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Abstract We study the seasonal changes in the thickness distribution of Arctic sea ice, g(h),
under climate forcing. Our analytical and numerical approach is based on a Fokker–Planck
equation for g(h) (Toppaladoddi and Wettlaufer in Phys Rev Lett 115(14):148501, 2015), in
which the thermodynamic growth rates are determined using observed climatology. In partic-
ular, the Fokker–Planck equation is coupled to the observationally consistent thermodynamic
model of Eisenman andWettlaufer (Proc Natl Acad Sci USA 106:28–32, 2009). We find that
due to the combined effects of thermodynamics and mechanics, g(h) spreads during winter
and contracts during summer. This behavior is in agreement with recent satellite observa-
tions fromCryoSat-2 (Kwok andCunningham in Philos Trans R SocA 373(2045):20140157,
2015). Because g(h) is a probability density function, we quantify all of the key moments
(e.g., mean thickness, fraction of thin/thick ice, mean albedo, relaxation time scales) as
greenhouse-gas radiative forcing, �F0, increases. The mean ice thickness decays exponen-
tially with �F0, but much slower than do solely thermodynamic models. This exhibits the
crucial role that ice mechanics plays in maintaining the ice cover, by redistributing thin ice
to thick ice-far more rapidly than can thermal growth alone.

Keywords Arctic sea ice thickness distribution · Stochastic processes · Fokker–Planck
equation · Climate

1 Introduction

Arctic sea ice is one of themost sensitive components of the Earth’s climate system and serves
as a bellwether for global scale climate change. The recent decline in both the areal extent
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and the average thickness of sea ice, as evidenced by satellite and submarine measurements,
drives study of its origins [8]. The key quantity of interest in the geophysical-scale description
of sea ice is its volume; while daily areal extent is routinely measured using satellites, it is a
challenge to understand the evolution of the ice volume because of the difficulties involved
in the measurement of the thickness, h [8].

To study the evolution of the ice volume, one could treat ice as a continuum and construct
the mass, momentum, and energy balance equations [18]. However, such a description is
incomplete without the knowledge of the rheology and physical properties, such as the albedo
and thermal growth rate, of the ice pack. These physical properties depend strongly on the
thickness. Thus, this implies that in order to complete a continuum description, one should
first determine these properties for the ice pack.

The key step in the construction of such a description was taken in 1975 by Thorndike et
al. [14], who introduced the concept of thickness distribution, g(h). It is defined as follows:
Consider a region with area R that is sufficiently large to contain a range ice of different
thicknesses. Then the integral

∫ h2

h1
g(h) dh = A

R
(1)

gives the fraction of that area (A/R) that contains ice of thicknesses between h1 and h2, and
the dependence of g(h) on space and time is implicit. The spatio-temporal evolution of g(h),
subject to wind, thermal and mechanical forcing, is governed by [14]:

∂g

∂t
= −∇ · (ug) − ∂

∂h
( f g) + ψ, (2)

where u is the horizontal velocity of ice pack, f is the thermal growth/melt rate of ice, and
ψ is the redistribution function that accounts for all the mechanical interactions between ice
floes (ridging, rafting, and formation of open water). The principal difficulty in solving Eq. 2
came from ψ whose general form could not be deduced from observations. Thorndike et
al. [14] separately considered the cases of the formation of open water and pressure ridges,
and constructed simple models of ψ for these events based on physical arguments. The
general form of ψ was taken to be the combination of the above mentioned cases. Numerical
integration ofEq. 2 using initial conditions from the limited submarinemeasurements resulted
in g(h)’s that were qualitatively similar to those from observations. However, Eq. 2 remained
intractable due to the lack of a closed mathematical form for ψ . Indeed, Thorndike et al.
[14] noted that “The present theory suffers from a burdensome and arbitrary redistribution
function ψ .”

Thorndike, in a later study [15], made two calculations in order to understand the nature
of ψ and its role in the evolution of g(h). In the first calculation he obtained ψ by assuming
a steady state and solving for:

ψ = g∇ · u + ∂

∂h

(
f g

)
, (3)

where f is the annually averaged thermal growth rate from the one-dimensional thermody-
namic model of Maykut &Untersteiner (MU71) [10], and g(h)was taken from observations.
Depending on the values of d = ∇ · u, the solutions displayed the following features: (a) ψ

provided a source of open water; (b) ice of thickness less than a certain value h∗ was used
to build pressure ridges, and hence ψ was a sink for this range of thickness; and (c) ψ was a
source of ice thicker than h∗.
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For his second calculation, Thorndike formulated the original equation as a Markov pro-
cess; and by assuming the forms of f and ψ he solved for the steady state. In constructing
the matrices of f and ψ he used the following principle: If ice of initial thickness hi grew
either by thermal growth or by ridging to a final thickness h f , then the process that led to this
increase would act as a sink for g(h = hi ) and source for g(h = h f ); similar arguments hold
in the case of thinning. Divergence affected ice of all thicknesses, and there was a source term
for open water. He assumed that ψ depended on the random short-term strain e in the ice.
By using different values of d and e, he was able to show the effects of different processes
on g(h). The following is a brief summary of his findings:

1. When d = 0 and e = 0, g(h) = δ(h − Heq). Here δ(x) is the Dirac-delta function and
Heq is the “equilibrium” thickness. For a typical profile, g(h) attains the maximum value
at h = Heq .

2. Choosing e > 0 and d = 0 leads to a spread in g(h) on both sides of the maximum, but
for d > 0 and e = 0 the spread is only on the thinner side.

3. In order to obtain a steady solution, it is necessary for e �= 0 when d < 0. Thus, the
solution in this case has very little thin ice.

4. The solutions with d = 0 and e > 0 qualitatively resemble the observed g(h).

This study considerably improved our understanding of ψ , but left the following key issues
open:

1. A closed form of ψ was still lacking, which prohibited any systematic mathematical
analysis of Eq. 2.

2. It was assumed that ice only from a particular range of thickness could ridge to produce
thicker ice, but this is generally not the case [19].

3. It was difficult to use this framework to study seasonal changes in g(h).

The theoretical investigation of the evolution of g(h) was complemented by observations
of thickness in the central Arctic, which revealed that g(h) ∼ e−h/H for thick ice. Thorndike
[16] thus constructed simpler models for the thermal and mechanical processes to explain
the observed exponential tail. For the thermal process, he assumed f (h) = F × (Heq − h),
where F−1 is the time scale required to reach Heq . The rate of formation of open water and
ridges was assumed to be r . Using dimensional arguments he related H to Heq by:

H = G
(
F

r

)
Heq , (4)

whereG is some function of F/r . Thorndike [16] argued that because there are a large number
of interacting floes, the larger the fraction of a certain thickness the larger the probability of
participation in ridging to produce thicker ice. From this logic he arrived at the following
form for ψ ;

ψ = r

[
δ(h) − 2 g(h) +

∫ h

0
g(h′) g(h − h′) dh′

]
, (5)

where δ(h) is the source of open water, −2g(h) is the sink term for the ice that is used
for ridging, and the convolution term represents the sum of all interactions that produce
ice of thickness h. While this approach overcame limitation 2 from the previous study,
the nonlinear integro-differential equation could only be solved numerically. The solutions
displayed exponential tails, showing that the simple rules for the thermal and mechanical
interactions were sufficient to obtain g(h) for thick ice that were in qualitative agreement
with the observations.
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Recently, Godlovitch et al. [5] generalized Thorndike’s approach (Eq. 5) using Smolu-
chowski coagulationmodels. Thesemodels describe the evolution of a population of particles
that can interact in pairs to change their mass, with the rate of coalescence that depends on
their mass. Using this formalism, ψ was represented as

ψ =C(K , t) δ(h) + 1

2

∫ h

0
K (h′, h − h′) g(h′) g(h − h′)dh′

−
∫ ∞

0
K (h, h′) g(h) g(h′) dh′, (6)

where K (h, h′) is the rate kernel andC(K , t) is introduced to ensure that g(h) is normalized.
Numerical solutions to Eq. 6 displayed exponential and quasi-exponential tails for a variety
of K (h, h′), indicating that the nature of the ridging process is not sensitive to the choice of
rate kernel. However, the choice of K (h, h′) is important for quantitative comparison with
observations [5].

Finally, theWorld Climate Research Programme CoupledModel Intercomparison Project
Phase 5 (CMIP5) models, which use momentum equations for the ice pack and hence a wide
range of constitutive models for the ice rheology, are known to poorly represent the spatial
patterns of ice thickness [13]. This highlights the utility of taking a probabilistic approach to
understanding the large scale behavior of the ice pack, which is what motivated the original
theory of Thorndike et al. [14].

2 A Statistical Mechanics Based Theory [17]

When studying Eq. 2, it is important to realize that there is a separation of length and time
scales over which the mechanical processes (e.g., ridging and rafting) act relative to the
evolution of g(h). Observations indicate that a region with a length scale of 100 km or more
is required to define g(h) [14], whereas the features that result from ridging and rafting
extend over up to a few tens of meters in general [19]. Hence, one could construct a theory
that neglects the details of the collisions, but takes their net effect into account to study the
geophysical-scale evolution of g(h). This line of reasoning led us to use an analogy with
Brownian motion to interpret ψ [17]. Now we describe this approach.

The classical problem of Brownian motion concerns the motion of a pollen grain in water
[1,12]. The collisions with the water molecules effect the motion of the pollen grain. Given
the length-scale separation between the pollen grain and the solvent molecules, there are
an enormous number of solvent-grain collisions over the time scale of the evolution of the
pollen grain. Hence, one does not take the individual collisions into account when describing
its motion, but only their (appropriately averaged) net effect.

We view the short length and time scales of individual mechanical processes (ridging and
rafting) relative to the overall evolution of g(h, t)1 in direct analogy to the collisions of water
molecules with a Brownian particle, and thus write ψ as

ψ(h, t) =
∫ ∞

0

[
g(h′, t)w(h, h′) − g(h, t)w(h′, h)

]
dh′. (7)

Thus, we interpret themechanical redistribution of ice thickness as the differential form of the
Chapman–Kolmogorov equation, or a Master equation. The transition probabilities per unit
time w(h, h′) and w(h′, h) represent deformation processes changing ice from thickness h′

1 To be explicit in Eq. 7 we write the time dependence, but this is implicit elsewhere.
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to h and from h to h′ respectively, and w(h, h′) = w(h′, h). We Taylor expand Eq. 7 thereby
transforming Eq. 2 to

∂g

∂t
= −∇ · (ug) − ∂

∂h
( f g) + k1

∂g

∂h
+ k2

∂2g

∂h2
, (8)

where

k1 =
∫ ∞

0

∣∣h′ − h
∣∣ w(h, h′) dh′ and k2 =

∫ ∞

0

1

2

∣∣h′ − h
∣∣2 w(h, h′) dh′. (9)

Equation 8 is a Fokker–Planck-like equation that describes the evolution of the probability
density g(h, t). Here, k1 and k2 represent the first and secondmoments of thickness transition
events, which, because of our core framework that the events that change the thickness occur
very rapidly relative to the overall changes in g(h, t), are constants.

We nondimensionalize this equation by choosing Heq as the vertical length scale; L as the
horizontal length scale; U0 as the velocity scale for the horizontal ice velocity; tm = L/U0

as the time scale for advection of ice floes; tD = H2
eq/κ , where κ is the thermal diffusivity

of ice, as the diffusion time scale; and tR ∼ 1/γ̇ , where γ̇ is the collisional strain rate, as the
relaxation time scale. Hence, the remaining terms have the following scalings: f0 = Heq/tD ,
k̃1 = Heq/tR , and k̃2 = H2

eq/tR .Maintaining the pre-scaled notation and noting that tR ∼ tm ,
Eq. 8 is:

∂g

∂t
= −∇ · (ug) + ∂

∂h
[(k1 − τ f ) g] + ∂2

∂h2
(k2g) , (10)

where τ ≡ tm/tD . When ug(h) is solenoidal in the domain R, Eq. 10 becomes

∂g

∂t
= ∂

∂h
(φg) + ∂2

∂h2
(k2g) , (11)

where φ = k1 − τ f . Equation 11 is a Fokker–Planck equation for g(h, t). In this paper,
we discuss the analytical and numerical solutions to Eq. 11 with a particular focus on the
climatological evolution of the thickness distribution.

3 Analytical Solutions

3.1 Steady Solution

A unique steady solution to Eq. 11 was obtained in [17] as follows. The thermal growth rate
was taken to be the solution to the ideal Stefan problem (see e.g., [20]) viz., f = 1/Sh, where
S is Stefan number defined as S ≡ Li/cp�T where Li , cp and �T are the latent heat of
fusion of ice, specific heat of ice at constant pressure and the temperature difference across
the ice layer, respectively. Using the boundary conditions g(0) = g(∞) = 0 the steady state
solution is

g(h) = N (q)hqe−h/H , (12)

where q = τ/k2S = ε/k2 and H = k2/k1. The prefactor, N (q) = [
H1+q�(1 + q)

]−1
, is

the normalization constant with �(x) the Euler gamma function. Finally, we note that for
given positive values of q and H , this solution is unique.
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Setting to zero the first derivative of Eq. 12 with respect to h yields h = Heq as

H = 1

q
Heq , (13)

thus also providing a derivation of Thorndike’s dimensionless function (Eq. 4) from our
steady state solution.

3.2 Time-Dependent Solution

As a first step in understanding how the thickness distribution is driven by climatological
forcing, we introduce a simple model for the growth rate, with f = 1 and −1 during growth
andmelt seasons respectively.We emphasize that this model is intended to be pedagogical, as
it does not accurately model the winter growth rate, which depends on the thickness. We use
Chandrasekhar’s method [1] to first obtain the fundamental solution to Eq. 11. The method
involves computing the characteristics of the advective part of the equation, in which φ is
now a constant, along which we write the resulting–diffusion–equation (see Appendix 1);

∂g

∂s
= k2

∂2g

∂y2
, (14)

where y = h + φ t and s = t , and the boundary conditions are g(y = φ s, s) = g(y =
∞, s) = 0. The Green’s function that satisfies these conditions is

g(y, s; y0) = 1√
4πk2s

exp

(
− (y − y0)2

4k2s

)

− 1√
4πk2s

exp

(
− (y + y0)2

4k2s
+ φy0

k2

)
, (15)

and thus, the time-dependent solution for a given initial condition g0(y0) is given by

g(y, s) =
∫ ∞

0
g(y, s; y0) g0(y0) dy0. (16)

For g0(y0) = Ny0e−by0 , the solution in terms of h and t is

g(h, t) = N

2
(h + φt)e

(
−b(h+φt)+ θ2b2

4

)
[1 + erf(β1)]

− N

2
√

π
θe

(
−b(h+φt)+ θ2b2

4

) {
−e−β2

1 +
√

πθb

2
[1 + erf(β1)]

}

− N

2
√

π
θe

(
− φ(h+φt)

k2
+b(h+φt)+ γ 2

4

) [
e−β2

2 +
√

πγ

2
erfc(β2)

]

+ N

2
(h + φt)e

(
− φ(h+φt)

k2
+b(h+φt)+ γ 2

4

)
erfc(β2), (17)

where θ = √
4k2t , β = (h + φt)/θ , β1 = β − θb/2, β2 = β − γ /2, γ = φθ/k2 − bθ , and

the error function (complimentary error function) is erf(X) (erfc(X)). Importantly, Eq. 17
demonstrates that even in the case of growth rate being independent of thickness, multiple
time scales are generated due to the interaction between thermal and mechanical processes.
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4 Numerical Solutions

Seasonality and climate forcing are introduced by coupling Eq. 11 to the one-dimensional
thermodynamic model of Eisenman and Wettlaufer (EW09) [3]. We discretize Eq. 11 using
the standard second-order finite-difference formulae and it is integrated in time using the
semi-implicit Crank–Nicolson scheme. The equation for f = f (h, t) is:

f = 1

ρi Li f0
[− (1 − α) FS + F0 + σT T − �F0 − FB ] − 1

f0
ν0h, (18)

where ρi is the density of ice, FS(t) is the incoming shortwave radiative flux, F0(t) =
σ0 − FL(t) − FSH (t) − FLH (t), FL(t) is the incoming longwave radiative flux, FSH (t),
FLH (t) are the turbulent specific and latent heat fluxes at the upper surface, �F0 is the
controlled flux perturbation at the upper surface (representing greenhouse gas forcing), and
FB is the oceanic heat flux at the bottom surface. A linearized form of the Stefan-Boltzmann
law is used for the outgoing longwave radiative flux and is given by σ0 + σT T (h, t), where
T (h, t) is the temperature of the upper surface. Ice export is 10% per year and is represented
by ν0h. Whilst we have neglected the advection term in Eq. (11), we have incorporated the
mean effect of advection on ice export in thismanner, but it is not the same as incorporating the
full ice velocity field. However, ignoring export leads to relatively minor quantitative changes
and no qualitative changes to the results presented here. Finally, we note that because S is
large for ice, the energy balance across h is global and hence, for example, �F0 = 2 Wm−2,
FB = 0 and �F0 = 0, FB = 2 Wm−2 are equivalent.

4.1 Sea Ice Growth Rate

The typical growth rates from the EW09 model for winter and summer are shown in Fig. 1.
Clearly, as this is a Stefan problem the growth rate decreases with increasing thickness, due to
the fact that growth rate depends on the amount of heat conducted through the ice layer, which
decreaseswith increasing thickness. The growth rates shownhere are similar to those obtained
fromMU71 [10,14]. The melt rate is constant for all thicknesses except for h < 1, which can
be attributed to the accelerated melting of thin ice because of the ice-albedo feedback. The
feedback is captured here through the h dependence of the albedo, where the characteristic
length scale is the inverse of the spectrally averaged Beer’s extinction coefficient λ = 0.67 m
[10]. This becomes particularly important as the ice cover thins and h ≈ λ because our
thermodynamic model does not account for the fraction of energy penetrating into the water
column and effectively increasing FB .

4.2 Evolution of the Mean Thickness

The mean thickness is defined as:

〈h(t)〉 =
∫ ∞

0
h g(h, t) dh, (19)

in the same manner as the mean values 〈X〉 of all quantities X . Figure 2a shows the seasonal
behavior of the dimensional 〈h〉. For all values of�F0 the seasonal cycle of 〈h〉 is qualitatively
the same, with the maximum, 〈h〉max, at the end of the growth season in early April, and
the minimum, 〈h〉min, at the end of the melt season in August. This behavior is in general
agreement with observations and with solely thermodynamic models [3,10]. Importantly,
however, for greenhouse gas forcing roughly twice that at which the thermodynamic only
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Fig. 2 Seasonal evolution of the mean thickness 〈h〉 and g(h) versus �F0, and Heq = 1.5 m throughout.
Dash-dotted line �F0 = 2 Wm−2, 〈h〉max = 2.36 m, 〈h〉min = 1.72 m; dotted line �F0 = 15 Wm−2,
〈h〉max = 2.18 m, 〈h〉min = 1.50 m; and solid line �F0 = 50 Wm−2, 〈h〉max = 1.82 m, 〈h〉min = 1.08 m

component of this model transitions from the seasonal ice state to the ice free state (see Fig. 3
of [3]), here we are still in the perennial state. This exhibits the crucial role that ice mechanics
plays in maintaining the ice cover by redistributing thin ice to thick ice-far more rapidly than
can thermal growth alone. Indeed, it is not until �F0 reaches approximately six times the
thermodynamic only transition to the ice free state that the annual mean 〈h〉 ≈ λ (see Fig. 8).

4.3 Seasonal and Climatological Changes in g(h)

For the purpose of discussing the changes in g(h), we define ‘thin’ ice as ice of thickness
h ≤ 1 and ‘thick’ ice as ice of thickness h > 1. The fraction of thin ice is

Φ =
∫ 1

0
g(h) dh. (20)
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Fig. 4 Seasonal evolution of g(h)with increasing greenhouse gas forcing.Dash-dotted line�F0 = 2Wm−2;
dotted line �F0 = 15 Wm−2; and solid line �F0 = 50 Wm−2

WhereasΦ increases by about a factor of two from the winter minimum to the summer max-
imum (Fig. 3), roughly independent of �F0, the minimum and the maximum also increase
by roughly a factor of two as �F0 increases.

Figure 2b–e show g(h) at the middle and end of the growth and melt seasons respectively.
For all �F0, as winter progresses and Φ decreases, both thermal growth and mechanical
redistribution drive the spread and rightward motion of g(h) to create more thick ice. As
Φ increases during the melt season, g(h) contracts towards thinner ice and the skewness
increases, both of which are enhanced substantially as �F0 increases (Fig. 4).

We make a qualitative comparison of g(h) with the recent satellite observations from
CryoSat-2 [7] in Fig. 5. The data has been averaged over the periods shown in Fig. 5a,
whereas data from the model in Fig. 5b are for the particular days shown. The observed
spreading of g(h) during winter is explained as above within the framework of the theory;
ice growth makes thicker the ice that is formed and subsequently deformed, shifting the peak
to the right and broadening the distribution, a behavior that is suppressed as �F0 increases.
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Fig. 5 Qualitative comparison with CryoSat-2 observations [7]. a g(h) for first-year ice for the year 2010–
2011; the data were obtained over the periods indicated. b g(h) for the whole thickness range for �F0 =
2 Wm−2 from our model on the particular days as indicated

It is the continual deformation of thinner ice to make thicker ice that maintains a thicker ice
pack than would be predicted by thermodynamic only models.

4.4 Albedo

Importantly, once g(h) is known, all thickness dependent moments can be calculated. A
quantity of keen interest is the albedo, whose summer mean values are difficult to model
because of the concurrent presence of a wide range of ice thicknesses in the basin. We plot
the seasonal evolution of the mean albedo 〈α〉 as a function of �F0 in Fig. 6. For example,
when �F0 = 2 Wm−2 we see that 〈α〉 reaches a maximum (0.671) at the end of the growth
season, and a minimum (0.652) at the end of the melt season; a seasonal difference in the
extreme values of only 2.9%, but this translates into a large variation in surface heat balance
[4]. Figures 3 and 6 show thatΦ and 〈α〉 are anticorrelated; and a close observation of the plots
reveals a phase difference between them, with 〈α〉 leading. Importantly, as �F0 increases
so too does the amplitude of the seasonal cycle, the peak to peak variation of which has a
substantial impact on the radiative forcing and hence the ice thickness.

4.5 Effects of the Surface Radiative Flux Forcing

The effect of �F0 on g(h) can be understood by considering Eq. 18. An increase in �F0
results in a smaller growth rate during winter and a higher melt rate during summer, leading
to an increase in Φ for all seasons (Fig. 3). Figure 7 shows that the mean growth rate shifts
downward with increasing�F0, but the curves are not phase shifted. This shift in 〈 f 〉 is asso-
ciated with the increase in Φ for all seasons. Figure 10 shows the �F0 dependence of the
seasonal cycle of themean ice surface temperature 〈T 〉. It is seen that as�F0 increases, so too
does 〈T 〉 and thus the winter growth rate decreases. Moreover, the time period during which
the upper surface ablates increases with�F0. This combination of effects leads to a decrease
in 〈h〉, the seasonally averaged mean thickness. Figure 8 shows that 〈h〉 decreases exponen-
tially with increasing �F0 over the range simulated, and thus should vanish monotonically
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Fig. 6 Seasonal evolution of the mean albedo with increasing greenhouse gas forcing. Dash-dotted line
�F0 = 2 Wm−2; dotted line �F0 = 15 Wm−2; and solid line �F0 = 50 Wm−2
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Fig. 7 Seasonal changes in the mean growth rate of ice with increasing greenhouse gas forcing. Dash-dotted
line �F0 = 2 Wm−2; dotted line �F0 = 15 Wm−2; and solid line �F0 = 50 Wm−2

in the absence of some other feedback, in qualitative, but as noted above not quantitative,
agreement with solely thermodynamic models [3,10].

Finally, given the important shift in the transitions of the ice states (perennial to seasonal
to ice free) from solely thermodynamic models to the full mechanical and thermodynamic
treatment of this theory, the response of the ice pack to a radiative flux perturbation is
clearly different between these approaches. We have quantified the relaxation time scales for
different initial conditions (see Appendix 3) and find that there is a range of thin ice fractions,
Φ ≈ 0.3–0.6, for which the relaxation time scale of the ice pack is approximately 50% that
of thermodynamic only models; viz., ∼4 years rather than ∼10 years. For distributions with
much more thick ice the response time scales are controlled by mechanical deformation of
thick ice and hence can be much longer.

5 Conclusion

Using concepts andmethods from statistical physicswe have transformed the theory of the sea
ice thickness distribution, g(h), of Thorndike et al. [14] into a solvable Fokker–Planck-like
equation. We have solved the new equation both analytically and numerically using different
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Fig. 8 Effect of increasing �F0 on 〈h〉. Circles simulation; solid line 〈h〉 = 2.08 × exp (−0.0069 × �F0).
The mean thickness becomes 0.66 m ≈ λ when �F0 = 164 Wm−2

models for the thermodynamic growth rate f to understand the climatological evolution of
g(h). In the simplest case, f = ±1 for the growth and melt seasons, we find an analytical
solution (Eq. 17). The solution shows that the interaction of thermal andmechanical processes
during the evolution of g(h) leads to the generation of multiple time scales, which in turn
affect the evolution. Thus, as previously suggested by Thorndike [15], we do in fact find that
g(h) and its moments relax on different time scales, which clearly has important geophysical
consequences.

A climatological suite of calculations was performed by coupling the Fokker–Planck
equation to the thermodynamicmodel of Eisenman andWettlaufer [3]. The transient and time
averaged g(h) from our model are in good agreement with the recent satellite measurements
over the Arctic basin [7,17]. As in solely thermodynamic models [3,10], we find that the
stationary state has a mean thickness, 〈h〉, reaching a maximum in early April, which is the
end of the growth season, and a minimum in early August, which is the end of the melt
season. Due to the combined effects of thermodynamics and mechanics, g(h) spreads during
the growth season and contracts during the melt season. As greenhouse gas forcing, �F0,
increases, this contraction is enhanced, with a larger skewness and a sharper peak at lower
thicknesses. However, this model remains in the perennial ice state for �F0 approximately
twice that at which its thermodynamic component transitions from the seasonal ice state
to the ice free state. This exhibits the crucial role that ice mechanics plays in maintaining
the ice cover by redistributing thin ice to thick ice; intuitively, doubling the thickness of
thin ice by ridging occurs instantaneously [19] relative to doubling it by thermal growth.
Clearly, by such a stage the ice-covered fraction of the Arctic Ocean may be vastly smaller
than at present. Nonetheless, these physical processes will persist until other effects, such
as changing boundary conditions at lower latitudes, take over. For example, although it is
not until �F0 reaches approximately six times the thermodynamic only transition to the ice
free state that the exponential decay of the annual mean, 〈h〉, is reduced to the decay scale
of shortwave radiation λ ≈ 0.66 m (Fig. 8).

The seasonal behavior of the thin-ice fraction Φ is anticorrelated with the behavior of
〈h〉, which is correlated with the evolution of the mean albedo 〈α〉. The surface radiative
flux perturbation �F0 impacts g(h) by decreasing the mean growth rate and the seasonally
averaged mean thickness 〈h〉, thereby leading to an increase in Φ. Depending on the initial
Φ, the relaxation times for g(h) to reach a stationary state starting from an arbitrary initial
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condition range from ∼4 to 10 years. Importantly, for a range of thin ice fractions, Φ ≈ 0.3–
0.5, there is a minimum in the relaxation time of ∼4 years, which is approximately 50% that
of thermodynamic only models. For distributions with much more thick ice, the response
time scales are controlled by mechanical deformation of thick ice and thus become much
longer.

The results presented here demonstrate veracity of using the methods and concepts of
statistical mechanics to study the geophysical-scale evolution of Arctic sea ice. As described
in the introduction, the CMIP5 models poorly represent the spatial patterns of ice thickness
[13]. The concept of the original theory of g(h) due to Thorndike et al. [14] was to avoid the
complexities of unknown ice rheologies in the equations of motion for the ice cover, and to
produce a climatologically relevant and easily implementable probability density function of
this core geophysical scale state variable. However, implementation was difficult because of
the intransigence of the redistribution function ψ . Having solved this problem in our theory,
we find solutions that are in good agreement with satellite observations. Therefore, using the
present treatment for g(h) in climate models should lead to a more realistic representation
of Arctic sea ice within them. The thermodynamic component used here [3] reproduces the
seasonal cycle of Maykut and Untersteiner [10], which is the starting point for all subsequent
simplifications of the thermodynamics used in climate models. Therefore, the implemen-
tation of our approach, which captures both the mechanics and the thermodynamics, in
comprehensive models should be of interest.
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Appendix 1: Exact Solution of the Fokker–Planck Equation

The Fokker–Planck equation for the thickness distribution, g(h), for constant thermal growth
rate is

∂g

∂t
= φ

∂g

∂h
+ k2

∂2g

∂h2
, (21)

where φ = k1 − τ f , with the boundary conditions g(h = 0, t) = g(h = ∞, t) = 0. The
characteristics of the advective part of Eq. 21 are

dh

dt
= −φ; ds

dt
= 1. (22)

Hence, using the transformation y = h + φt and s = t in equation 21 gives

∂g

∂s
= k2

∂2g

∂y2
, (23)

with the transformed boundary conditions; g(y = φs, s) = g(y = ∞, s) = 0. Equation 23
is the diffusion equation for g along the characteristics.
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We solve Eq. 23 by first finding its Green’s function, g(y, s; y0), which satisfies the
following expression

∂g

∂s
− k2

∂2g

∂y2
= δ (y − y0) δ(s), (24)

where δ(X) is theDirac-delta function. FollowingDuffy [2], one can seek theGreen’s function
in the form

g(y, s; y0) = G(y, s; y0) + u(y, s), (25)

where G(y, s; y0) is the free-space Green’s function given by

G(y, s; y0) = 1√
4πk2s

exp

[
− (y − y0)2

4k2s

]
, (26)

and u(y, s) is a homogeneous function that satisfies the following boundary condition at
y = φs;

u(y = φs, s) = −G(y = φs, s; y0), (27)

which ensures the boundary condition g(y = φs, s) = 0 is enforced at all s. The function
u(y, s) satisfies Eq. 23 and can be shown to be [2]

u(y, t) = − 1√
4πk2s

exp

[
− (y + y0)2

4k2s
+ φy0

k2

]
. (28)

Once g(y, s; y0) is known, the solution corresponding to any initial condition g0(y0) can be
calculated as

g(y, s) =
∫ ∞

0
g(y, s; y0) g0(y0) dy0. (29)

For g0(y0) = Ny0e−by0 , the solution in terms of the original variables h and t is:

g(h, t) = N

2
(h + φt)e

(
−b(h+φt)+ θ2b2

4

)
[1 + erf(β1)]

− N

2
√

π
θe

(
−b(h+φt)+ θ2b2

4

) {
−e−β2

1 +
√

πθb

2
[1 + erf(β1)]

}

− N

2
√

π
θe

(
− φ(h+φt)

k2
+b(h+φt)+ γ 2

4

) [
e−β2

2 +
√

πγ

2
erfc(β2)

]

+ N

2
(h + φt)e

(
− φ(h+φt)

k2
+b(h+φt)+ γ 2

4

)
erfc(β2), (30)

where θ = √
4k2t , β = (h + φt)/θ , β1 = β − θb/2, β2 = β − γ /2, and γ = φθ/k2 − bθ .

The error function and complimentary error function are erf(X) and erfc(X) respectively.

Appendix 2: Numerical Scheme

The Fokker–Planck equation for the sea ice thickness distribution is

∂g

∂t
= ∂

∂h
(φg) + ∂2

∂h2
(k2g) . (31)

123



Statistical Mechanics and the Climatology of the Arctic Sea... 697

To solve Eq. 31 numerically, we discretize it using the standard second-order finite difference
formulae [9], and integrate it in time using the semi-implicit Crank–Nicolson method. This
particular method is chosen for its stability and accuracy [11]. The finite difference form of
Eq. 31 is

gn+1
i − gni

�t
=1

2

[
φn+1
i+1 g

n+1
i+1 − φn+1

i−1 g
n+1
i−1

2�h

]
+ k2

2

[
gn+1
i+1 − 2gn+1

i + gn+1
i−1

(�h)2

]

+ 1

2

[
φn
i+1g

n
i+1 − φn

i−1g
n
i−1

2�h

]
+ k2

2

[
gni+1 − 2gni + gni−1

(�h)2

]
, (32)

where �h and �t are the ice thickness and time steps respectively. Here, gni corresponds to
g(hi = i�h, tn = n�t) where hi (i = 1, 2, 3, . . .) and tn (n = 1, 2, 3, . . .) are the discrete
values of h and t , and similarly for the remaining terms. We rearrange Eq. 32 as

−
(
c1φ

n+1
i+1 + c2

)
gn+1
i+1 + (1 + 2c2) g

n+1
i +

(
c1φ

n+1
i−1 − c2

)
gn+1
i−1

= (
c2 + c1φ

n
i+1

)
gni+1 + (1 − 2c2) g

n
i + (

c2 − c1φ
n
i−1

)
gni−1,

(33)

where c1 = �t/4�h and c2 = k2�t/2 (�h)2. Equation 33 represents a tridiagonal system,
which can be solved efficiently [9].

To validate the code, we solve Eq. 31 with the growth rate from the ideal Stefan problem
[20]. The solution in this case is [17]

g(h) = N (q)hqe−h/H . (34)

Thus, the test used is that starting from different initial conditions, this unique steady state
solution should be reached. We initialize g(h) using: (a) q = 1.05, H = 0.4 and (b) q = 2.5,
H = 0.8. However, the values qss = 1.84 and Hss = 0.52 are chosen to represent the final
steady state solution, and hence values of k1 and k2 corresponding to qss and Hss are used for
the integration of Eq. 31. For the test cases, we choose�t = 0.01,�h = 0.025, Tp = 400 as
the total integration time, with hmin = 0.01 the smallest and hmax = 10 the largest discrete
thicknesses. The boundary conditions imposed are; g(hmin) = g(hmax ) = 0. Figure 9 shows
that starting with the different initial conditions, the unique steady-state solution is reached.

Appendix 3: Seasonality in Growth Rate

We introduce seasonality by solving the equation for the thermodynamic growth rate from
the one-dimensional thermodynamic model of Eisenman and Wettlaufer [3] that is coupled
to climatology. Here, in order to make this paper reasonably self contained we summarize
this energy balance model, in which the dimensional form2 of the growth rate is

f (h, t) = 1

ρ Li

{
− [1 − α(h)] FS(t) + F0(t) + σT T (h, t)

}
− 1

ρ Li
[�F0 + FB ] − ν0h,

(35)

where ρi is the density of ice, FS(t) is the incoming shortwave radiative flux, F0(t) =
σ0 − FL(t) − FSH (t) − FLH (t), FL(t) is the incoming longwave radiative flux, FSH (t)

2 To avoid introduction of yet more notation here we simply state the dimensional form of the equationwithout
specific redefining variables.
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Fig. 9 Validation of the method. a, b show that starting from different initial conditions (dashed lines) the
solution converges to the unique steady state (circles). Here, �t = 0.01, �h = 0.025 and the total integration
time Tp = 400 for the simulations

and FLH (t) are the turbulent specific and latent heat fluxes at the top surface, and FB is the
oceanic heat flux at the bottom surface. A linearized form of the Stefan-Boltzmann law is
used for the outgoing longwave radiation flux, and is given by σ0 + σT T (h, t). Ice export is
10% per year and represented by ν0h. Here, T (h, t) is the upper surface temperature obtained
from the flux balance

T (h, t) = −R

{
[1 − α(h)] Fs(t) − F0(t) + �F0

−ki/h − σT

}
, (36)

where ki is the thermal conductivity of ice, and R(x) is the ramp function defined as

R(x) =
{
x if x > 0,

0 if x ≤ 0.

The dependence of albedo on thickness is modelled using:

α(h) = αw + αi

2
+ αw − αi

2
tanh

(
−h

λ

)
, (37)

where αi and αw are the values of albedo for thickest ice and open water, respectively and λ

is inverse of the spectrally averaged extinction coefficient for Beer’s law [3]. The radiation
climatology used to determine the values of FS(t), FL(t), FSH (t), and FLH (t) are from
Maykut & Untersteiner [10], as is λ. The values of f (h, t) obtained are nondimensionalized
by f0 and then used when solving Eq. (11) of the main document or Eq. (38) below.

Choosing Heq = 1.5 m, L = 105 m, U = 0.1 ms−1 and κ = 6.02 × 10−7 m2s−1

gives τ = 0.27, which is the value used throughout this study. The advection time scale
corresponds to tm ≈ 12 days. The number of days in a year is taken to be 360, which in
non-dimensional units corresponds to t = 30.

The values used for the constants are: ρi = 917 kg m−3, Li = 333.4 × 103 J kg−1,
ki = 2.2 Wm−1 K−1, σ0 = 316 Wm−2, σT = 3.9 Wm−2 K−1, αi = 0.68 and αw = 0.20.
The values of k1 and k2 corresponding to qss and Hss are used throughout this study.
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Fig. 10 Variation in themean temperature with seasons for different�F0.Dash-dotted line�F0 = 2Wm−2;
dotted line �F0 = 15 Wm−2; and solid line �F0 = 50 Wm−2

Convergence of the code for �F0 = 2 and 15 Wm−2 was ascertained from simulations
with (i) �t = 0.05, 0.01 and 0.005, for a fixed �h = 0.05, and (ii) �h = 0.05 and 0.025
for a fixed �t = 0.01. For each �F0, the convergence results obtained were identical in all
cases. Hence, �t = 0.05 and �h = 0.025 were chosen for all the simulations.

Sensitivity of Surface Temperature to �F0

Figure 10 shows the �F0 dependence of the seasonal cycle of the mean ice surface tem-
perature 〈T 〉. It is seen that as �F0 increases, so too does 〈T 〉 and thus the winter growth
rate decreases. Moreover, the time period during which the upper surface ablates increases
with �F0. This combination of effects leads to a decrease in the annually averaged mean
thickness 〈h〉.
System Relaxation Time Scales

We define the system relaxation time, ΛR , as the time taken for g(h, t) to evolve to a sta-
tionary state starting from an arbitrary initial condition. A knowledge of ΛR is important
in answering the following question: Given an initial state of the ice pack, if there is a flux
perturbation associated with a change in the environment, how quickly does the system forget
its initial condition and reach a new stationary state? The variation of ΛR as a function of the
initial condition may also help us understand the interaction between thermodynamics and
mechanics that drives the system to the new stationary state. One possible way to answer this
question would be to compute the relaxation times of the moments, but from Thorndike’s
[15] and our calculations (Eq. 17 of the main document) it is clear that even for constant
thermodynamic growth rates, g(h) and its moments relax on different time scales.

We calculate ΛR as follows. We start with different initial conditions g0(h) =
N (a)hae−h/b varying a and b to obtain different values of Φ. We solve

∂g

∂t
= ∂

∂h
(φg) + ∂2

∂h2
(k2g) , (38)

which is Eq. (11) of the main document, with f given by

f = 1

ρi Li f0
[− (1 − α) FS + F0 + σT T − �F0 − FB ] − 1

f0
ν0h, (39)
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Fig. 11 Relaxation time ΛR as a function of thick-ice fraction Φ̂. Circles a = 1.2; and squares a = 2.2,
where g0(h) = N (a)hae−h/b (see text). The dashed vertical line is Φ̂ for the final time-averaged g(h)

which is Eq. (18) of the main document, and compute the time it takes for g(h, t) to reach
a stationary state. This is done for a = 1.2 and 2.2, and b = [0.1, 1.2], giving a range
of Φ. Figure 11 shows ΛR as a function of the thick-ice fraction (Φ̂ = 1 − Φ) of g0(h),
and the dashed vertical line is Φ̂ for the final time-averaged g(h), denoted by Φ̂ f . The
two curves, representing different values of a, display similar behavior. This shows that ΛR

is a function of Φ̂ to leading order. When Φ̂ < Φ̂ f , so that the thick-ice fraction of the
initial condition is less than that of the stationary state, ΛR varies between 4 and 8 years.
Therefore, there is a range of of thin ice fractions,Φ ≈ 0.3–0.6 for which the relaxation time
scale is approximately 50% that of thermodynamic only models, viz., ∼4 years rather than
∼8 years, where there is an efficientmechanical redistribution of ice thickness, which is faster
than solely thermodynamic time scales. However, when Φ̂ > Φ̂ f , ΛR is a non-decreasing
function of Φ̂, and it is increasingly difficult for both thermal and mechanical processes to
drive the system to the new state.

Appendix 4: Stability Analysis of the Crank–Nicolson Scheme for the
Advection–Diffusion Equation

To study the stability properties of theCrank–Nicolson schemewhen applied to an advection–
diffusion equation with constant transport coefficients, we perform a von Neumann analysis.

Consider the following advection–diffusion equation

∂u

∂t
= V

∂u

∂x
+ D

∂2u

∂x2
, (40)

where u is some quantity being transported, V is the advection speed, and D is the diffusivity.
Using central differences for the spatial derivatives and semi-implicitC-N for time integration,
we have

un+1
j − unj

�t
=V

2

{[
un+1
j+1 − un+1

j−1

2�x

]
+

[
unj+1 − unj−1

2�x

]}

+ D

2

[
un+1
j+1 − 2un+1

j + un+1
j−1

(�x)2

]
+ D

2

[
unj+1 − 2unj + unj−1

(�x)2

]
. (41)
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On rearrangement, we find the following

un+1
j − unj = p1

(
un+1
j+1 − un+1

j−1 + unj+1 − unj−1

)

+ p2
(
un+1
j+1 − 2un+1

j + un+1
j−1 + unj+1 − 2unj + unj−1

)
, (42)

where p1 = V�t
4�x and p2 = D�t

2(�x)2
. Assuming wave-like solutions we have

unj = ûn e
i j k �x ; un+1

j = ûn+1 e
i j k �x ; unj+1 = ûn e

i ( j+1) k �x , etc. (43)

where i = √−1 and k is the wavenumber. Using these in Eq. 42 and after some algebra we
obtain:

G = 1 + 2 i p1 sin (k �x) − 4 p2 sin2
( k �x

2

)
1 − 2 i p1 sin (k �x) + 4 p2 sin2

( k �x
2

) = a + i b

c − i b
, (44)

where G = ûn+1/ûn is the amplification factor, a = 1 − 4 p2 sin2
( k �x

2

)
, b =

2 p1 sin (k �x), and c = 1 + 4 p2 sin2
( k �x

2

)
. The squared amplitude of G is

|G|2 =
(
ac − b2

)2 + b2(a + c)2(
b2 + c2

)2 =
(
ac − b2

)2 + 4b2(
b2 + c2

)2 . (45)

For stability, we must have |G| ≤ 1. Assuming a = O(1) and c = O(1), we consider the
following cases:

1. When b � 1, we have

|G|2 ≈ a2

c2
=

[
1 − 4 p2 sin2

( k �x
2

)
1 + 4 p2 sin2

( k �x
2

)
]2

. (46)

This is the amplification factor for the pure diffusion equation for C–N scheme, and
implies unconditional stability as |G| ≤ 1 for all cases.

2. When b � 1, we have

|G|2 ≈ 1 + 4

b2
, (47)

which implies numerical instability.

To ensure numerical stability in our simulations, �t and �h are chosen such that |p1| ≤ 0.4
throughout the year.
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