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Abstract One-band one-dimensional effective mass model useful in the simulations of

layered n-type devices is proposed. The model preserves nonparabolicity both in transport

and in-plane directions and enables calculations of intersubband absorption. It is integrated

into nonequilibrium Green’s function method which is used to simulate quantum cascade

laser.

Keywords One-band effective mass approximation � In-plane dispersion �
Nonequilibrium Green’s function � Quantum cascade laser � Intersubband absorption

1 Introduction

When modeling unipolar devices, a one-band effective mass equation (EME) is the first

choice. The main benefit of this approach is the saving of computer resources which can be

then used for more complex description that takes into account quantum coherence and

scattering. For optoelectronic devices utilizing intersubband optical transition in lm range,

the energy levels are raised well above the band bottom, where they are strongly influenced

by the remote bands. One-band description can account for this effect, e.g., by the use of

energy-dependent effective mass. For layered n-type devices, an efficient approximation is

one dimensional (1D) energy-dependent EME
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which uses bulk effective mass (m) at the total energy (E) for both in-plane and longitu-

dinal (z) kinetic energy terms. The efficiency of Eq. (1) stems from the fact that it preserves

in-plane nonparabolicity that matches well the results of an 8-band kp model (Faist 2013).

However, the solutions of Eq. (1) are not orthonormal and so cannot be used for the

evaluation of momentum matrix elements which requires orthonormal wavefunctions.

Usually, this difficulty is overcome by solving the two-band (TB) Hamiltonian which gives

orthogonal, two-component wavefunctions (f, g) composed of the function f(z) completed

with the fictitious valence band component g(z) (Leavitt 1991; Sirtori et al. 1994). For the

Hamiltonian described by Eq. (1), its TB counterpart
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is still energy-dependent, and so the solutions (f, g) are still not orthogonal and useless in

the calculations of dipole matrix elements.

In this paper, another effective mass approximation is proposed which, on the one hand,

matches well the in-plane dispersion predicted by the 8-band kp model and, on the other

hand, reduces to the longitudinal Hamiltonian which has an energy-independent TB

counterpart. Then, intersubband absorption can be rigorously treated because the two-

component eigenfunctions (f, g) of such Hamiltonian are orthogonal.

2 Anisotropic nonparabolicity

Instead of Eq. (1), one may consider EME
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where different effective masses are used in transport and in-plane directions. The in-plane

dispersion
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2
�1 þ Ei

Eg

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Ei

Eg

� �2

þ 2�h2k2

m�Eg

s8<
:

9=
;; ð4Þ

for a subband originated at energy level Ez ¼ Ei can be obtained inserting mðE; zawÞ ¼
m�½1 þ ðE � EcÞ=Eg� into Eq. (3b). The plots E(k) predicted by Eq. (4) for an exemplary

quantum well with two confined states at E1 ffi 0:15 eV and E2 ffi 0:413 eV are shown in

Fig. 1. The deviation from the dispersion relation predicted by the 8-band kp model for the

lower state is even smaller than that for Eq. (1). Moreover, there is no evidence which

approximation is better because the 8-band kp model is also an approximation which
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introduces inaccuracy at high in-plane momentum. This is evident when compared to more

exact results predicted by a 14-band kp model (Ekenberg 1989) (see Fig. 1).

The subscript ‘aw’ in Eq. (3) abbreviates ‘active wells’, so zaw points at the wells where

a major optical transition takes place. Fixing z at zaw in Eq. (3b) makes longitudinal energy

loose its spatial dependence. Then Ez becomes a real number and Eq. (3a) can be rewritten

in the form
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which has the energy-independent TB counterpart
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Equation (6) provides the orthonormal solutions (f, g) which can be used in the calculations

of the momentum matrix elements (Leavitt 1991; Sirtori et al. 1994).

3 Nonequilibrium Green’s function (NEGF) implementation

Equation (3) defines a k-dependent Hamiltonian which can be used in Nonequilibrium

Green’s Function (NEGF) method. In the real space implementation, the conduction band

Green’s functions (GFs) GR, G\ are the four-parameter functions of positions z, z0, energy

E, and in-plane momentum modulus k. For discretized Hamiltonians, useful in numerical

simulations and offering a compact form of integral equations, the retarded GF, GRðE; kÞ,
is the solution of the Dyson equation (Kubis et al. 2009)

EI�H� RR
� �

GR E; kð Þ ¼ I; ð7Þ

where the self-energy term RR comprises scatterings and couplings to the leads. The

valence component of the retarded GF is given by Kolek (2015)
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Fig. 1 In-plane dispersion
relation calculated for Eq. (1)
(solid black lines), or Eq. (3)
(dashed red lines) for 4.8 nm-
wide InGaAs/AlInAs quantum
well (lattice matched to InP)
compared to the 8-band kp model
calculations of Faist (2013)
(dotted blue lines) and the
14-band kp model (dash-dotted
green lines) of Ekenberg (1989).
(Color figure online)
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where Hct is the discretized differential operator
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where R\ is the conduction band lesser self-energy. Equations (7–9) together with the

Poisson equation should be iterated. In this iteration, the GFs valence components GR
t , G\

t
should be included as they contribute to the density of states (DOS) and the density of

electrons (DOE)

N E; k; zð Þ ¼ � 1

pa
Im GR E; k; z; zð Þ þ GR

t E; k; z; zð Þ
	 


;

n E; k; zð Þ ¼ � i

2pa
G\ E; k; z; zð Þ þ G\

t E; k; z; zð Þ
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and thus influence the GFs through the Poisson equation. Once the self-consistency is

achieved, the optical absorption can be evaluated making use of the approach developed by

Wacker (2002) applied to the TB Hamiltonian (Kolek 2015).

4 Quantum cascade laser

The model described in Sect. 2 is especially useful for a quantum cascade laser (QCL)—a

device consisting of tens of layers with carefully tuned width what calls for a very dense

discretization mesh in the simulations. This generates huge matrices and makes multiband

modeling hardly possible. On the contrary, the one-band approach keeps the matrices in

reasonable size and enables the use of the NEGF method, which treats quantum tunneling

and scattering on equal footing (Kubis et al. 2009) what is necessary for this type of

devices.

The model of Sect. 2 and its implementation of Sect. 3 were used to calculate elec-

tronic transport and optical gain in QCL emitting at ffi 5 lm (hm ffi 0:25 eV), designed by

Evans et al. (2007). The equations of the NEGF formalism were solved for one QCL

module with the contact self-energies which mimic periodic boundary conditions (Haldas

et al. 2011; Kolek et al. 2012). Other self-energies included into formalism represent

electron-phonon (LO, LA), interface roughness, alloy disorder and ionized impurity

scatterings. Carrier-carrier interaction was included as the mean-field through the Poisson

equation. The discretization mesh spacing was 0.6 nm. In Fig. 2, which shows exemplary

results, the focus is paid on the k-resolved quantities which demonstrate in-plane non-

parabolicity inherently contained in the model. Preserving this feature is crucial for real-

istic modeling of intersubband gain. As discussed by Faist et al. (1996), in QCLs the

optical gain can emerge due to the local (in k-space) population inversion which is not
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destroyed by the absorption at higher k-values due to the in-plane nonparabolicity. Indeed,

our simulations show that substantial gain emerges (see Fig. 2 inset) (due to 4 ! 3 tran-

sitions) at the energy hm ffi 0:26 eV that agrees very well with the experimental lasing

wavelength. This is in sharp contrast with purely one-band model which predicts both

wrong lasing energy and almost no gain: for this case, the gain peak of merely 0:8 cm�1

occurs at hm ¼ 0:32 eV! Results of one-band simulations are also shown in Fig. 2 for the

comparison.

When gain emerges due to local population inversion (which is our case) the most

important is an accurate modeling of the in-plane dispersion at low and medium k-values,

where intersubband transitions occur at nearly the same values of the photon energy and

thus contribute to the gain spectrum. The photons emitted at remote k’s have the energies

well apart from the energy emitted in the transitions at k ffi 0 and so hardly influence the

value of the gain peak. Then, going beyond the accuracy of 8-band description, which one

may concern looking at the deviations in Fig. 1, seems to be both hard and impractical, at

least in the case of QCLs. The model defined by Eq. (3) preserves the accuracy of 8-band

model at low k-values which, as shown, is sufficient enough to provide reliable results.

The gain in Fig. 2 inset was calculated as the negative absorption coefficient averaged

over one laser period. Both the conduction and the valence components of GFs were

involved in these calculations. The amount of the valence component can be estimated,

e.g., from the contribution to the total electron density. The plots in Fig. 3 allow to estimate

that it contributes to ffi 5 percent of the total charge. This number illustrates how much

charge one looses if does not care about the valence component what is usually done in

one-band calculations. Worth to note is that through the Poisson equation this component

affects not only DOE but all other quantities including the intersubband gain.

In summary, a one-band effective mass model was proposed which allows for k-re-

solved calculations which preserve correct nonparabolicity both in transport and in-plane

directions and allows for rigorous calculations of intersubband absorption which takes

these (nonparabolicities) into-account.
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Fig. 2 (left) Spectral function at k ¼ 0, and (right) the subband occupation in active wells of QCL design of
Evans et al. (2007). Population inversion is observed only at low-k momenta, where the occupation of the
upper laser subband 4 exceeds the occupation of the lower laser subband 3. 4 ! 3 transitions at high-
k values, where the occupation is normal, do not destroy gain because they absorb photons with lower
energy: hmhigh�k\hmlow�k. These transitions burn a hole in front of the gain peak in the gain spectrum as

shown in the inset. Blue (dashed) line in the inset shows gain spectrum (multiplied �10) calculated for the
one-band model which uses constant effective masses in well and barrier materials (calculations were made
for the same value of electric field). (Color figure online)
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