of pitch attitude angle and angle rate under partial actuator failure

Fig. 2 The responses of
control effect when
ω̂ = 0.2, ω̂ = 0.5, and
ω̂ = 1
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0.91756, J = 35.72 kg m2 is the nominal principal
moment of inertia of pitch axis. The flexible spacecraft
is supposed to move in a circular orbit with the altitude
of 500 km, then the orbit rate is 0.0011 rad/s. The ini-
tial pitch attitude of the spacecraft are θ(0) = 0.08 rad,
θ̇ (0) = 0.04 rad/s. And H∞ performance index is sup-
posed to γ = 2.5 and the given matrices are chosen as
Z = [0.25 0.1; 0.1 0.5], R = 0.31, C = [1 0; 0 1].

The results we obtained by using Theorem 2 are given
in Tables 1 and 2.

Figure 1 shows the responses of pitch attitude angle
and angle rate under partial actuator failure, which
the control effectiveness factors are chosen as when
ω̂ = 0.2, ω̂ = 0.5 ω̂ = 1 respectively. Figure 2 shows
the responses of control effect when ω̂ = 0.2, ω̂ =
0.5 ω̂ = 1. From these figures, it is clear that the
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response performance can be guaranteed under the
robust FT controller.

5 Conclusion

In this paper, a robust FTC scheme has been inves-
tigated for flexible spacecraft. The LMI-based condi-
tions are formulated for the existence of the admissible
controller, which ensures that the faulty closed-loop
system is asymptotically stable with a H∞ disturbance
attenuation level and partial loss of actuator effective-
ness. Numerical simulations have shown the perfor-
mance of the attitude control system. Further improve-
ment in composite disturbance-observer with feedback
control for flexible spacecraft will be considered in our
future work.
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