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ABSTRACT 

Techniques to Characterize Vapor Cell Performance for a  

Nuclear-Magnetic-Resonance Gyroscope 

James Julian Mirijanian 

 

Research was performed to improve the procedures for testing performance parameters of 

vapor cells for a nuclear-magnetic-resonance gyroscope. In addition to summarizing the 

theoretical infrastructure of the technology, this research resulted in the development and 

successful implementation of new techniques to characterize gyro cell performance. 

 

One of the most important parameters to measure for gyro performance is the 

longitudinal spin lifetime of polarized xenon atoms in the vapor cell. The newly 

implemented technique for measuring these lifetimes matches results from the industry 

standard method to within 3.5% error while reducing the average testing time by 76% 

and increasing data resolution by 54%. The vapor cell test methods were appended with 

new software to expedite the analysis of test data and to investigate more subtle details of 

the results; one of the two isotopes of xenon in the cells tends to exhibit troublesome 

second-order effects during these tests due to electric-quadrupole coupling, but now the 

added analysis capabilities can accurately extract relevant results from such data with no 

extra effort. Some extraneous lifetime measurement techniques were explored with less 

substantial results, but they provided useful insight into the complex workings of the gyro 

cell test system. 

 

New criteria were established to define the signal to noise ratio on a consistent basis from 

cell to cell across various parameters such as cell volume, temperature, and vapor 

pressure. A technique for measuring gas pressures inside the sealed cells helped link cell 

performance to cell development processes. This led to informed decisions on filling and 

sealing methods that consistently yielded cells with better performance in the last few 

months of this work. When this research began, cells with xenon lifetimes over ten 

seconds were rare in our lab; by the end, anything under 30 seconds was a 

disappointment. Not only did the test procedures improve, but so did the parameters 

being tested, and quite significantly at that. At the same time, many new avenues for 

continued progress have been opened; the work presented here, while instrumental, is 

only the beginning. 
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I. Introduction to Navigation, Inertial Measurement, and Gyroscopes 

 

In our current age of advanced robotics, high-performance flight, and ambitious space 

exploration, the art of inertial navigation is a necessary focus for technological 

development. Even with the grand-scale navigation infrastructure established by the 

Global Positioning System (GPS), most military and science missions require motion and 

pointing control on a level of precision that can only be achieved with a dedicated on-

board navigation device. Plus, many sensitive missions operate in areas where GPS is 

inaccessible, such as deep space, deep sea, underground, valleys and canyons, or places 

with exceptionally high electromagnetic interference, and for such cases, reliable 

independent navigation is crucial. 

 

Modern automated navigation techniques rely heavily on inertial measurement units 

(IMUs), which employ translation-sensing accelerometers and rotation-sensing 

gyroscopes in three spatial axes to track the movement and heading of a vehicle as it 

propagates through space from some known starting location. IMUs allow an 

interplanetary rover to record its own motion, for science and for mission safety, far 

beyond the reach of GPS; they help the Hubble Space Telescope maintain focus on 

astronomically distant wonders while orbiting the Earth at nearly eight kilometers per 

second; they offer communications satellites the antenna pointing capabilities to deliver 

high-definition video to millions of televisions simultaneously with perfect clarity. There 

is no question of the utility of IMUs all around us in the world today. 
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Especially for space applications, where every excess pound adds thousands of dollars to 

launch costs and extra watts of power add pounds in battery weight, some of the primary 

concerns among those who design and build IMUs are unit size, weight, and power 

consumption (SWAP). However, as with almost any technology, reducing these 

parameters tends to sacrifice performance, which is unacceptable in environments where 

GPS or other external positioning calibration tools are unavailable; low-performance 

IMUs accumulate significant errors quickly, and before long a vehicle may not function 

properly if its position and heading are not accurately determined. For most applications 

today this is of little concern because errors can be largely eliminated at regular intervals 

using GPS data for calibration, but we are focused on those special circumstances when 

that option does not exist. The quest to minimize IMU system resource requirements 

while preserving performance essentially relies on improving the individual sensors – the 

accelerometers and gyroscopes – that make up the total unit. Now, accelerometers are 

already well ahead of gyroscopes in the game of SWAP reduction, so newer, smaller 

approaches to gyroscope technology are in high demand. 

 

One of the most popular modern approaches to building small gyros comes from the 

pursuit of micro-electromechanical systems (MEMS), which are now found in many 

smart phones and other entertainment-driven accessories. The main problem with MEMS 

gyros is that they rely on physical structures, like springs, which are inherently sensitive 

to noise from external vibrations. While they have demonstrated very high performance 

in the lab, MEMS gyros are not likely to be the best option for high-precision 



3 

 

applications where significant vibration is typically an intrinsic part of the operating 

environment of the vehicle, as with most flight vehicles. 

 

However, new approaches to atomic-based sensors may provide a fundamentally 

vibration-insensitive, MEMS-sized alternative that still meets navigation-grade gyro 

performance. Such endeavors are currently under research and development, but are 

quickly becoming more feasible and more promising; this discussion will focus on a 

particular type of atomic gyroscope which employs nuclear magnetic resonance (NMR) 

to track inertial rotations about a single axis, but first we should cover some of the history 

and general basics of gyroscope technology to fully appreciate the potential of the NMR 

gyro. 

 

 

A. History and Basic Operation of Gyroscopes 

 

The purpose of a gyroscope is to monitor angular deviations from some initial, fixed 

pointing orientation. Gyroscopes strapped down to a vehicle then provide information 

about the pointing orientation of the vehicle. Some gyros measure rotation angle directly, 

while others track rotation rates and calculate the angle from multiple rate measurements. 

In either approach, a gyro usually employs some physical structure that changes in a 

predictable way under the influence of an external rotation, such that when the gyro is 

turned about its sensitive axis, the angle through which it is turned can be determined 

based on the measured physical response to the rotation. For example, the first 
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documented type of functioning gyroscope relied on the conservation of angular 

momentum of a spinning mass to make gyroscopic measurements. 

 

There are actually two separate builds of this classic example: a rate gyro and a free gyro 

(which measures angles directly). A spinning mass gyro usually consists of an inner 

mass, which is driven by a motor to spin along a single axle, and an outer case which 

houses the spinning mass. With the rate gyro, there are actually three levels; the spinning 

mass is attached to an internal housing by a single axle and the internal housing is 

connected to the outer case also by a single axle orthogonal to the spinning mass axle, as 

shown in Figure 1 below (the drawings in this discussion are strictly intended for 

visualization of concepts; they are not drawn to scale, nor do they necessarily represent 

actual physical processes, unless otherwise noted).  

 

 

Figure 1. The spinning mass gyro as a rate gyro. When the spin axis of the inner mass is turned with 

the case, the inner housing rotates orthogonally to conserve angular momentum. An elastic restraint 

resists and measures the torque from the inner housing precession, thus yielding the case rotation 

rate about the sensitive axis.
1
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Turning the outer case about the sensitive axis (described as case rotation in Figure 1) 

induces precession of the inner housing about its axle and angular momentum is 

conserved. Usually, some restraint mechanism like a set of springs opposes the inner 

housing precession, providing a measurement of the induced torque and keeping the gyro 

in its operating range of orientations. Then, the angular rotation rate of the gyro about the 

sensitive axis is calculated from the measured torque. 

 

The other type of spinning mass gyro is sometimes called a free gyro because the 

spinning mass makes no contact with the outer case; it is typically a sphere which is 

suspended from the housing and driven to spin either by high-pressure gas or 

electromagnetic fields. The idea here is that turning the outer case does not affect the spin 

axis of the inner mass because they are not attached and there is very little friction 

between them, so any rotation of the gyro adds a relative offset from the initial 

orientation between the two components. Pickoffs are used to measure the offset, yielding 

the gyro turn angle. The free gyro is shown in Figure 2 below. 
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Figure 2. The free spinning mass gyro measures angle directly. The inner mass and outer housing do 

not make contact, such that rotating the unit preserves the spin axis of the inner mass and pick-offs 

detect the relative offset between the two layers of the gyro to give a measure of turn angle.
1 

 

The spinning mass gyro accomplishes the basic purpose of a gyroscope well, and both 

approaches offer some operational concepts analogous to the NMR gyro, as we will see 

later. However, these simple designs can be bulky and, more importantly, highly 

susceptible to noise from translational vibrations. Many other approaches to gyroscope 

technology have risen over the years, and the most successful ones have achieved 

impressive performance by rather innovative designs, but the basic goal to reduce SWAP 

while maintaining high precision always remains. 

 

Even in its early phases of development, the NMR gyro seems to be a contender for 

performance and comes with considerable potential for SWAP reduction. Of course, to 

really compete with modern state-of-the-art gyros, the design and the research process 

behind it will still require improvements. To address the specific problem of this thesis 
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demands a fairly detailed understanding of the principles of operation of the NMR gyro, 

so first an overview of the basic architecture and functionality will help focus our more 

rigorous discussion to follow. 

 

 

B. How the NMR Gyroscope Cell Test Apparatus Works 

 

The data presented in this paper was recorded from the NMR gyro cell test station, which 

is based on the architecture from phase two of the four-phase NMR gyro program. The 

cell test station is designed for convenient swapping and characterization of vapor cells as 

they get produced. Despite significant structural differences, the cell test station and the 

current phase-four gyro share the same operational principles. Keep in mind that 

references to specific hardware components or layout designs apply to the cell test station 

and may vary from the final NMR gyro assembly. 

 

In very simple terms, the NMR gyro is similar to a free spinning mass gyro in that the 

signal is measured relative to the spin of a physical body. However, unlike the spinning 

mass gyro, in which there is truly a classical spinning mass, the NMR gyro relies on a 

group of polarized noble gas atoms contained in a small glass cell as the “spinning 

physical body”. Of course, picking off a signal from something so subtle is no easy task; 

for now, suffice it to say that we can indeed monitor the net atomic spin of the polarized 

noble gas rather cleanly.  
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Still, even with that assumption, how does the net spin of a group of atoms become a 

gyroscopic measurement? Well, recall the precession of the inner housing induced by the 

torque on the outer case of the spinning-mass rate gyro; a more familiar example of 

precession occurs with a spinning top on a desk. When the spin axis of the top points 

straight up, or more specifically, is aligned with Earth’s gravitational field, the spin axis 

remains fixed and, by symmetry, gravity exerts no net torque on the top. However, as 

soon as the top hits a kink in the desk or gets perturbed in some other way that offsets its 

spin axis, the asymmetry relative to gravity results in a net torque, and just like in the rate 

gyro, the top begins to precess as shown in Figure 3 below, its spin axis rotating about the 

axis of the gravitational field in order to conserve angular momentum. 

 

With that visualization now in mind, imagine we replace the spinning top with a group of 

atoms who all share a common spin axis and we change out gravity for a uniform 

magnetic field. The atomic population behaves in much the same way as the top; when 

the atomic spin points off from the direction of the field, the asymmetry in the atomic 

magnetic moment along the field axis results in a torque which causes the atoms to 

precess about the field, also illustrated in Figure 3. The stronger the magnetic field, the 

faster the atomic precession. 
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Figure 3. The spinning top (left) experiences precession about the direction of gravity in order to 

conserve angular momentum with the torque applied by gravity on the spin axis. A charged 

subatomic particle or atom with net spin (right) similarly precesses due to the torque applied on its 

magnetic moment by a magnetic field. 

 

The atomic precession is the gyroscopic reference for the NMR gyro, but we must be able 

to maintain and measure the ensemble atomic spin in order to make use of it. Many 

intricate components are put in place to achieve this, but a simplified schematic including 

the main parts is shown below in Figure 4. Some terms in this brief synopsis may be 

unfamiliar and the reasoning behind the placement of components may be unclear; the 

main point for now is to highlight the key pieces that we are working with so that we can 

more easily reference and discuss them later. 

 

The NMR gyro is, at its core, an atomic magnetometer which monitors the magnetic field 

changes generated by the net atomic spin precession. Measuring the spin of a single atom 

cleanly enough for a gyro signal is next to impossible, so we need to force many atoms 

into a common spin state in order to make a good measurement. For this we use a 
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technique known as spin-exchange optical pumping, which aligns the spins of a relatively 

large portion of the atoms by absorption of very specific laser light.  

 

Then, in order to make the atoms precess coherently, we need very stable and precisely 

controlled magnetic fields. We achieve this by enclosing the glass cell in a magnetic 

shield, which reduces external field influences and houses carefully designed coils 

capable of producing precise AC and DC magnetic fields on three axes around the cell. 

Current is driven through the coils using the outputs from external function generators. 

The coil set that generates the main DC field about which the atoms precess typically 

defines the z axis, which should be very closely if not perfectly aligned with the pump 

laser. The z axis is the sensitive axis for the NMR gyro, about which physical rotations of 

the device can be monitored. 
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Figure 4. The major components of the cell test apparatus for the NMR gyro. The pump laser 

propagates along the z axis, the sense laser along the y axis. The shield reduces external interference 

and houses the coils that generate the magnetic fields necessary for NMR. The sense beam 

propagates along the y axis through the cell, then gets split up to measure the magnetometer signal, 

which is then used to monitor the noble gas precession as a gyroscopic reference. 

 

A second laser, the sense laser, propagates through the cell orthogonally to the pump 

laser, defining the y axis. After passing through the cell, the sense laser is split into two 

beams of orthogonal polarizations using an optical device called a polarizing beam 

splitter, and the intensities of the two component beams are measured by photodiodes. 

The intensities are compared by a Hobbs circuit, which takes their sum and their 

difference by which we can determine the overall polarization axis of the sense beam 

after the cell. We will discuss this technique, called Faraday detection, in more detail 

further on. For now, accept that the sense polarization axis indicates the precession phase 

of the coherent alkali as stimulated by the noble gas atoms. The demodulated signal then 

directly represents the net transverse spin projection of the noble gas, which is compared 

to the reference signal generated by the gyro electronics. With the gyro in its original 
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orientation, the two signals should match in frequency and phase; then, any phase offsets 

between the two signals indicate physical rotations of the gyro about z, analogous to the 

free spinning mass gyro. Also, as a rate gyro, any frequency offsets between the noble 

gas signal and the reference will indicate gyro rotation rates. Lastly, the temperature 

inside the cell affects gas pressures, which greatly influence signal strength and atomic 

spin lifetimes, so the cell sits atop a small heater capable of maintaining a fairly stable 

temperature.  

 

This is the basic setup of the phase-two gyro and the cell test station on which this 

research was performed. We are now to the point where we leave cursory introductions 

and begin discussing things in proper detail. To do so, we must develop consistent 

terminology from the ground up, so some of what follows may seem redundant, but 

hopefully not much of it. 
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II. How the NMR Gyroscope Cell Test Apparatus Really Works 

 

In this section, the fundamental physical principles utilized in the NMR gyro design will 

be reviewed. The processes will be described as they apply to the gyro and should not be 

mistaken as uniformly applicable to all fields.  

 

 

A. Cornerstone Physical Principles in Achieving Magnetic Resonance 

 

An NMR gyro utilizes the spin behavior of a specific population of atoms under very 

carefully defined conditions to track single-axis rotations of a platform. Magnetic 

resonance is described by quantum mechanics, so a review of some key physical 

phenomena is in order. As often as possible, we will explore concepts from a classical 

perspective to avoid some of the unfamiliar subtleties of quantum mechanics. This 

approach may imply some erroneous technical details but is necessary to expedite our 

understanding of the core factors at work in the gyro. 

 

 

1. Particle Spin and Larmor Precession 

 

Particles, be they atomic nuclei, electrons, or any other subatomic species we now believe 

to exist, can display a seemingly inherent energy property analogous to the angular 

momentum of a classical spinning mass. Naturally, we call this particle property spin. 
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Associated with a charged particle’s spin is a magnetic dipole moment; thus, the spin 

generates a magnetic field. We can measure a particle’s spin along a single axis, which 

we define as the quantization axis; we call it this because there are finite and quantized 

possible outcomes of such a measurement, each with a distinct probability in a given 

environment. Unlike a macroscopic spinning mass, which we presume to have a 

continuum of infinitely many possible spin states, a measurement of a particle’s spin 

must return one of a very limited set of values. In theory, this makes the particle spin far 

more stable than the classical spinning mass; any perturbation in any direction can 

presumably alter the spin state of the classical mass, whereas only disturbances of 

specific direction and magnitude can influence the spin state of the particle. Of course, 

with approximately 10
10

 atoms moving around an 8-cubic-mm volume at high speeds, 

these specific disturbances still happen quite frequently in the form of atomic collisions. 

In a sufficiently well controlled environment, though, the net spin of an atomic group can 

be made quite stable. 

 

Different particles have different possible spin states. Certain particle species have zero 

intrinsic spin; for others, zero spin is only one of multiple possible states. The electron by 

nature is a spin-½ particle, so the angular momentum due to its spin is either +½ or -½ 

along the quantization axis. As a note, particle energy values are almost always given in 

units of the reduced Planck’s constant, denoted ћ, also known as the unit of quantization. 

An electron of spin angular momentum +½ is often referred to as spin-up, because its 

spin vector contains a component in the positive direction of the quantization axis. By 

contrast, one of spin angular momentum -½ is called spin-down. Meanwhile, atomic 
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nuclei can have much higher-order spins. For example, the nucleus of a cesium atom is a 

spin-7/2 particle, meaning its quantized spin angular momentum can take on any value in 

the set [-7/2, -5/2, -3/2, . . . , +7/2]. 

 

Closely tied in with spin is Larmor precession, the foundational principle in magnetic 

resonance. A particle placed in a magnetic field that points offset from the particle’s 

quantized spin axis experiences precession about the axis of the field, as illustrated in 

Figure 1 below.  

 

 

Figure 5. Larmor precession of a particle about a magnetic field offset from the particle’s spin axis.  

 

If the magnetic field is steady and uniform then the atomic precession frequency is 

constant; we call it the Larmor frequency, described by 

 

fLarmor = γB/(2π),              (i) 
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in Hz, where B is the magnetic field strength and γ is the gyro-magnetic ratio which is 

unique for every single known atomic isotope. Also, the precession direction relative to 

the magnetic field vector varies between isotopes (even between the two isotopes of 

xenon used in the NMR gyro cells), which is reflected in the vector formulation of 

equation i by the value of γ as positive or negative. For a more formal description of 

Larmor precession, see references.
2, 8 

 

Therefore, by monitoring a gas sample in a magnetic field of known strength, the 

elements that compose the gas can be identified by their precession frequencies. This is 

the basis of NMR spectroscopy and some magnetic resonance imaging (MRI) techniques. 

Or, with a gas of known composition, the precession frequencies can be measured to 

determine the strength of the magnetic field: an atomic magnetometer. 

 

However, although the frequency is constant, we have not yet discussed anything to 

govern the phase of the atomic precession, and without coherent phase we cannot monitor 

the overall behavior of the gas sample. See, in a normal distribution, any potential signal 

generated by the precession of one atom would be negated by signal from another atom 

in the opposite phase of precession, and thus the total gas sample would produce no 

measurable signal if there is no coherent phase in the atomic group. In fact, as far as we 

have discussed, there would be no reason even for preferential atomic polarization; 

roughly half of the atoms would be spin-up and the other half spin-down at any time. 

Figure 6 illustrates the difference between what we start with and what we want. 
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Figure 6. In a typical equilibrium distribution, the noble gas atoms do not share a common bias in 

spin orientation. Although the atoms may individually precess, without a net common spin axis we 

cannot measure anything. 

 

The first step, then, is to force a large portion of the gas population into a particular spin 

orientation. For this, we turn to a technique called spin-exchange optical pumping of 

atoms, an increasingly important topic of study and an extremely useful approach to 

preparing NMR samples. However, a few more key principles must be understood to 

fully appreciate the process of optical pumping. 

 

 

2. Relevant Properties of Electromagnetic Radiation 

 

Early in the 20
th

 century, the traditional perception of light and matter as continuous 

entities was being cast off as scientists began exploring quantum physics to describe the 

intimate relationship between the two substances. Although the existence of atoms was 

already highly regarded as fact, the question of exactly how atoms interact with one 

another, and with electromagnetic (EM) radiation, was in heated debate. To explain how 
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energy was transferred to an atom in an EM field, some physicists treated the field as a 

compilation of discrete bundles of energy called “wave packets” which we now 

commonly refer to as photons or particles of light, where energy transfer was assumed to 

occur by collisions between atoms and these photons. There are certain scenarios where it 

is only possible to accurately describe light in terms of photons, and others where light 

must be considered a field; to this day, the mystery of wave-particle duality remains one 

of the largest ambiguities in our understanding of our universe. 

 

Regardless, there are several important aspects of light that characterize the nature of 

photon-atom interactions. First we have the frequency of the EM wave, which defines the 

average energy that the photons carry by the relationship 

 

E = hv = hc/λ,                  (ii) 

 

where h is Planck’s constant and v is the frequency of the EM radiation; in the second 

description, ν is replaced by its representation as the speed of light through vacuum, c, 

divided by the wavelength of the EM energy, λ. In vacuum, frequency and wavelength 

can both be used to describe photon energy, but through any other medium, the 

wavelength and speed of light change, so the frequency is the only single parameter that 

always truly describes the EM energy. 

 

The second property that characterizes radiation is polarization, which describes the 

relative phase between the electric and magnetic fields that compose the light. Just like 
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particles of matter, photons can carry angular momentum along a specific axis. When the 

two fields match in phase or are 180 degrees apart, we say the light is linearly polarized, 

denoted by π
0
, which means it carries no angular momentum in the direction of motion of 

the photons (the propagation direction). When the two fields are 90 degrees apart in 

phase, the light is circularly polarized and the angular momentum vector either points 

along the direction of propagation, which we’ll call right-hand circular and denote σ
+
, or 

opposite it, which we’ll call left-hand circular and denote σ
-
. Figure 7 helps illustrate 

these polarization orientations. 

 

 

 

Figure 7. Relevant light polarizations. When the phase of the electric and magnetic fields coincide, 

the light is linearly polarized and the photon has no angular momentum in the direction of 

propagation of the light. When there is a relative phase offset of 90 degrees, the light is circularly 

polarized and the angular momentum vector either points along the direction of propagation if right-

hand circular or opposite it if left-hand circular. Anything in between has elliptical polarization. 
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If the relative phase of the fields is something between zero and 90 degrees (or between 

90 and 180 degrees), the polarization is elliptical and can be represented as a combination 

of circular and linear light. In fact, there are two mathematical bases by which light is 

typically described. In the linear-orthogonal basis, the polarization is described by its 

components along two orthogonal axes (usually called horizontal and vertical); in the 

circular basis it is described by a combination of σ
+
 and σ

-
, where π

0
 light is considered 

equal parts σ
+
 and σ

- 
and the polarization axis depends on the relative phase between the 

two parts as in Figure 8 below.
3
  

 

 

Figure 8. Linearly polarized light is represented as equal parts left and right circular light, where the 

relative phase between the two circular components determines the polarization axis. The direction 

of propagation of light is assumed to be into the page. 

 

Now, there are some useful tools to alter or utilize specific polarizations of light. For 

example, a quarter-wave (λ/4) plate is made from a sheet of birefringent material, which 

maintains a higher index of refraction in one axis than in the other, such that in the 

correct orientation the electric and magnetic fields travel at different speeds through the 
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plate and the relative phase between the fields is therefore altered. A λ/4 plate of the 

correct thickness, angled appropriately relative to the polarization axis of incident light, 

can induce a 90-degree phase offset and effectively convert linear light to circular or 

vice-versa. If the plate is made twice as thick, it makes a half-wave (λ/2) plate, which 

maintains linear polarization but rotates the polarization axis. Another useful tool is a 

polarizing beam splitter. If we allow the orientation of the beam splitter to define the 

linear-orthogonal axes, it transmits π
0
 light that is vertically polarized and reflects π

0
 light 

that is horizontally polarized. If the light is circularly polarized or the linear polarization 

axis of the light is 45 degrees (equal parts vertical and horizontal), the light will be split, 

half transmitted and half reflected. Figure 9 illustrates the functionality of these optical 

devices. 

 

 

Figure 9. A quarter-wave plate (top) converts the polarization of light between linear and circular for 

a certain range of wavelengths of incident light when the fast and slow axes of the birefringent plate 

are aligned appropriately with the EM waves. A polarizing beam splitter (bottom) splits incident 

light into separate components of vertically and horizontally linearly polarized light. 
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Now that we have covered the relevant properties of EM radiation, we can discuss the 

relevant details of interaction between light and matter. 

 

 

3. Quantized Atomic Energy Transitions and Optical Pumping 

 

In 1917, Albert Einstein defined absorption of radiation as the process by which an atom 

at energy level Zn with corresponding energy En jumps to a higher energy level Zm with 

energy Em by absorbing a photon of energy (Em – En). An atom drops back down to level 

Zn by emission of a photon of the same energy.
4
 Radiative emission is either spontaneous 

or stimulated by another incoming photon, and in fact Einstein’s predictions led to the 

invention of Light Amplification by Stimulated Emission of Radiation (LASER). The 

technique of optical pumping depends on the atomic absorption of laser light to influence 

the energy states of atoms, and if setup correctly it can influence the angular momentum 

(spin) states of the atoms as well. 

 

The state of an atom is defined by several levels of possible energy, given some potential 

field in which the atom resides. Now, consider a single atom with a sole valence electron; 

all the orbital levels except the outermost have every possible electron spin orientation 

occupied. In other words, the only variable parameters are the valence electron orbital 

level and the spin orientation between that electron and the nucleus (and the total atomic 

spin relative to the magnetic field). The alkali metals all have this electron structure, 
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which allows us to use the relatively simple hydrogen model to predict the magnitudes of 

separation of the possible energy levels of the alkali atoms. 

 

For example, the atomic configuration of cesium is [Xe]6s1; it has an ion core with the 

electron structure of a noble gas xenon atom (which has absolutely every electron slot 

filled), plus one additional electron outside that core in the 6s orbital level. Likewise, 

rubidium has the configuration of a Krypton atom plus one valence electron in the 5s 

level. (Some of the results to be presented in this discussion were gathered using cesium 

as the alkali metal, while others were collected using rubidium; there should be no 

difference between the two alkali species for our purposes.) With either alkali, the 

valence electron spends nearly all of its time outside the ion shell, composed of the 

nucleus and the inner electrons, so the atom can be treated as a two-body system. Figure 

10 illustrates this visualization. The two-body approximation allows for very accurate 

predictions of the atomic transition energies based on hydrogen-like approximations, 

which facilitates the experimental setup when procuring lasers of the correct frequency 

range and coils to produce the appropriate magnetic fields. 

 

 

Figure 10. A single valence electron remains outside the ion core of the alkali atom, analogous to the 

two-body hydrogen model 
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The electron state carries enormous influence on the atomic energy level. In general, the 

energy level is classified first by the electron orbital levels, which compose the gross 

structure of the atom. An atom at the lowest orbital level is said to be in the ground term; 

an electron at a higher orbital level is in an excited term. 

 

However, finer inspection shows that the orbital levels are split into smaller sublevels due 

to coupling between the magnetic field from the orbit of the charged electron about the 

nucleus (or vice versa, depending on the frame of reference) and the magnetic moment 

from the spin of the electron itself; we call this spin-orbit coupling. These sublevels, 

which make up the fine structure of the atom, are separated by energy differences that are 

orders of magnitude smaller than the energy differences that define the gross structure.  

 

Even further splitting in the fine-structure sublevels arises from coupling between the 

magnetic moments from the spins of the nucleus and the electron, called spin-spin 

coupling. These levels, smaller yet in separation, make up the hyperfine structure. 

 

Subjecting the atom to an external magnetic field results in even finer splitting, the 

Zeeman Shift, due to the relative orientation between the total magnetic moment of the 

atom and the applied field (the atom must have a higher energy if its magnetic moment 

opposes the external magnetic field). A similar effect is observed under an external 

electric field, which is referred to as the Stark Shift. 
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Until the atomic energy level is specified down to the Zeeman (or Stark) sublevel, the full 

state of the atom is not defined. Figure 11 depicts the splitting of the lowest energy levels 

of the natural-abundance cesium atom, an alkali metal commonly used in atomic 

applications. 

 

 

Figure 11.  Basic layout of the energy level structure of a cesium atom. The red arrows indicate the 

transitions of interest for the NMR gyro.  Figure 12 shows physical evidence of these transitions. The 

highlighted MF = 4 state in the F = 4 hyperfine level is the destination state in our implementation of 

optical pumping. 
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To understand the important role that these possible energy levels play in optical 

pumping, we must first clearly define what it means for an atom to be in a specific state. 

The ground-level 6S electron has no orbital angular momentum, so the total electron 

angular momentum in that level depends only on spin. Therefore, the F = 3 and F = 4 

hyperfine sublevels in the 6
2
S1/2 fine level represent the spin-down and spin-up electron 

states, respectively, relative to the nuclear spin. We have the same scenario in the lowest 

fine level of the first excited gross term, the 6
2
P1/2 fine level, denoted as the F’ = 3 and F’ 

= 4 hyperfine sublevels. On the other hand, in the higher fine level of the first excited 

term, the 6
2
P3/2 fine level, the total electron angular momentum is defined by both the 

orbital angular momentum and the electron spin, which allows for more possible atomic 

spin states; the total spin-orbit angular momentum of the electron in this fine level can be 

any value in the set J =[-3/2, -1/2, 1/2, 3/2], and the corresponding total atomic angular 

momentum values, including the nuclear spin, are represented as F’ = 2, 3, 4, and 5 in the 

6
2
P3/2 fine level. Each of these hyperfine levels, in the presence of an external magnetic 

field, experiences Zeeman splitting, separating into integer-incremental levels of -F < MF 

< F, dependent upon the orientation and magnitude of the atom’s total angular 

momentum vector relative to the magnetic field. The fully defined spin state of the atom 

is represented by the MF of a specific hyperfine level in a given field, since the net field 

defines the quantization axis and the magnitude of the Zeeman splitting. 

 

Optical pumping gives us the ability to induce atomic state changes by absorption of laser 

light. We can use light of the proper frequency to excite atoms as described by Einstein, 

so with a group of atoms like our alkali sample we can alter the populations of certain 
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energy states. In general, given a large enough group of atoms, F = 3 and F = 4 will be 

equally populated under standard equilibrium. However, by optically pumping atoms out 

of one ground sublevel (say, F = 3) into an excited level, the total ground population can 

be made to favor the other ground sublevel (F = 4), essentially biasing the ground-level 

equilibrium.  

 

To accomplish optical pumping, the energy of the photons from the laser must be at or 

very close to the energy of a true and allowed atomic transition. The theoretical energy 

difference between two specific atomic energy levels can be approximated by solving 

Schroedinger’s equation for the two levels with the assumption that the alkali behaves 

like a two-body system. For the purpose of focusing this paper, the math is unnecessary, 

but it is noteworthy that theoretical predictions and experimental results are extremely 

consistent in matters such as these.  

 

In our implementation, a laser source is tuned to the correct frequency (or wavelength) to 

excite cesium atoms out of F = 3 to the 6
2
P1/2 fine level, either to F’ = 3 or F’ = 4. The 

excited atoms will, typically through spontaneous emission, decay back down to either 

the F = 3 or F = 4 ground sublevel with a distinct probability for each. As the F = 3 

atoms continue to be optically pumped while F = 4 is left nominally undisturbed, the 

population distribution gets shifted to a new equilibrium that favors F = 4 as the 

dominant ground hyperfine level. 
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Now, there are two distinct wavelengths of light that will pump atoms from F = 3 to the 

first excited level; one wavelength pumps up to F’ = 3 and one pumps up to F’ = 4. 

Likewise, there are two distinct wavelengths to excite atoms from F = 4 as well, as 

indicated by the red arrows in Figure 11. We can confirm these transitions experimentally 

by shining a laser through a glass cell filled only with alkali vapor. We record the 

intensity of light that passes through the cell as we increase the output wavelength of the 

laser, sweeping through the relevant alkali transition wavelengths, to obtain the 

transmission profile. Figure 12 below shows the results for such a test across a spectrum 

of laser wavelengths through a cesium vapor reference cell in comparison with a typical 

NMR gyro test cell, which also contains xenon and other gases mixed in with the cesium. 

Since there is already a photo-detector in place for this, we use our sense laser in our 

apparatus, which propagates along the y axis. When the laser light is far off from one of 

the transitions, nearly all of the light is transmitted straight through the cell, giving us 

close to 100% intensity at the photo-detector. The dips in intensity, labeled a through d, 

correspond to the labeled transitions in Figure 11; the cesium atoms absorb the laser light 

near those wavelengths, thus making the corresponding energy transitions, and the light 

that they absorb never reaches the photo-detector. 
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Figure 12. Transmission intensity profiles of laser light after passing through two test cells. The top 

chart shows the profile for a cell with cesium vapor only; the bottom shows a gyro test cell with a 

cesium, xenon, and buffer gas mix. The laser is swept through the resonance wavelengths, indicated 

by the dips in intensity which are labeled corresponding to the transitions illustrated in Figure 11. 

Note the effects of pressure broadening, quite apparent in the gyro test cell. 

 

The thin natural line widths of the alkali reference absorption dips would be even thinner 

if not for Doppler broadening; at the time of absorption some of the atoms are moving 

toward the oncoming photons, so the momentum of the photons relative to these specific 

atoms is higher than that relative to the average of the entire atomic group. The increased 

relative energy is seen as an upward shift in the frequency of the laser light as described 

by equation ii, so light of a slightly lower frequency relative to the average of the entire 

atomic group is more likely to excite the transition for atoms moving toward the light. By 

contrast, for atoms moving away from the oncoming photons, the relative energy 

decrease causes light of slightly higher frequency to excite the transition. Therefore, the 

atomic vapor as a whole absorbs light not only at the transition wavelengths but also 
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slightly above and below them, thus broadening the absorption lines. Furthermore, 

including atoms of other gases in the cell, as in the NMR gyro test cell, increases 

collision rates and thus widens the lines so much that the four dips blur into two (or 

sometimes just one, with sufficiently high buffer gas pressure). We call this pressure or 

collision broadening, and it can actually be a powerful tool for measuring the buffer gas 

pressure inside the sealed test cells. 

 

As part of my research, I established a consistent means for extracting this information, 

which has been very important for making informed decisions on how to construct higher 

performance NMR gyro cells. The method is as follows. 

 

We construct absorption profiles for both cells by applying the negative of the natural 

logarithm to the transmission intensity profiles in Figure 12. We then find the Doppler-

broadened width of the alkali absorption lines by fitting the reference cell absorption 

profile with the sum of four Gaussian curves, as displayed in green in the top chart of 

Figure 13 below. The solver takes the theoretical transition line centers and amplitudes as 

inputs to find the proper Gaussian width. 
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Figure 13. The absorption profiles constructed from the transmission intensity profiles in Figure 10 

are fitted using Gaussian curves (top) and Voigt profiles (bottom) to determine gas pressures in gyro 

cells. The time values in the data have been normalized. 

 

Collision broadening, on the other hand, is a Lorentzian effect. In order to fit the 

absorption profile for the gyro cell, we use an approximated convolution of Gaussian and 

Lorentzian curves called a Voigt profile, shown green in the bottom chart of Figure 13. 

To construct appropriate Voigt profiles, we use a free MATLAB function available on 

MathWorks database to approximate the faddeeva function (also known as the plasma 

dispersion function), which is essentially a Voigt profile without scaling.
5
 

 

We use the Gaussian width solution from the reference cell profile and find the correct 

Lorentzian width such that the sum of the four Voigt curves (the total fit shown in red in 

the bottom chart) matches the actual NMR cell absorption profile. Once a match is found, 
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the associated Lorentzian width value linearly corresponds to a distinct buffer gas 

pressure inside the cell. In fact, we were able to measure our own in-lab pressure-to-

width correlation while filling a test cell, which matched closely with accepted theoretical 

values. 

 

This technique has proven quite useful in studying and improving the gyro cell filling and 

sealing process because when sealing a cell (using a torch), gases get moved around and 

the final sealed pressure is often different from what was intended. Design changes can 

only be confidently applied if observed changes in cell performance can be linked back to 

measured cell pressures. 

 

Returning to our discussion of optical pumping, we can now incorporate a second laser 

along the direction of the magnetic field– our pump laser – and tune it to pump atoms out 

of F = 3 (the dip composed of absorption lines a and b).  If we repeat the absorption test 

from Figure 12 for the gyro cell while pumping F = 3, we can clearly see evidence of the 

shift in energy level populations in Figure 14 below, where the F = 4 dip is much deeper 

when the pump laser is actively pushing atoms out of F = 3 and into F = 4 during the 

sense beam sweep. 
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Figure 14. Repeated experiment from Figure 12 with F = 3 being pumped for the gyro test cell. The F 

= 4 population dominates the ground term as the pump laser drives the process moving atoms out of 

F = 3 and into F = 4. Time and intensity values were not scaled between the two profiles, so they were 

removed for irrelevance; the apparent vertical offset is just for ease of viewing. Only the relative 

shape of the two profiles is important here. 

 

Pumping F = 3 increases the population of the F = 4 level and thus increases the level of 

absorption of the sense laser light in that range of wavelengths. When the pumping 

reaches equilibrium, some percentage of the alkali atoms in the cell are excited, but an 

atom only remains in an excited state for a brief time before decaying back down to 

ground through emission. For pure spontaneous emission, two thirds of the excited atoms 

decay and return to F = 3, while the other third decay to F = 4, so the pumped 

equilibrium has far less F = 3 atoms and also more F = 4 atoms than the no-pump 

scenario, as proven by the respective transmission intensity dips. 
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But this all involves only the hyperfine levels and has nothing to do with atomic spin 

orientation relative to the magnetic field, which sparked our discussion of optical 

pumping in the first place. 

 

 

a. Spin-Exchange Optical Pumping 

 

Now, if the pump laser light is circularly polarized then the photons carry angular 

momentum along the pump axis. When an electron absorbs such a photon, the angular 

momentum of the photon is transferred to the electron and total angular momentum is 

thus conserved. Formally, this means that upon absorption the atom jumps to a different 

Zeeman level in the excited term than it occupied at ground. During the time that the 

electron is excited, it has a chance of interacting with the nucleus of the atom, in turn 

transferring its spin angular momentum to the nucleus; the nucleus acts as a reservoir of 

angular momentum as the pumping continues adding more and more angular momentum 

along the pump axis to the alkali gas population. Eventually, typically within 

microseconds, a steady state is reached in which a certain population of the alkali atoms 

is at maximum polarization. 

 

Since the pump laser emits σ
+
 light and points in the direction of the main magnetic field, 

the fully polarized atoms occupy the F = 4, mF = 4 state (recall Figure 11); if the pump 

light polarization is reversed (σ
-
) or the propagation direction of the laser and the 

magnetic field are anti-aligned (both of which are indeed the case during some of this 
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research) then the fully polarized atoms occupy F = 4, mF = -4. In either case, the fully 

polarized atoms can no longer absorb any photons from the pump laser because the 6
2
P1/2 

fine level has no higher Zeeman level to which they can transition; in other words, 

absorption cannot occur because it would violate conservation of angular momentum. 

 

Once in this polarized state, atoms are eventually depolarized by collisions, either with 

the cell walls or with other gas atoms in the cell, which are frequent and often result in 

completely random alkali spin states. We can convince ourselves, given a laser of finite 

power, that there is a limit to the amount of pumping possible; that is, the overall portion 

of the alkali that can be simultaneously spin-polarized is limited. With our experimental 

conditions, roughly 5% to 20% of the vaporized cesium atoms in the cell occupy the F = 

4, mF = 4 (or mF = -4) state at the pumped equilibrium. This polarization level is low 

compared to pure cesium cells, which for the same pump laser intensity can reach above 

90% polarization, because our cells are designed for polarized alkali atoms to interact 

with other atoms and thusly transfer their polarizations through spin-exchange.
5
  

In particular, we use two isotopes of xenon gas, 
129

Xe and 
131

Xe, for spin-exchange with 

the alkali. Some of the spin angular momentum from the pumped alkali population gets 

transferred to the xenon atoms through collisions and thus induces a net spin bias on the 

xenon population in the cell. We also include nitrogen gas in the cell, but that is a buffer 

gas and not a part of the nuclear magnetic resonance measurements; its primary purpose 

in the optical pumping process is to increase the relative probability of alkali spin 

exchange with xenon by the three-body-process formation of short-lived Van der Waals 

molecules, which significantly enhance the spin-exchange rate through increased 
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interaction time between the alkali and the noble gas. The ratio of nitrogen to xenon acts 

as a control on the overall spin-exchange rate which greatly influences the longitudinal 

spin relaxation time of the xenon group – a matter we will later get into deeply. So, even 

though the laser only interacts with the alkali atoms, in the long run we are able to spin 

polarize other species as well, albeit to a much lesser extent. We estimate that the level of 

xenon polarization is about 5% to 20% that of the alkali, so only 0.25% to 4% of the 

xenon population in the cell has coherent spin at any time. Still, the field effects 

necessary for gyro operation are easily measured from that small group.  

 

So to summarize our implementation of optical pumping, we shine circularly polarized 

laser light on the alkali atoms, inducing a common spin orientation on a relatively large 

portion of the alkali atoms and, to a lesser extent, on the xenon atoms as well. 

 

 

4. Alkali Precession and Magnetometer Signal  

 

The immediate goal of optical pumping here is to achieve coherent Larmor precession 

among the alkali population for magnetometer operation. Recall that Larmor precession 

occurs when the atomic spin vector is offset from the direction of the net magnetic field. 

Also recall that the magnetic field defines the possible spin energy states and the 

quantization axis along which the atoms get polarized by optical pumping. Now, if we 

introduce a small transverse DC field, say along the x axis (which is coming out of the 

page in Figure 4), thereby shifting the net DC field to be pointed slightly off from z, we 
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also shift the quantization axis. If this were the whole picture, the atoms with spin along z 

at the instant the transverse field were applied would precess about the new net field, but 

not for long. Even though the pump laser still propagates directly along z, any atoms that 

get polarized by it in the presence of this transverse field will have quantized spin along 

the new axis of the net DC field and not perfectly along the z axis. Figure 15 illustrates 

this concept. 

 

So, in order to initiate alkali precession, the field direction must change appropriately, but 

when it does the coherent precession decays as the atoms get repolarized along the new 

field direction, or collide with other atoms and lose their spins, until the coherent 

precession is once again immeasurable. In other words, to maintain coherent alkali 

precession, the field direction must change at specific intervals within the alkali spin 

lifetime. 

 

Now, recall that we can also have an AC magnetic field on z. This is the key for 

magnetometer operation: since the net DC field is now offset from z in the presence of 

the small transverse DC field, the z-AC field looks to have a transverse component 

relative to the spin-polarized alkali atoms, as shown on the right in Figure 15 below.  
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Figure 15. Introduction of a small transverse DC field offsets the total DC field and the polarized 

alkali spin vector from the z axis. The z-axis AC field then has a transverse component relative to the 

atom spin vector, which stimulates the alkali Larmor precession. Note that the illustrated transverse 

DC field here is extremely large for the purpose of demonstration. 

 

The combination of the net DC field and the axial component of the AC field will 

henceforth be referred to as the main magnetic field. The transverse component of the AC 

field is by definition orthogonal to the atom spin vector, so the polarized alkali atoms 

precess about it. As soon as this precession begins, the atom spin vector is offset from the 

main field axis and so begins to precess about that, as shown in Figure 16 below. Of 

course at any given time, the atomic group is really only precessing about one axis – the 

direction of the total instantaneous magnetic field, including all the DC and AC fields – 

but this process of stimulation is easier to visualize in components.  
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Figure 16. Component description of alkali stimulation process. The spin-polarized alkali atom 

begins to precess slowly about the transverse component of the z-AC field. This offsets the alkali spin 

vector from the axis of the main field (the sum of the net DC field and the axial component of the z-

AC field) and thus initiates fast precession about the main field axis simultaneously. If the z-AC field 

alternates at the proper frequency, it will increase the precession angle (the level of stimulation) 

through each cycle until the atom loses its spin. 

 

The level of stimulation (the precession angle), which defines the signal strength as we’ll 

soon discuss, accumulates in magnitude from cycle to cycle. A single atom will continue 

to precess until it gets repumped or loses its spin in a collision; in order to increase the 

precession angle throughout the entire AC cycle and thus maximize signal, the field 

changes should occur at opposite phases of the atomic precession, as in Figure 16. This 

requires very precise tuning of the z-DC field strength and the z-AC field amplitude and 

frequency. If done properly, each field change stimulates the newly polarized atoms 

while continuing to increase the precession angle of the whole group. After enough time 

has passed, a portion of the alkali group will have been pulled into coherent precession 

about the main field, and the total atomic group reaches a steady state when the rate of 
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signal increase from the growing precession angle equals in magnitude the rate of signal 

loss from atomic collisions and repolarization. 

 

We can see that, up to a certain magnitude, a larger transverse DC field will offset the 

main field farther from the z axis, resulting in a larger transverse component of the z-AC 

field relative to the alkali spin vector. This increases the rate of stimulation, which also 

means that on average more signal is lost each time an atom loses its spin, but overall the 

result is a larger average precession angle among the coherent atoms at steady state and 

thus larger signal. In short, a stronger transverse magnetic field generates a stronger 

signal, which is exactly what we want in a magnetometer. The alkali lifetime in our setup 

is generally on the order of tens of microseconds, so the process reaches steady state 

relatively quickly, giving the magnetometer a nice, fast response time as well. 

 

It is also important to recognize the significant contribution from the axial component of 

the z-AC field to the main field (revisit Figure 15); whenever the z-AC field changes, the 

main field also changes, and quite dramatically at that. In most applications, the AC field 

alternates by a sine wave, but for the ease of demonstration we’ll use a square wave here. 

Once the delicate balance of field parameters is achieved in this example, the main field 

source alternates between -1V and +3.5V, resulting in the steady-state alkali signal shown 

in Figure 17 below.  
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Figure 17. The magnetometer carrier signal generated when a transverse DC field is applied on the x 

axis (top) and on the y axis (bottom). Scale units for the raw signal have been removed from the axes.  

 

So, the main field alternates in direction and magnitude throughout the z-AC cycle, and 

since Larmor precession depends on the field, the alkali precession direction and 

frequency alternate with it. The alkali signal directly represents the behavior of the net 

alkali spin vector relative to the positive y axis; we will discuss exactly how this works 

shortly. Looking closely, we can see the decay of the signal within each half-cycle of the 

field, as alkali atoms lose their spin and the signal decreases until the following field 

change occurs. 
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More importantly, notice that the alkali precession quickly goes through one and a half 

revolutions in one direction while the main field is positive and large, and then slowly 

backtracks half a revolution in the reverse direction while the field is negative and small. 

This setup accomplishes three crucial things: first, the z-AC field reverses direction at the 

appropriate times of the atomic precession, so the precession angle continues to grow 

through each cycle of the AC field, as in Figure 16, until the angle is proportional to the 

field strength; second, one cycle of the AC field results in one full revolution of the alkali 

precession, which has been shown to maximize the magnetic resonance amplitude to 

produce the cleanest magnetometer carrier signal; third, applying the small transverse DC 

field on y instead of x shifts the initial phase of the precession by 90 degrees, and since 

there are two stages of precession in the AC cycle this dramatically changes the alkali 

signal waveform as seen in Figure 17. In other words, fields on x produce a different 

carrier signal than do fields on y, and the overall amplitudes of the two signals represent 

the strength of the transverse field along the respective axes, so we can demodulate the 

two signals independently and resolve the actual transverse magnetic field vector over 

time. 

 

So there we have our two-axis vector magnetometer, which measures the strength and 

direction of magnetic fields in the x-y plane of the device. Of course, when trying to 

measure too strong a transverse field, the transverse component of the z-AC field can 

actually rotate the alkali spins so quickly that they overshoot 90 degrees off z before they 

decay; at that point the signal cannot get any bigger and we say the magnetometer is 

saturated, which essentially means it is outside its functional limit. However, for gyro 
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applications this is almost never a concern because the fields generated by the xenon 

atoms in the cell are within the linear response region of the magnetometer. 

 

We now understand how the alkali population responds to transverse magnetic fields to 

serve as a magnetometer. What we have not yet discussed is how we actually measure a 

signal from the alkali spin. To do so, we employ a method known as Faraday detection, 

which utilizes a physical phenomenon called Faraday rotation. 

 

 

a. Faraday Detection 

 

In 1845, before Maxwell proved that light and EM energy are actually the same thing, 

Michael Faraday discovered an interesting interaction between a light ray traveling 

through a dielectric medium and an external magnetic field applied across the medium. 

He noticed that if light enters the medium linearly polarized along some arbitrary axis, it 

exits the other side of the medium polarized along a different axis. He deduced that the 

magnetic field rotates the polarization axis as the light propagates through it, as shown in 

Figure 18, calling this effect Faraday rotation. The stronger the field, the faster it rotates 

the polarization axis.
3
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Figure 18. Faraday rotation. Light polarized along an arbitrary axis propagates through a dielectric 

material with a relatively strong, externally applied parallel magnetic field B, experiencing a rotation 

of the polarization axis. 

 

It is difficult to accurately describe Faraday rotation without a rigorous mathematical 

approach. For our purposes, the alkali atoms in coherent precession serve as the 

magnetized medium, where the magnetic field is generated by the spin of the charged 

atoms. Therefore, as the atoms precess, the magnetic field through the medium changes 

directions and causes the polarization axis of the transmitted light to fluctuate.  

 

Imagine the precession of the coherent alkali group as the sense laser light passes through 

the vapor cell. The laser is linearly polarized, roughly along the z axis; for now let’s just 

arbitrarily call it the vertical axis. Recall from Figure 8 that the π
0
 polarization axis can be 

expressed in terms of the relative phase between two imaginary photons σ
+
 and σ

-
. As 

shown in Figure 19 below, if a π
0
 photon from our sense laser passes through the cell 

while the alkali spin vector opposes the photon direction of propagation, then the vapor 

will retard the imaginary σ
+
 and advance the σ

-
. This results in a relative phase offset 
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between the two, which translates to a rotation of the actual π
0
 polarization axis. During 

the other half of the alkali precession cycle, the effect is reversed. 

 

 

Figure 19. Faraday effect dependence on alkali precession phase. During one half of the precession 

cycle, the alkali spin opposes the angular momentum of one of the imaginary circularly polarized 

photons and supports the other, causing a relative phase offset and thus altering the linear 

polarization axis. 

 

The sense light that is transmitted through the cell passes through a polarizing beam 

splitter. The two resulting component beams are sent to photo-detectors on the Hobbs 

circuit, which finds the difference in their intensities to determine the polarization axis. 

We can see that over time, the offset of the polarization axis, taking vertical as zero, 

would trace out a sine wave (for this simple example) with frequency equal to the Larmor 

frequency of the alkali, as in Figure 20. 
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Thus we have a carrier signal directly correlated to the alkali precession. Also, a stronger 

transverse field leads to wider Larmor precession, causing a larger Faraday rotation and 

ultimately stronger signals. This is just what we want from a magnetometer. 

 

 

Figure 20. Visual representation of Farady detection setup. The difference in intensities on the two 

photodetectors indicates the polarization axis of sense light transmitted through the cell, which 

fluctuates with the precessing alkali atoms, producing the magnetometer carrier signal. 

 

 

5. Xenon Precession and the NMR Gyroscope Signal 

 

So we have a magnetometer that can detect small changes in magnetic fields transverse to 

the z axis. Recall that our vapor cells contain not only alkali, which is central to 

magnetometer operation, but 
129

Xe and 
131

Xe as well. Recall too that some of the xenon 

atoms are polarized through spin exchange with the pumped alkali atoms. Finally, recall 

that there is a steady DC magnetic field on z (the alternating field on z operates at around 
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30 to 80 kHz, close to 1000 times the Larmor frequency of either xenon isotope, so it has 

very little effect on the DC field experienced by xenon). All of this means that the 

polarized xenon atoms can also have coherent Larmor precession about the z axis. What’s 

more, our magnetometer can pick up on the transverse magnetic fields generated by the 

coherent xenon spins and therefore track the xenon precession. 

 

All we need is a way to initiate the xenon precession. We can calculate the expected 

Larmor frequency for our setup using equation i, and as discussed we can inject a 

magnetic field on x while picking up very little of it on y. So driving the x coil with a sine 

wave of the xenon Larmor frequency will stimulate the xenon precession, just like the 

component of the z-AC field transverse to the alkali spin stimulated the alkali precession 

in in Figure 16. 

 

So now we have some population of xenon atoms with coherent precession about z at a 

known, steady frequency. The magnetometer picks up the transverse magnetic fields 

generated by the xenon (recall that the magnetometer can measure the full, two-axis 

transverse field vector by the separate x and y carrier signals at any time). Now, the 

electronics establish a reference signal synchronized to the 
129

Xe precession when the 

gyro is stationary in inertial space so that, if everything is left untouched, the reference 

signal and the actual magnetometer signal from the coherent xenon precession are 

identical. However, any physical rotation of the system about z alters the sense axis 

without disturbing the coherent precession of the xenon atoms. This appears as a phase 
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shift between the reference and the actual signal, where the phase difference between the 

two is a direct measurement of the physical rotation of the unit, as shown in Figure 21. 

 

 

Figure 21. Basic concept of operation of the NMR gyroscope. As the gyro is turned about the z axis, a 

phase offset is introduced between the gyro signal and the reference to the original xenon precession. 

The phase offset directly measures the physical rotation of the device, giving us an NMR gyroscope. 

 

To summarize the main elements of the system, the pump laser prepares the alkali vapor, 

dumping a disproportionately high population of the atoms into the F = 4, mF = 4 state, 

thereby aligning their spins. The alkali atoms interact with the xenon atoms, exchanging 
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spin and resulting in a higher population of aligned xenon. A small-amplitude sine wave 

is injected on the x-axis coils to generate a magnetic field to stimulate the xenon 

precession about the z axis. The transverse component of the xenon spin offsets the total 

field from z, causing the alkali to precess. The alkali behavior is observed using Faraday 

detection, and by demodulating the alkali carrier signal for fields on x and y we can track 

the xenon precession and compare it to our reference for gyroscopic sensitivity. 

Extremely small changes in magnetic fields allow this gyro to function, so for it to even 

be useful (let alone a breakthrough technology) the fields must be extremely stable to 

keep high levels of precision. 

  

Two characteristics are particularly important when it comes to the precision of the 

device. The first and most obvious is the signal to noise ratio (SNR). As with any sensor, 

a single measurement will not be exactly correct; random, uncontrollable, and 

unpredictable influences on the signal constantly distort the output, causing deviations 

from the true quantity the sensor is supposed to measure (in our case, angular rotation). If 

a gyroscope is held steady in one position for a long time, its orientation can be 

determined to high accuracy by averaging the measurements made while in that one 

position, but of course that limits the response time of the device. Any single 

measurement will have a relatively high error associated with it. Every single component 

of the system pays some contribution to SNR, but the most important improvements are 

those made to the fundamental noise limits, which usually stem from cell filling and 

sealing procedures (which is why measuring internal pressures is important). 
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Let’s use the analogy of a coin being flipped. Suppose a hundred people stand side-by-

side along a thin line painted on the ground which represents the true angular rotation to 

be measured. Each person flips a coin; if a person’s coin reads heads, they take a step 

forward and if it reads tails they step back. The result after they have all flipped their 

coins would be a random scatter with roughly half the people in front of the line and the 

other half behind it. This scenario represents the SNR metric; even though the average 

final position of all one hundred people would be very close to right on the line, the 

position of any one person would be relatively far off from that line. 

 

Another common metric for gyro performance is something called angle random walk 

(ARW). Return to our coin analogy, but suppose instead there is only one person. This 

person starts on the line and flips a hundred coins, taking a step forward for every heads 

and a step back for every tails; this is a literal random walk. After a hundred flips, this 

person may end up right back on the line, but more likely the person will stand some 

number of steps in front or behind the line. This represents ARW; the total error (distance 

from the line) for any single measurement (coin flip) is dependent upon the accumulated 

error from all the previous measurements. The ARW tends to add noise at a constant rate 

relative to the square root of the number of measurements, so if the measurements are 

made consistently in time, ARW is expressed in degrees per the square root of time that 

measurements have been recorded. 

 

Both SNR and AWR are highly affected by the lifetime of the coherent xenon precession. 

If we remove the drive stimulating xenon precession, we want to know how long the 
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xenon precession about z lasts, or in other words how quickly the signal it generates 

diminishes. As we discussed for the alkali, the spin state of a polarized atom only remains 

for a brief time before collisions with other gases or the cell walls destroy the spin state; 

the lifetime is the amount of time it takes for a certain portion of the atoms to lose their 

spins. 

 

It seems somewhat intuitive that a longer transverse spin lifetime should mean higher 

stability, but why does the lifetime even matter if the stimulating drive is always running? 

Well, first of all the lifetime affects SNR. The longer the atoms go on average without 

losing their spins, the stronger their net transverse projection  gets and therefore the 

stronger the net signal they produce (for an injected drive of fixed strength). That right 

there is a big part of it, but there’s more. With shorter coherence lifetimes, the population 

of precessing xenon atoms spreads out in phase more quickly, leaving a larger uncertainty 

in the net spin and thus less precision for any measurement. 

 

Since ARW accumulates from measurement to measurement, reducing the precision even 

slightly can increase ARW significantly, which is why it is so important to maximize the 

spin coherence lifetime. Figure 22 below shows how SNR and the transverse spin 

lifetime (denoted T2) play into ARW for an NMR gyro.
6
 In order to make this simple 

relationship work, the SNR must be expressed in decibels divided by the square root of 

the correlation time (the time between measurements), which for our setup is one fourth 

of the Larmor precession period. 
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Figure 22. Angle random walk as it depends on the signal to noise ratio and the longitudinal spin 

lifetime T2 for an NMR gyroscope. To limit ARW, a vapor cell must exhibit both high SNR and long 

T2 values. 

 

Also, if our stimulating drive drifts to something close to but not exactly at the natural 

xenon resonance frequency, the xenon atoms will slowly get pulled into precessing at the 

drive frequency (with a smaller net spin projection). In cells with shorter xenon lifetimes, 

this shift in precession frequency progresses more quickly. Even if we manage to drive 

exactly at the natural frequency, small noise deviations in the drive will alter the spin 

group, which appears as a phase shift from the reference signal and thus causes false 

gyroscopic readings. These temporary deviations in the drive frequency will clearly have 

a large impact on cells with short spin lifetimes, but for cells with sufficiently long 

lifetimes, such shifts are not likely to impact the gyro signal significantly. This is why 

long spin lifetimes are so important for gyro performance. 
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So the quality of the NMR gyroscope is heavily dependent upon the transverse spin 

lifetime, which means we want to build our gas cells in a way that allows for as high a 

lifetime as possible for both 
129

Xe and 
131

Xe. This goal is much easier said than done. The 

science of cell construction for atomic applications remains a very active field of research 

and is far from well understood. Enough progress has been made for preliminary gyro 

operation, but if this technology is going to challenge the boundaries of current 

navigation capabilities, we’ll need further advancements.  

 

Now, given what we have discussed thus far, we have a good understanding of the 

fundamental physical principles that drive the NMR gyro operation. From this point on, 

we will focus our discussion on a very specific topic within the overall goal of improving 

the gyro. We will cover some of the most significant factors that affect nuclear spin 

lifetimes and our current efforts to utilize those factors to our advantage. We will 

examine the techniques by which we currently measure the lifetimes (our industry 

standard techniques), and I will also introduce several other approaches that had not 

previously been used in our setup. Lastly, I will summarize my work on implementing 

these other techniques in our system, including the hardware and software modifications 

necessary to make them work. We will compare results from the new and old 

measurement techniques to verify my work, and we will also go over various factors that 

make the new techniques superior. My goal is to provide a useful catalog of tips, 

guidelines, pitfalls, and general explanations for a number of approaches to NMR lifetime 

measurements. So first off, let’s talk about the nuclear spin lifetime itself, its general 
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behavior, and the factors that make the difference between a lifetime of 3 seconds and 30 

seconds. 

 

 

B. Lifetimes of Nuclear Spin States 

 

Imagine the system running in its normal conditions, as we’ve been discussing. If the 

transverse field that drives the xenon precession suddenly shuts off, the signal weakens as 

more and more xenon atoms lose their coherent precession. The atomic signal strength 

usually decreases by an exponential decay. The half-life of the atomic spin is the amount 

of time it takes for 1/2 of the coherent population to lose their spins. Similarly, the 

lifetime is the time it takes to reach 1/e of the original coherent population, where e, 

sometimes called Euler’s number, is the irrational constant whose exponential form e
x
 is 

its own derivative; the value of e, truncated to five decimal places, is 2.71828. So the 

lifetime in this case is a measure of how long it takes for the signal to diminish to just 

over 1/3 of its original amplitude. 

 

There are two xenon spin lifetimes of great importance to us; T1 is the longitudinal spin 

lifetime and T2 is the transverse spin lifetime. T1 is a measure of the longevity of the z-

axis polarization, and T2 is essentially a measure of how long the polarized group 

maintains coherent precession (with transverse spin projection components in equal 

phase) about z. As such, T1 is the upper limit for T2 since coherent precession is 

impossible without net longitudinal polarization. With perfect magnetic field uniformity 
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across the cell, T2 should be equal to T1, but any non-uniformities decrease T2 from the 

T1 value. See, if the cell contains slightly different magnetic fields in some parts of the 

cell than others, the precession frequency of the atoms changes as they pass through these 

parts of the cell. Also, the atoms do not completely uniformly sample the magnetic field 

in the cell (since the motion of an atom through the buffer gasses is random in direction 

and path), so we cannot hope for these small changes in frequency to average out 

completely. During the time that the precession frequency of an atom differs from the 

average of the group, it accumulates a phase offset from the coherent group. Eventually 

many atoms have large enough phase offsets that we can no longer distinguish a signal. 

So even though a good portion of the xenon population is still polarized along z and even 

still experiencing precession about z, the precession of the group is no longer in coherent 

phase and so T2 is shorter than T1. 

 

Therefore, even though the transverse lifetime T2 is the parameter that truly limits the 

gyro’s performance, we are often more interested in measuring the longitudinal spin 

lifetime T1 during cell testing because it limits T2. In fact, we rarely concern ourselves 

with the actual T2 value during cell testing because we can achieve very high levels of 

magnetic field uniformity with some effort once a cell with long T1 times for both 
129

Xe 

and 
131

Xe is found. Even though our ultimate goal is to maximize T2, we focus on 

increasing T1 which in turn allows for longer T2 times, so let’s discuss our current efforts 

to maximize T1 lifetimes. 
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1. The Major Influences on Longitudinal Spin Lifetimes 

 

As previously discussed, the only things that really dictate spin state lifetimes are xenon 

collisions with the cell walls and other gas atoms in the cell. The best we can do is to 

surround the xenon atoms with atoms of buffer gases whose spin-exchange interactions 

with xenon are very low. Nitrogen makes a good buffer gas for this purpose. To reduce 

the effect of the walls, the cells are prepared with a small amount of hydrogen as well.  

Ideally a thin layer of cesium-hydride or rubidium-hydride, both of which have a much 

lower chance of destroying the xenon spin than does the bare glass of the cell, forms 

across each inner face of the cell. It also seems advantageous to allow the cell to cure at 

around 100 degrees Celsius for a day or two to allow ample formation of the hydride. As 

far as physical construction of the cell is concerned, it basically comes down to mixing 

these gases properly and going to great lengths to clean the glass cells of all contaminants 

before filling and sealing them. 

 

However, there are other parameters that affect the collision rate inside the cell. The size 

of the cell, for example, determines the wall collision rate; an atom in a smaller cell has a 

shorter mean path between walls and thus spin lifetimes are shortened by more frequent 

wall collisions.  As an aside, we often test new cell construction methods on large 

spherical cells, not only because they are easier to construct but also because they allow 

for longer lifetimes and stronger signal from the increased number of alkali atoms, so the 

effects of different cleaning and filling methods are more apparent. Once we find an 

approach that seems to lead to consistently long lifetimes, we move on to repeating the 
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process on smaller cubic cells. These inherently have shorter lifetimes and smaller signal 

potentials and are thus harder to work with, but they are necessary to meet the specific 

requirements of the gyro. 

 

On the other side of the coin, we can alter alkali-xenon collision rate by changing the cell 

test temperature. With decreased temperatures come decreased alkali pressures and lower 

particle velocities, reducing collision rates and thus extending spin lifetimes, especially 

for 
129

Xe. Figure 23 shows an extreme case of this effect measured in somewhat of a 

fluke of a cell. 

 

 

Figure 23. The effect of cell temperature on longitudinal spin lifetimes for both xenon isotopes. This 

cell has abnormally low wall dependence for the 
129

Xe lifetime. 

 

Clearly, temperature has a huge effect on the T1 for 
129

Xe, but almost no effect for 
131

Xe 

because at sufficiently low temperatures, the wall collision rate becomes the dominant 

factor and further temperature reduction does not extend the lifetime; 
131

Xe lifetimes are 
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much more dependent on wall conditions for reasons we will discuss later. The reason 

that the 
131

Xe T1 actually decreases with temperature is that lower temperatures mean 

lower particle velocities, meaning xenon atoms spend more time in contact with the cell 

walls during collisions, or in other words the duration of adsorption increases. So when 

the lifetime is wall-collision limited, we actually tend see lower lifetimes with lower 

temperatures. 

 

Measuring T1 at different temperatures is in fact an extremely useful cell testing 

procedure because it allows us to identify whether a given cell has T1 limited by wall 

collisions or gas collisions at our target test temperature of about 115 degrees Celsius. As 

in Figure 24, most cells exhibit wall-dominated lifetimes for both isotopes at higher 

temperatures compared to the example in Figure 23. 

 

 

Figure 24. Typical trend for longitudinal lifetimes over cell temperature. As gas collision rates 

decrease, wall effects become the dominant limit to T1.  
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Notice that this cell would hit a T1 limit of 13 to 14 seconds for 
129

Xe. This type of test 

tells us whether our efforts to improve wall conditions are working. For 
129

Xe, the wall 

limit usually occurs at relatively low temperatures, whereas for 
131

Xe the wall limit tends 

to be up around the target temperature of 115 °C. Our primary motivation in improving 

cell wall conditions is that the walls greatly affect the 
131

Xe lifetime at the test 

temperature, whereas the 
129

Xe lifetime is more dependent upon buffer gas conditions in 

that temperature range. Therefore, as stated before, our two main concerns in cell design 

are wall conditions and buffer gas mix. 

 

Unfortunately, we cannot always perform the test over a wide range of temperatures 

because the signal strength is also highly dependent on cell temperature, given that it 

takes high temperatures to vaporize enough alkali to generate a strong magnetometer 

signal. Often the signal is not strong enough below 80 or 70 °C to make a reliable T1 

measurement. Temperatures around 115 °C tend to have the best balance between 

relatively high lifetimes and strong SNR, which is why we make that our primary test 

temperature and the target operating temperature inside the gyro. 

 

Now that we are familiar with the general behavior of spin lifetimes and their 

contributing factors, we will move on to discussing the various ways we can actually 

make measurements of T1 and T2. We will begin with our industry standard techniques 

and then we’ll get to the new techniques that have been set up to function on our system. 
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III. Techniques for Measuring Spin Lifetimes for NMR 

 

First off, it should be noted that these tests are performed on each isotope of xenon 

individually, so both T1 and T2 lifetimes must be measured twice for each cell. All of the 

techniques we will discuss involve stimulating the xenon precession using a transverse 

field, as discussed earlier. There are two ways we can accomplish this. For measurements 

that require an active drive throughout the test, we use a very low-amplitude sine wave of 

the xenon Larmor frequency from a function generator; for other methods we only need 

to get the xenon precession started and then we do not want any drive during the actual 

test. We accomplish the latter by a pulse drive, which is basically just a small number of 

cycles of a high-amplitude sine wave of the same frequency acting on the same coils, but 

the pulse is generated by the same computer that feeds the z-axis coils and records all the 

data (revisit Figure 4). We could also use the function generator and disconnect it at the 

start of the test, but there are reasons to prefer the pulse, as we will discuss. 

 

One goal of the pulse is to get the xenon spins exactly orthogonal to z to maximize signal 

(a π/2 pulse, since it flips the spins π/2 radians). The stronger the pulse is, the farther off z 

it will push the spins until they actually overshoot 90 degrees; they can even be flipped 

completely to be anti-aligned with z (a π pulse), and this will be an important aspect of 

the pulse for our tests. Figure 25 below shows the basic concept of these two pulses. 
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Figure 25. A π/2 pulse is intended to maximize signal by pushing the total xenon precession 

orthogonal to z. A π pulse is intended to reverse the polarization of the xenon spin, which results in 

very little signal (none if done perfectly). Unfortunately, it is extremely difficult to match both the 

frequency and amplitude needed to perform these pulses perfectly. 

 

We can find the appropriate pulse strength by sweeping through pulses of various 

amplitudes and recording the initial amplitude of the xenon signal immediately following 

each pulse, as shown in Figure 26. 

 

 

Figure 26. Relationship between signal size and pulse amplitude. The peak signal amplitude occurs at 

the pulse that drives the xenon spins 90 degrees off z (a π/2 pulse); the minimum signal (which should 

ideally be zero) occurs at 180 degrees (a π pulse). Notice that pulses stronger than a π pulse continue 

to push the spins past 180 degrees, increasing signals once again. 
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Anytime the system is modified, it is useful to determine the pulse strength necessary for 

these two pulses. It is nice to hit the π/2 pulse dead on because that maximizes signal, but 

it is even more important (and luckily easier) to determine the π pulse; a zero is usually 

easier to find than a maximum, and the proximity to a true 180-degree flip by a π pulse 

determines the reliability of our T1 tests, so it is important to get close. Once we 

determine the amplitude for a π pulse, we assume the π/2 pulse to be half that amplitude. 

 

Now, there are five basic techniques that we will focus on; two designed to measure T2 

explicitly, two to measure T1, and one that measures both lifetimes simultaneously. We 

will first discuss the two industry standard methods that we perform daily (one for 

measuring T2 and the other for T1), detailing the experimental techniques and the 

procedures for analyzing data and extracting results. We will also cover some interesting 

and precautionary intrinsic properties of these two methods. We will then present three 

other methods, never before implemented on this equipment, and explain how we expect 

these methods to work. Following that will be a summary of my work attempting to 

implement these new methods and an exploration of the key parameters to focus on 

during setup to ensure that they give accurate results. 

 

 

A. Industry Standard Methods for Measuring Spin Lifetimes 

 

The simplest method of all, both in terms of procedure and the presumed physics behind 

it, is the free-induction decay method for measuring T2. 
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1. Measuring T2 Using the Free Induction Decay Method 

 

In this method, we use a π/2 pulse to drive up the xenon precession and then allow the 

coherence to decay naturally by atomic collisions and by phase shifts from magnetic field 

non-uniformities. We record the signal as the atomic spins decay, ideally following a 

simple exponential decay curve. An example data set for a free induction decay (FID) test 

for 
129

Xe T2 is shown below in Figure 27. 

 

 

Figure 27. Raw signal following a π/2 pulse for 
129

Xe. The bottom image shows a close-up of the data 

during which the pulse took place, where the xenon precession is growing up from the pulse, after 

which it is left to freely decay, as shown in the top image. This example exhibits good cross-axis 

rejection, as the pulse signature is smaller than that from the actual xenon precession. 

 

Zooming in on the horizontal scale, we can see the results of the nine cycles of the π/2 

pulse as the signal grows up, and then when the pulse ends around 0.28 seconds, the 
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actual magnetic sine wave coming from the xenon precession generates the decaying 

signal.  

 

This is an appropriate time to discuss our method for reducing and analyzing data. The 

most direct way would be to determine the time at which the amplitude of the signal is 

50% of the initial amplitude following the pulse (or from any point we deem the start, as 

long as we indeed have a simple exponential decay). We can easily calculate T2 from the 

half-life, which we’ll discuss in more detail below. We could also fit the decaying sine 

wave with a theoretical curve and extract the lifetime from the fit solution. However, the 

raw signal can be influenced by many external factors; for either of these approaches, 

going merely by the shape of the raw signal allows for erroneous results. Still, we know 

that the signal is dominated by the sine wave of the xenon precession frequency, so we 

perform a Fast Fourier Transform (FFT) on everything following the pulse to convert our 

data from the time domain to the frequency domain, as shown in Figure 28 below. The 

FFT shows a tall, narrow, and isolated spike at the xenon resonance frequency, which 

means the precession frequency throughout the test was highly coherent (otherwise we 

would not be able to do NMR); we want to take down the value of the peak frequency, 

about 165.7127 Hz.  
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Figure 28. Signal from Figure 18 translated into the frequency domain using a Fast Fourier 

Transform (FFT). Clearly, the 
129

Xe resonance frequency is isolated and quite distinct. Zooming in, 

we can see just how well-defined the spike is, showing the central frequency to be around 165.7127 

Hz. 

 

Now we go back though the data, performing an FFT on one small section at a time, say 

in windows of two seconds, and record the amplitude of each FFT at that frequency. We 

end up with a profile of our signal, as in Figure 29. We have not only eliminated any false 

shape in our signal from other-frequency sources, we also now can extract our lifetime 

from a simple decay curve and avoid dealing with the sine wave altogether (unless we 

have a particular reason to examine the raw sine wave). 
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Figure 29. The signal profile created by performing an FFT on two-second windows of the raw signal 

and recording the amplitude of the FFT at 165.7127 Hz for each. The profile plots the FFT amplitude 

against the median time for each window. 

 

If we reduce the window size, our curve will be more populated with data points, and we 

can get a close approximation of the half-life just by looking at the curve itself (though 

often decreasing the window size will increase the risk of shape defects in the curve, 

since the resolution of an FFT depends on the sample time used). The signal amplitude 

starts at 0.2741 V immediately following the pulse. We can look for the half-life, the time 

at which the signal reached 0.13705 V (half the initial amplitude), which occurred around 

13.35 seconds. 

 

Now, the formula to describe a simple exponential decay is  

 

y = Ae^(-t/τ) + v           (1) 

 

where A is the initial amplitude, t is time, and τ is the time constant, which for our 

purposes will always be the spin lifetime of interest, in this case T2. The variable v is a 

small offset we include in the fit in order to accommodate any noise in the signal such 



67 

 

that the curve never reaches a true zero; it is not part of the theoretical description, but its 

existence is worth noting, as we use it in all of our fit functions. The amplitude at the 

half-life T1/2 is A/2 by definition, so substituting we get 

 

A/2 = Ae^(-T1/2/τ)      

 

and thus the relationship between the lifetime and the half-life is  

 

τ = T1/2/LN(2).          (2) 

 

Therefore, plugging in our 13.35 seconds for T1/2 gives us a T2 value of 19.26 seconds. 

We will use the relationship in equation 2 often. Even still, the most consistent way to 

pull a number for T2 is to fit the data curve by tweaking the values of A and T2 in a 

theoretical curve described by equation 1 until our theoretical curve matches the data 

curve as closely as possible. We can accomplish this using the fmincon function in 

MATLAB, or any other tool that includes a solver or optimizer function. The red line 

through the blue data points in Figure 30 represents the theoretical fit solution, which 

returned a T2 value of 19.36 seconds. The two methods match to a tenth of a second, 

which is the highest precision we usually care about for lifetime measurements. We will 

most often use the fit approach because it allows for more consistent analysis and, if set 

up properly, yields results at the click of a button. From this point on, unless otherwise 

noted, data will be presented as blue dots and theoretical fits as red curves. 
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Figure 30. The FID profile with smaller windows highlights both the approximate half-life and the 

theoretical fit represented by the red curve through the data. Both approaches return a T2 value of 

about 19.3 seconds. For data expressed this way, the blue dots represent the measured data and the 

red curve is the theoretical fit. 

 

Repeating the FID test 10 times over the course of about an hour, we determined the 

uncertainty in a set of T2 measurements (defined as the standard deviation of the 

statistical data set divided by the square root of one less than number of data points in the 

set) to be on the order of 10 milliseconds. Therefore, we consider our FID fit 

measurements to be quite repeatable and reliable. 

 

So that’s an example of our industry standard method for measuring T2 for 
129

Xe. Things 

tend to get more complicated when we deal with 
131

Xe, the nucleus of which is spin-3/2 

as opposed to the spin-1/2 nucleus of 
129

Xe. The higher-order spin means that the nucleus 

can occupy more spin states (four to be exact: -3/2, -1/2, +1/2, and +3/2). The -1/2 and 

+1/2 states, which are the only options for 
129

Xe, make the atom a simple magnetic 

dipole. However, the 
131

Xe atom also has an electric quadrupole in the higher-order spin 

states of +/- 3/2. 
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a. The 
131

Xe Isotope and Electric Quadrupole Coupling 

 

For a nucleus such as that of the 
131

Xe atom, we are no longer dealing with only spin-up 

and spin-down conditions, which refer to the +1/2 and -1/2 spin states of a spin-1/2 

particle or atom; we now also have atoms in the +3/2 and -3/2 states, which can have 

different Larmor precession frequencies due to asymmetries in the electric field gradient 

across the cell wall. The reason this is so detrimental to us is that the precession 

frequencies of the atoms in the quadrupole states are slightly different from the dipole 

atoms, which can lead to dramatic changes in the shape of the decay curve. As with any 

waveform composed of multiple frequencies, beating appears in the signal, as shown in 

an extreme case in Figure 31 below. 

 

 

Figure 31. Example 
131

Xe decay curve with strong electric quadrupole coupling. The raw signal (top) 

is processed in the same way as it was for 
129

Xe above in order to generate the profile (bottom). 
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Clearly this looks nothing like a simple decay curve, and there seems no way to figure 

out precisely where the signal reaches half of its maximum amplitude, which means we 

cannot very well determine T2 by using the half-life. But this is physics, and there is 

surely a way to theoretically describe the shape of the curve given what we know; 

presumably we have three separate frequencies – our center dipole frequency and one on 

each side of the center due to the two quadrupole-coupled spin states. If we perform an 

FFT on this data run, we see the frequency signature traced in blue in Figure 32 below. 

 

 

Figure 32. Frequency signature of the 
131

Xe decay curve above, with relevant fit parameters labeled. 

 

Clearly, there are three distinct frequencies in this signal. The center frequency is 

typically the dominant frequency, which represents the precession of the 
131

Xe atom 

group whose wave-function is in a superposition of the +1/2 and -1/2 spin states. The side 

frequencies represent the precession of the atom group whose wave-function is a 

superposition of the spin-3/2 and spin-1/2 states (+ and - pairs). The precession 

frequencies for all of these superposition states are subject to the magnitude of the 

electric field gradient the atoms experience while in contact with the cell walls. 

Asymmetries in electric field gradients across the cell cause the differences in 
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frequencies, and the cell walls are where such asymmetries tend to exist (albeit extremely 

small asymmetries).
7,8

 

  

So now we need to fit the profile as we did with 
129

Xe, but first we must derive the 

theoretical equation that we hope will describe the profile. The raw data after the pulse 

should be described by the superposition of the three decaying sine waves 

 

y = ACsin(ωCt)e^(-t/T2C) + AQ[sin(ωLt) + sin(ωRt)]e^(-t/T2Q),  (3) 

  

where AC and AQ are the initial transverse amplitudes of the center and quadrupole 

decays, respectively; T2C and T2Q are the respective transverse lifetimes. We are 

assuming here that the two quadrupole states are equally populated and have a common 

lifetime, and therefore we use the same AQ and T2Q value for both. If we assume farther 

that the precession frequency separation δω is equal for the two quadrupole states, we can 

write the quadrupole frequencies as 

 

ωL = ωC – δω, 

ωR = ωC + δω 

 

and substitute them into equation 3, which after some trigonometric reduction becomes 

 

y = sin(ωCt)[ACe^(-t/T2C) + 2AQcos(δωt)e^(-t/T2Q)]. 
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So we have now successfully isolated the center-frequency sine wave, and we can 

directly see the quadrupole-frequency cosine term that causes the beating in the signal. 

To obtain the profile, we want to use only the maximum and minimum values of each 

cycle of the center-frequency sine wave, or in other words set the magnitude of the sine 

wave equal to one at all times. Also, it is possible for the combined amplitudes from the 

quadrupole atoms to outweigh the center amplitude, which would theoretically produce 

negative values in the profile. Of course, we can only measure a positive signal as 

described by the FFT-based profile, so we take the absolute value of the curve and 

ultimately acquire our theoretical description of the 
131

Xe FID profile: 

 

y = |ACe^(-t/T2C) + 2AQcos(δωt)e^(-t/T2Q)| + v.   (4) 

 

Using this as our fit function, as we did with equation 1 for 
129

Xe, we find the solution 

illustrated in Figure 33 below by using the values listed in Table 1. Note that, even 

though equation 4 calls for the frequency separation in radians, it is given in Hz below for 

ease of comparison with the FFT image in Figure 32 above.  

 

Table 1. Values used to fit 
131

Xe decay curve shown in Figure 33 below. 

Variable Value Unit 

AC 0.1792 Volts 

T2C 15.8562 Seconds 

AQ 0.11065 Volts 

T2Q 7.7817 Seconds 

δf 0.11034 Hertz 
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Figure 33. Quadrupole-coupled 
131

Xe decay curve (blue) with fit solution overlaid (red). 

 

We can check the validity of this solution by measuring the frequency separation visually 

and comparing it to the fit value. Close inspection of Figure 23 yields an average 

separation of about 0.11565 Hz. This is within 5% of the fit value, which suggests that the 

solution is valid to the resolution required. The relative amplitudes AQ and AC could provide even 

further validation, but the comparison between fit values and FFT is more difficult to draw in this 

case because the signal is generated by the total population of atoms, which relates not just to the 

vertical amplitude of the FFT but to the entire area under the FFT curve, making it more trouble 

than it is worth as an unnecessary detail. 

 

One of the most common problems that arise when fitting these quadrupole-coupled decay curves 

emerges when we do not use the correct start time (i.e., immediately following the pulse). With a 

pure exponential decay curve such as with 
129

Xe, the start time should not matter since the curve 

follows the same pattern throughout the test. However, when dealing with multiple frequencies, 

the passage of time following the pulse leads to greater phase misalignment between the spins of 

the atoms of different frequencies. Since our fit function does not allow for an initial phase offset 

between the different atomic populations, if we do not select the correct start time, the optimizer 

cannot find a very good solution. This problem is illustrated in Table 2 and Figure 34 below, 
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using the exact same data set as above for comparison, but with the start time shifted one full 

second forward. 

 

Table 2. Values used to fit 
131

Xe decay curve shown in Figure 34 below. 

Variable Value Unit 

AC 0.13963 Volts 

T2C 21.6583 Seconds 

AQ 0.07707 Volts 

T2Q 8.3459 Seconds 

δf 0.1242 Hertz 

 

 

Figure 34. Quadrupole-coupled 
131

Xe decay curve (blue) and fit (red), taking the start time to be one 

full second after the pulse finishes. 

 

Clearly, the fit does not match the data profile nearly as well. The real problem is the reported 

value for T2C, which is almost 37% high. For only a one-second difference this is a huge 

discrepancy in results, which highlights the importance of pinpointing the start time accurately. In 

turn, this provides us with more incentive to use the π/2-puse for this method (as opposed to using 

a small drive and then pulling it) simply because it is much easier to visually determine the start 

of the run with a pulse. 
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It is also meaningful to point out that the quadrupole effects are not always so pronounced. A 

more typical example of a 
131

Xe decay curve is presented in Table 3 and Figure 35 below. 

 

Table 3. Values used to fit 
131

Xe decay curve shown in Figure 35 below. 

Variable Value Unit 

AC 0.15497 Volts 

T2C 15.4805 Seconds 

AQ 0.078066 Volts 

T2Q 11.8101 Seconds 

δf 0.024487 Hertz 

 

 

Figure 35. Example 
131

Xe decay with more typical quadrupole effects. 

 

This is a real problem when we deal with cells that have noticeable but very small 

quadrupole coupling. If the effects are negligibly small, we can get away with fitting the 

curve using equation 1, simply ignoring the quadrupole altogether. However, when the 

effects are large enough to alter the shape of the curve but small enough that we cannot 

determine the frequency separation just from looking at the FFT, the optimizer usually 
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has a difficult time finding the right solution. In such cases, we can still get a reasonable 

estimate of the T2 by using equation 1 and accepting that it is not a perfect fit. 

 

Another persistent issue stems from the fact that the quadrupole peaks are never perfectly 

symmetric about the center. In fact, the quadrupole coupling theoretically shifts the center 

frequency slightly due to higher-order effects, and thus inherently δω is never exactly 

identical on both sides nor are the relative peak amplitudes. This can cause incurable 

discrepancies between our fit function and the actual data, but such discrepancies have 

never proven to be significant enough to worry about. 

 

Still, in the event that we would want to really delve into these issues, the solution would 

be to fit the full sine wave of the data set rather than the simplified profile, and include in 

our fit function all three atomic groups with room for individual amplitudes, frequencies, 

and even initial phase offsets. Such an operation would add quite a bit of strain to the 

optimizer, partly because of the increased number of solvable parameters but mainly due 

to the incredibly large data set it would be working with. It is a good option to have, but 

for the time being our level of accuracy is sufficient.  

 

 

b. Free Induction Decay by Pulling a Small Sustained Drive 

 

As previously mentioned, we could also have done this test using the drive from the 

function generator and disconnecting it at the start of the data collection. The main reason 
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we prefer the pulse is that it is consistent both in magnitude and the amount of time it 

takes, so determining the exact time that the actual data run begins is usually easier with 

the pulse. Still, to confirm our assumptions we repeat the test using first the function 

generator and then the pulse, the results of which are shown in Figure 36 below. The 

difference in amplitude between the two drive methods stems from the fact that the small 

sustained drive stimulates the atomic precession much more slowly, so atoms lose their 

spin states while still in the process of stimulation. With the pulse, however, almost all of 

the polarized xenon atoms reach full transverse stimulation very quickly. 

 

 

Figure 36. Results for 
129

Xe FID performed twice: first by removing a small sustained drive 

(highlighted on the left), second by π/2 pulse (right). For data expressed this way, the red portion of 

the raw signal indicates the portion of the data from which the fitted profile was constructed. The 

vertical green dashed lines indicate the portion of the data from which the FFT was constructed to 

find the center frequency. 
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Based on the fit solutions, the FID from the pulled sustained drive yielded a T2 of 20.032 

seconds while that from the pulse gave 20.084 seconds: a difference of only 0.26%. As 

expected, the two methods are essentially identical except for the significantly higher 

signal when using the pulse. However, this is apparently not the case when dealing with 

the electric-quarupole-coupled 
131

Xe isotope, as presented in Table 4 and Figure 37 

below. 

 

Table 4. Values used to fit 
131

Xe decay curve shown in Figure 37 below. 

Variable Drive Data Value Pulse Data Value Unit 

AC 0.02981 0.1878 Volts 

T2C 23.0116 15.7525 Seconds 

AQ 0.0213 0.096213 Volts 

T2Q 8.5242 12.3098 Seconds 

δf 0.039463 0.028556 Hertz 

 

 

Figure 37. Raw data from FID of 
131

Xe performed both by pulling the sustained drive (left) and by 

pulse (right). Unlike with 
129

Xe, there is a large discrepancy between the two stimulation methods. 
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Visually, we can immediately see a difference between the two curves, and clearly the fit 

does not match well for the decay using the pulled sustained drive. Taking the pulse data 

values to be correct (based on the clean fit), the sustained drive run gives us a reported 

T2C that is 46.08% too high. 

 

The FFT (bottom) offers some insight in that the center peak is shifted slightly to the left 

for the sustained drive test. This suggests that the sustained drive, which must have been 

at a slightly lower frequency than the natural Larmor frequency, had some residual effect 

on the 
131

Xe population even after being disconnected. There should be no such residue; 

as soon as the drive is removed the atoms should have no recollection of it and should go 

on behaving in their natural manner. To investigate this further, we repeat the test using a 

sustained drive with off-resonance frequency (something like 0.2 Hz high), the result of 

which is shown in Figure 38 below. Note that the pulse was also set to the same off-

resonance frequency for this run. 
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Figure 38. Repeat of 
131

Xe FID, this time using a drive frequency around 49.3 Hz (intentionally above 

resonance). Again, the small sustained drive was pulled (left) and then a pulse was used (right). 

 

Going by the fit, the off-resonance pulse (shown on the right) made no difference, and 

quantitatively it yielded nearly identical results to the on-resonance test (within 0.1 

seconds for both the center and quadrupole-induced T2 times). However, the pulled drive 

run again displays different behavior, and due to the large asymmetry in the FFT, the fit 

function fails as discussed earlier. There seems to be no residual population at the drive 

frequency (around 49.3 Hz), which is expected and encouraging, but clearly the 

quadrupole-coupled side peaks have been effected in a way that remains after the drive is 

disconnected. Perhaps coincidentally, our drive frequency was higher than the natural 

resonance, and the higher-frequency side peak has been exaggerated. As a final query on 

this matter, we try the same test once more, this time using a drive frequency below the 

natural Larmor frequency, shown in Figure 39, to see if the FFT asymmetry flips. 
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Figure 39. Repeat of 
131

Xe FID, this time using a drive frequency around 48.95 Hz (intentionally 

below resonance). Again, the small sustained drive was pulled (left) and then a pulse was used (right). 

 

Indeed, the asymmetry of the peaks depends on the drive frequency relative to the natural 

resonance frequency. The explanation most likely comes down to the bandwidth of the 

drive. See, the small sustained drive is present for a long time before it is pulled (in order 

to bring the atoms to steady state), giving it a much narrower bandwidth than the pulse, 

whose duration is only about 0.2 seconds. The group of wall-adsorbed atoms whose 

quadrupole-induced natural frequency is closer to the drive frequency clearly gets more 

effectively stimulated by the narrow-band sustained drive, while the wide-band pulse 

performs much more uniform stimulation across the entire 
131

Xe population.  

 

Upon very close inspection of the pulsed data sets, the right peak is .0003 V higher in 

amplitude than the left peak when driving to the right of resonance, and .0002 V higher 

than the left peak when driving to the left of resonance, so there is a measureable 
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difference. We can thus convince ourselves that drive bandwidth is in fact the source of 

the discrepancy between the two drive methods.  

 

We conclude that the pulse drive works better for the FID T2 tests because it provides 

ease and consistency in determining start times, higher signal amplitude, and much more 

uniform stimulation of 
131

Xe which allows our simplified fit function to do the job well. 

So that covers our industry standard method for measuring T2, but theoretically there is 

another way, and although we rarely actually use it, there are important principles we can 

discuss while introducing what we call the T2 Growth Method. We will get to that 

shortly, but first let us take a look at our industry standard technique for measuring T1: 

the Delayed Pulse Method. 

 

 

2. Measuring T1 Using the Delayed Pulse Method 

 

As discussed earlier, T1 is the lifetime of real importance to us during cell testing because 

the value of T1 is the upper limit for T2 for a given cell at a given temperature. The decay 

of the longitudinal spin alignment comes from collisions with either the cell walls or the 

other gas atoms in the cell which can destroy the spin states of the xenon atoms. The 

difference now is that those collisions should be the only contributing factors to the 

decay, as opposed to the transverse spin decay which also depends on magnetic field non-

uniformities in the cell. As such, T1 must be longer than T2, but we still expect the T1 

decay curve to follow equation 1 in some form. 
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However, the question still remains: how do we measure the longitudinal lifetime if our 

signal decays with the shorter transverse lifetime? Well, take the system with no 

transverse drive, where the xenon atoms are polarized along the positive z axis but there 

is no precession. If we use a π pulse, which flips the xenon spins 180°, we know that the 

amount of time it takes for only 1/e of the xenon atoms to remain in the flipped 

orientation should be T1. Even still, we cannot monitor this transition of the z 

polarization because there is no common transverse component precession, so there is no 

signal. 

 

However, if we stimulate the precession using a π/2 pulse at some time during this 

transition, then the phase of the precession for the atoms that remain negatively polarized 

at the time of the pulse will be shifted 180° from those that have regained positive 

polarization. In other words, the two oppositely polarized atomic populations cause 

destructive interference which cancels out a portion of the signal following the pulse. 

Figure 40 illustrates this concept. 

 

 

Figure 40. Following a π pulse, a π/2 pulse puts xenon atoms of opposing polarizations into precession 

180 degrees out of phase from each other, resulting in destructive interference. 
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So, we begin the test with a π pulse and allow some time delay before applying the π/2 

pulse. If we vary our delay time for different tests and record the amplitude of the signal 

immediately following the π/2 pulse for each, we will begin to see the longitudinal spin 

decay curve. With short delay times, the signal is generated by the dominant population 

in the negative polarization state. As the delay increases, the signal reaches a zero which 

should represent the half-life, both polarization states being equally populated at the time 

of the π/2 pulse. If the delay is extended past the half-life, the signal grows back up as the 

population of positively polarized xenon atoms begins to outweigh the opposite spin state 

once again. Figure 41 shows a few sample data runs with varying delay times, as well as 

the overall curve after recording the amplitudes of all the data runs. 

 

 

Figure 41. Sample data runs for the delayed pulse method (left) and the full curve from recording the 

initial amplitude after the pulse for each of the data runs performed (right). 

 

Again, we have our two ways to derive the lifetime. The half-life corresponds to the zero 

crossing, which visually seems to occur at about 22 seconds, from which equation 2 gives 
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us a T1 of 31.74 seconds. We can also fit the data; we just need to modify it a bit first. 

See, the reason the signal amplitude grows back up is simply because we cannot measure 

negative amplitudes, but conceptually the sign of the signal on either side of the half-life 

should be opposite if we think of the curve as representing the population of a particular 

polarization state over time. In this light, we can multiply the amplitudes of all the points 

after the half-life by -1.  

 

Now we have something that much more closely resembles our exponential decay curve 

described by equation 1, as shown in Figure 42 (left). We can fit this with equation 1 

(noting that the vertical offset v will be much larger than usual), and we get a T1 value of 

30.69492 seconds. We can also choose to make the points before the half-life negative, 

effectively tracking the population of the other polarization state. The curve in that case 

should be described by subtracting the signal generated by the decaying population at any 

time from the signal that would occur if all the atoms were in the final state. More simply 

put, we subtract the decay curve from the steady state amplitude, giving us  

 

y = A[1 – e^(-t/τ)] + v,    (5) 

 

which we will refer to as our growth equation. In this case τ represents T1. The result of 

this modification to the data is also shown in Figure 42 (right), and the fit using equation 

5 yields a T1 of 30.69495 seconds. 
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Figure 42. The shape of the delayed pulse curve has been modified to represent the populations of the 

particular spin groups; the left curve represents the decay of the spin-down group and the right 

curve the growth of the spin-up group following the π pulse; both curves are shifted down due to the 

vertical offset inherent in measuring the absolute value. 

 

The reason there is a discrepancy between the two solutions (albeit very small) is that 

there is noise in the signal, so the raw data never reaches a true zero, and that offset gets 

carried over when we flip the data points. In this particular example we would not worry 

at all about such a small noise level, but when dealing with lower signals the discrepancy 

can be significant. Either way, the fit results are much more reliable than our visual 

estimate of the half-life, and in this case it is sufficient to say the T1 is around 30.7 

seconds. 

 

Now, it is nice to see the data this way because it gives us a curve we are familiar with, 

but the fastest and most consistent way to pull results is to leave the data alone and 

instead modify our fit function. We know we essentially have a decay curve, and 

presumably the initial amplitude when all of the xenon atoms are spin-down should 
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match the final amplitude when they have all returned to the spin-up state. For a decay 

curve, however, we are used to seeing some initial amplitude and a final value of zero. So 

what we really want to use to describe the delayed pulse curve is 

 

   y = |Ae^(-t/τ) – V|  + v,    (6) 

 

where V is the offset (something close to A/2) that allows the initial and final magnitudes 

of the curve to be equal. We take the absolute value so that the curve is always positive 

and thus will match the data, and v is our usual offset variable to account for any noise 

such that the data would never cleanly reach exactly zero. The results of this fit function 

are shown in Figure 43 below. 

 

 

Figure 43. Fitted longitudinal decay curve obtained using the delayed pulse method. For the purpose 

of demonstrating the shape of the curve, this example contains more data points than are typically 

collected. 
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Using equation 6, we never have to touch the raw data, and we come out with an estimate 

for the longitudinal lifetime from the fit, which we will call T1fit. On top of that, we can 

calculate the apparent half-life based on the fit values by setting y = v (ideally zero) and 

solving for t (which at that point is T1/2): 

 

T1/2 = |T1fit*LN(V/A)|           (7) 

 

and then we can solve for T1 from that value as well using equation 2, giving us another 

estimate of the lifetime based on the apparent zero crossing. We will call this value T10. 

So now we have very consistent means of determining T1 from both perspectives, and 

the solution values for this example are given in Table 5 below. What’s more, we can get 

a reasonably precise approximation for the half-life with as little as four data points, 

saving a great deal of time.  

 

Table 5. Delayed pulse solution values for curve in Figure 43 using equations 6, 7, and 2 

A 3.804228 

T1fit 30.81729 

T10 31.55821 

V 1.863479 

v 0.007199 

 

Although intuitively it seems that results from a curve fit would be the most reliable, 

there are several reasons we prefer the value derived from the half-life. In order for a fit 

to be reliable we must have sufficiently many data points to define the shape of the curve, 

and since each data point can take up to ten minutes to generate (depending upon the 

actual value of T1) we rarely collect as many data points as in the previous example. We 
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usually strive to get two data points on either side of the half-life, as shown in Figure 44 

below. Of course, there is some guessing that goes on at first, but the slope defined by the 

first two data points gives us a rough idea of the half-life and helps us determine what 

delay times to try next. 

 

 

Figure 44. Typical results for the T1 delayed pulse method with only two data points on either side of 

the half-life. Although the shape of the decay curve cannot be resolved, a fairly accurate estimate of 

the half-life can be inferred from the apparent zero crossing. 

 

Clearly, with so few points we cannot hope to resolve the shape of the curve, and so the 

fit-based T1fit is hardly ever reliable; the half-life-projected T10 value, on the other hand, 

cannot be very far off since the zero crossing must fall between the two minimum data 

points, and equation 7 yields relatively consistent estimates for the half-life even with 

such sparse data. Figure 45 below illustrates the outcomes from fitting this example 

longitudinal decay curve, varying the number of data points after the half-life that we use 

in the fit. 
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Figure 45. The T10 value remains quite consistent regardless of how many data points are used in the 

fit, whereas the T1fit value is only reliable when many points are used. 

 

Had we performed this test the way we usually do, using only four or so data points (two 

or three before the zero crossing and two or three after), the fit-based T1fit could have 

been as much as 33% off from the more accurate value we get by fitting the whole curve. 

Not to mention, the points closest to zero are inherently the noisiest, so the shape in that 

region will most likely always be distorted. On the other hand, we get highly consistent 

results by using equation 7 to find the half-life from the fit values and then putting that 

through equation 2 to find T10, regardless of the number of data points used. This, more 

than anything, is our motivation for relying on the half-life as our main point of analysis 

when performing the delayed pulse method. 

 

Now, as with the free induction decay method for measuring T2, we must be a little more 

careful when measuring the longitudinal lifetime for 
131

Xe. Of course, we can try the 

same approach in analyzing delayed pulse data for the electric quadrupole-coupled 
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isotope, and if nothing else we can usually obtain a clean enough curve to see the zero 

crossing. The issue is that at low signal amplitudes, as for the data points near the zero 

crossing, the asymmetries in the quadropule-coupled populations become more apparent, 

as shown in Figure 46 below, and therefore our fit function becomes less valid. 

 

 

Figure 46. The asymmetry in the quadrupole-coupled 
131

Xe FFT becomes more exaggerated for low-

amplitude tests like the delayed pulse method near the zero crossing. This causes difficulties for the 

fit function for 
131

Xe decay curves and thus more scatter in the overall delayed pulse curve. 

 

To circumvent this issue we can simply take the first data point in the free induction 

decay to be the amplitude and ignore the fit altogether. Of course, we want to stick to 

using the fit whenever valid, but in situations such as this where the fit cannot find a 

reasonable solution, we usually end up with cleaner results by just ignoring the invalid fit. 

Table 6 and Figure 47 below compare the two analysis approaches for the same 
131

Xe 

delayed pulse test. 
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Table 6. Reported T1 values for 
131

Xe Delayed Pulse Method using Different Analysis Approaches 

Variable Using Fit Amplitudes Using Data Amplitudes % Difference 

T1fit 20.24007 19.66101 2.902478 

T10 20.11638 19.98083 0.676123 

 

 

Figure 47. Comparison between analysis approaches for the delayed pulse method for 
131

Xe. On the 

left is the curve obtained by using the fit-reported amplitudes; on the right is the curve from simply 

taking the amplitude of the first data point in the decay curve for each delay run.  

 

While the two analysis approaches yield very similar results, the curve obtained by taking 

the initial amplitude of the raw data (right in Figure 38) is clearly tighter and therefore 

assumed to be more reliable. Also note that the half-life based T10 values vary less than 

their fit-based counterparts, further supporting our decision to use T10 as the best option 

for the delayed pulse method. 

 

The main drawback of the delayed pulse method is that it takes a long time to extract a 

value for T1. Whenever we apply a pulse, it takes time for the xenon group to return to 

steady state, and so we need to wait at least five T1 lifetimes between each delay run. 

Depending on the expected T1 value, it can take ten minutes to collect each data point, 
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requiring at least 40 minutes to measure T1. This motivates us to collect as few data 

points as possible, which is not a typical sign of a good test method, so we would like to 

improve this situation. 

 

Either way, that covers our industry standard methods for measuring both T2 and T1, and 

these methods have proven to be quite consistent and reliable. However, there are other 

methods that can work and can even be quite beneficial to us; they just have not been set 

up for use on our equipment specifically.  

 

 

B. New Methods for Measuring Spin Lifetimes 

 

Now, let us go over the basic premise for each and discuss some of the expected 

advantages and drawbacks of using these other methods before we get into their actual 

implementation. 

 

 

1. Measuring T2 Using the Stimulated Growth Method 

 

We already discussed the industry standard method for measuring T2 by monitoring the 

free induction decay following a π/2 pulse. During that discussion we also covered the 

option of using a small-amplitude sustained drive instead of the pulse to stimulate the 

atomic precession and then pulling the drive at the start of the FID test. Well, what if we 
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instead consider the beginning of the test to be the instant we first connect the small-

amplitude sustained drive? In theory, the signal should grow up to some amplitude at 

which it reaches a steady state, and that growth should happen at a rate dependent upon 

T2.  

 

We can look at this scenario in a similar light to the way we thought of the delayed pulse 

method; we essentially have two steady state conditions and we are interested in the rate 

of transition from one to the other. The difference is that in the case of the delayed pulse, 

both conditions output signal because we stimulate them in opposite polarization states. 

In this method and in the FID we have on one side the state where the atoms are polarized 

but not stimulated and on the other side the state where the atoms are fully stimulated. 

We already used equation 1 to describe the transition from stimulated to not in the free 

induction decay method, so we expect to use equation 5 to describe the transition going 

the other way.  

 

If we have the system running (lasers and magnetic fields at the proper settings for NMR) 

but no transverse drive connected, then the xenon polarizations are aligned along z but 

there is no precession about z and therefore no signal. When we first apply the drive on x, 

all of the xenon atoms polarized along z at that instant should begin to get stimulated and 

the signal should immediately grow up due to that. However, during the process of 

stimulation the atoms lose their coherence either by collisions which destroy their spin 

states or by passing through non-uniformities in the magnetic field. Eventually, they are 
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again polarized through spin exchange with the alkali atoms, at which point they get 

stimulated once again. 

 

So, in the first moments of the growth process it’s all gain and almost no loss in 

stimulation, and thus the growth rate is fast. However, as time passes, atoms lose their 

spins and newly polarized atoms begin to get stimulated, adding to the overall signal but 

at a slower rate. This constant ebb and flow of the level of atomic stimulation should 

eventually reach a steady state where the rate of signal loss from spin destruction and de-

coherence is equal to the rate of signal gain from newly polarized atoms, and the signal 

profile from the total process over time should like the theoretical curve in Figure 48 

below, generated by equation 5. 

 

 

Figure 48. Ideal curve expected from the T2 growth method, constructed using equation 5. 

 

We should be able to fit this curve using equation 5 and come out with a value for T2 just 

as we did for the FID method.  
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The main advantage to this method would be that when we stimulate the atomic 

precession with a transverse drive, we force the atomic precession into the frequency of 

the drive, even if the drive does not exactly match the natural resonance. This will be an 

important tool for us as we will discuss shortly, but for now it means the drive should 

reduce or eliminate the quadrupole effects from the 
131

Xe T2 test, which would speed up 

the analysis process slightly. On top of that, consistent successful demonstration of the 

growth method would provide a way to confirm our measurements from the FID method. 

If nothing else we can at least hope to gain further insight into the stimulation process.  

 

Unfortunately, there are major complications in trying to run the growth method this way. 

At best, there is a great deal of inconsistency; often the shapes do not quite match from 

run to run, and usually the fit function cannot find a reasonable solution. Some example 

data sets from failed T2 growth tests are presented in Figure 49 below. 

 

 

Figure 49. Example data sets exhibiting complications in the T2 growth method. 

 



97 

 

Clearly, these look nothing like the trend described by equation 5, and these are not fluke 

mishaps but quite typical types of results. Even if we obtain exceptionally clean data 

(after many failed attempts), it usually looks something like the data in Figure 50 below. 

Although the first 50 seconds or so worth of data seem to follow equation 5 fairly well, 

there are certainly defects in the curve. The fit solution shown in the third chart returns a 

T2 value within one second of the FID results, which is indeed encouraging, but we still 

cannot justify using this test as a competitor to the FID T2 method. 

 

 

Figure 50. An exceptionally well behaved T2 growth test still exhibits very clear shape deformities.  
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To better understand the odd behavior of this method, we must explore the effects of 

changing some of the test conditions. The most obvious choices to begin with would be 

the drive parameters, namely the amplitude and frequency, since the stimulating drive is 

the newly introduced portion of the method. 

 

 

a. Shape Inconsistencies in the Growth Method 

 

The most common and frustrating source of inconsistency is that it is impossible to match 

the natural frequency exactly with the drive (at least with our open-loop test setup). If the 

frequency does not match the natural atomic resonance, the process of stimulating atomic 

precession is slightly more complex.  

 

As soon as the drive pushes a xenon atom’s spin off the z axis, the atom immediately 

begins its natural precession about z at frequency fLarmor based on the magnetic field 

strength. Over time, the drive pulls the atomic precession into its own frequency fdrive and 

during that process both frequencies are present in all stimulated atoms. This process is 

difficult to visualize in three dimensions, but essentially the atom accumulates some 

wobble due to the discrepancy between z DC field strength and drive frequency. The two 

frequencies will interfere with one another as the signal passes through the demodulator, 

adding to the overall amplitude when the two frequencies match in phase and subtracting 

when they oppose. This results in beating in the signal at a period of 
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Tbeat = 1/|fdrive – fLarmor|,             (8) 

 

which will be very important to us shortly. For now, it explains some of the effects we 

see in the failed tests. The farther off the natural resonance we drive, the faster the 

beating. 

 

The other pitfall to avoid is that the drive amplitude has a threshold above which the 

theory behind this method breaks down. If we drive too hard, we can actually temporarily 

push the atomic stimulation so far before collisions and magnetic field non-uniformities 

become a significant factor that the signal overshoots the steady state amplitude and then 

slowly settles back down. This probably partially explains the strange shape of the 

profiles in Figure 49 above. This also introduces insurmountable problems for our fit 

function. We avoid this issue by maintaining low drive amplitudes, which severely limits 

our SNR capabilities in this test and causes more random scatter in our data profiles. 

 

All in all, the sustained drive complicates things, which is unfortunate since all three of 

our new test methods require it. However, we can craft quite a useful tool by intentionally 

driving off the resonance frequency. 
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b. Offsetting the Drive Frequency to Eliminate Beating 

 

If we perform a T2 growth measurement with the same procedure as discussed above but 

simply set our drive frequency to be something like 0.5 Hz higher than the natural 

Larmor frequency, we get data like that shown in Figure 51 below. 

 

 

Figure 51. Raw data from a T2 growth test with intentional drive frequency offset. 

 

The FFT displays the two distinct frequencies, and the relatively high-frequency beating 

is quite apparent in the raw data. Notice that the peaks of the beats form a sort of decay 

curve throughout the run, and the valleys a growth curve. However, if we use an arbitrary 

window size, like our usual 0.5 seconds, it does not matter which frequency we choose to 

create our data profile; we end up with the useless scatter shown in Figure 52 below. 
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Figure 52. Signal profile using 0.5 seconds window size from the raw data in Figure 42 above. 

 

Now, what we see here is the decay of the beating itself as the signal from the natural 

precession diminishes, but there is no obvious order to it and clearly we cannot fit a 

profile like this with equation 1 or equation 5. The trick is to set our window size equal to 

the beat period so that each data point in our profile represents the amplitude of a single 

beat. We determine the two frequencies from the FFT and plug them into equation 8 to 

find our window size of  

 

Tbeat = 1/|166.0013Hz – 165.5619Hz| = 2.27583 seconds, 

 

which we use to generate two profiles: one focused on the amplitude of fLarmor throughout 

the run and one on fdrive, both of which are displayed in Figure 53. 
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Figure 53. Signal profiles of data from Figure 51, generated using window size of Tbeat focused on 

fLarmor (top) and fdrive (bottom). 

 

Now we have gotten to the heart of the matter. There are several key pieces of 

information to gather from these two profiles. First, notice that the natural precession 

decays down to zero, following quite a nice free induction decay curve (hopefully 

governed by T2, which we will get to shortly). Second, notice that the stimulated 

precession remains practically constant in amplitude, and what’s more, maintains roughly 

the same amplitude that the natural precession begins with. This explains the behavior of 

the raw data. When the amplitudes of the so-called wobble and the natural precession are 

equal at the start of the test, the signal nearly cancels out in destructive interference and 

doubles in constructive interference; when the natural precession has disappeared, we are 

left with the constant-amplitude driven precession at the end of the run. 
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So it seems that somehow the supposed growth is actually the result of subtracting the 

signal of the natural precession from that of the driven precession. We could probably get 

away with fitting the natural decay using equation 1 but since we had set out to use the 

growth method, we may as well go all the way and generate our growth curve by 

subtracting the two profiles. We then fit it using equation 5, as shown in Figure 54 below.  

 

 

Figure 54. Fitted growth of driven precession matches T2 from FID within 10% 

 

We would like to get an idea of the statistical consistency of results when using this 

method. To do so, we perform this growth test using the same drive frequency five times, 

and we also perform an FID test by pulling the injected drive between each of these five 

tests. Now we can compare the two methods using the same setup parameters for both. 

We find the results presented in Table 7 below. 

 

Table 7. Comparison of example results between growth and decay methods for measuring T2 

Method T2 Value Statistical Uncertainty 

Growth 20.26597 0.389839119 

Decay 19.65804 0.178888498 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

0 50 100 150 200 

Si
gn

al
 A

m
p

li
tu

d
e

 (
V

) 

Time (sec) 



104 

 

Comparing statistical uncertainties, the growth method has about half the precision of the 

decay method; if we take the T2 decay measurement to be our true value, the T2 growth 

measurement is about 3.1% off. To be sure, the growth value still seems to be a well 

behaved measurement, but we have no reason to favor it. 

 

Now, it seems strange that we cannot monitor any physical signal growth but rather must 

construct it ourselves from the two separate profiles. Quite possibly, our visualization of 

the physics behind this method is slightly incorrect or incomplete. Still, this approach is 

sufficient to present the extremely important technique of stimulating precession by 

intentionally driving off the natural resonance, the significance of which will stand out 

prominently in our discussion of the next test method, the Flipped Polarization method. 

Before we use it for that, however, we should first try to understand the limits and 

consequences of doing so. Most importantly, what happens to our results as we drive 

farther off resonance, and are the effects symmetric about the natural frequency? We 

investigate by performing a series of growth measurements using various drive 

frequencies, the offset from the natural resonance sweeping from roughly -1.0 Hz to +1.0 

Hz; the results are shown in Figure 55. Anything much farther off resonance will not 

stimulate enough signal to work with. 
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Figure 55. T2 growth measurement dependence on drive frequency offset.  

 

The drive frequency offset certainly seems to have an effect on the results. The statistical 

uncertainty for these six measurements is about 0.839 seconds, which is more than 

double the uncertainty associated with repeating the measurement for a single drive offset 

as was presented in Table 7. Now, the true value of the T2 here may not necessarily be 

the 19.66 seconds determined by decay measurements earlier, given that this test was 

performed on a different day under different tune-up conditions. Still, the only regions of 

drive offset that seem to yield relatively consistent restults are out on the wings, when the 

offset is large. Under such conditions, the measured T2 values seem to converge towards 

something like 19 seconds. 

 

It is possible that the large errors associated with the small-offset region may be due to 

overstimulation; since the drive is much more effective when closer to resonance, 

perhaps the drive amplitude was too high to yield accurate results in that region. 

Secondly, as described by equation 8, the closer to resonance we drive, the larger we 

must make our window size, which limits our data resolution and the effectiveness of the 

fit function. So, as a rule of thumb we may as well try to use a fairly large drive offset 
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when performing this type of test; usually we drive somewhere between 0.3 and 0.6 Hz 

above the resonance frequency. 

 

Before we move on to the next test, we want to make note that our hope for this method 

to eliminate quadrupole effects in 
131

Xe T2 measurements will unfortunately not be 

realized using this approach. Since we construct our growth curve directly from the 

natural decay curve, we end up with the same quadrupole beating in the growth curve as 

in the decay curve, as shown below in Figure 56. 

 

 

Figure 56 Growth method used to measure 
131

Xe T2. The quadrupole beating effects are not 

eliminated using this approach to the growth method. 

 

Even though in this case we can still manage to fit the growth curve without including the 

quadrupole description, we have gained no advantage over the FID method. On top of 

that, the analysis required to construct the growth curve takes far longer than the FID 

method, and it is more difficult to determine the test start time, so we really have no 

justification to use the growth method as our primary T2 measurement technique.  
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Still, we have gained some truly valuable experience from this method; plus, our real 

motivation in exploring these new test methods at all is to find a faster way to extract T1. 

The following two methods, if demonstrated successfully, could reduce the testing times 

needed for T1 measurements by as much as an order of magnitude. 

 

 

2. Measuring T1 Using the Flipped Polarization Method 

 

With the Delayed Pulse Method, we have to perform an entire data collection run 

(including the settling time in between each run, a minimum of five T1 lifetimes) for 

every single data point. With a bare minimum of four points needed to make a conclusive 

measurement, our industry standard T1 test usually takes at least 20 minutes for each 

isotope, whereas the Flipped Polarization Method could potentially yield a more precise 

measurement in a single run, taking at most a few minutes. As we look to the future and 

the prospect of mass production of high-quality NMR gyro technology, reducing cell 

testing times will become very important. From a science perspective, faster results 

provide the means to develop statistical data using repeated measurements as well as the 

ability to study drive transience characteristics more effectively. In other words, it would 

be a win-win situation to get this method running properly. 

 

The basic idea of the flipped polarization method is to try to monitor the xenon shift from 

one polarization to the other in real time. There are actually two ways that we should be 

able to accomplish this. Our original idea involves altering the polarization of the pump 
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laser. The light from the laser is linearly polarized before passing through a quarter-wave 

(λ/4) plate, angled appropriately, such that the outgoing pump light is circularly 

polarized. Turning the quarter-wave plate 90 degrees reverses the polarization of the 

outgoing light (from σ
+
 to σ

-
 or vice versa), as illustrated in Figure 57 below.   

 

 

Figure 57. Rotating the quarter-wave plate 90 degrees reverses the direction of circular polarization 

of the outgoing pump laser light. 

 

This in turn reverses the polarization of the alkali atoms and, through spin exchange, that 

of the xenon as well. We will refer to this implementation as the quarter-wave plate 

approach. A later-discovered implementation of the flipped polarization method keeps 

the lasers untouched and instead utilizes the π pulse to flip the xenon spins; this we will 

call the π pulse approach.  
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a. The Quarter-Wave Plate Approach 

 

It should be noted that the polarization direction of the alkali vapor measurably affects 

the z magnetic field and thus the xenon precession frequencies. Fortunately, the alkali 

pumping process reaches steady state in a matter of milliseconds at most; the xenon 

lifetimes we are measuring are 3 to 5 orders of magnitude longer than that, so we can 

presumably neglect the transience of the alkali in the very start of the test.  

 

To begin the test, we expect we’ll want the system tuned up as usual, with the z fields set 

for a specific alkali orientation and the transverse drive frequency set to match the xenon 

Larmor frequency for a specific laser polarization, say σ
+
 light. Once everything is tuned 

properly, we prepare the test by rotating the quarter wave plate so that the pump laser 

now emits σ
-
 light. We wait several minutes (at least five T1 times) to ensure that nearly 

all of the polarized xenon atoms are spin down before the test. Finally, after sufficient 

waiting, we begin recording data, wait a few seconds, and then quickly rotate the plate 

back to its original orientation.  

 

We expect to see the xenon signal grow at first, since the alkali polarization now 

generates the correct magnetic field such that the natural xenon precession matches the x 

drive frequency much more closely. Shortly thereafter, however, the signal should begin 

to look like a T1 delayed pulse curve; the alkali atoms, now spin-up from the newly 

reintroduced σ
+
 light, influence the longitudinal spins of the xenon atoms which then 

begin to cancel each other out. As usual, the signal should eventually grow back up as the 
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spin-up xenon population begins to outweigh the spin-down. The theoretical process is 

illustrated below in Figure 58. 

 

 

Figure 58. Visual representation of the quarter-wave plate approach to the flipped polarization 

method. The test is prepared with σ
-
 light until steady state precession is achieved. The quarter-wave 

plate is then flipped, introducing σ
+
 light and altering the polarization of the alkali. The xenon 

stimulation increases for the still negatively polarized atoms as the magnetic field from the alkali now 

brings the natural xenon precession frequency up to match the drive frequency. Meanwhile, the 

positively polarized alkali begins spin exchange with the xenon, resulting in simultaneous stimulated 

growth and polarization shift in the xenon population. 

 

Unlike the delayed pulse method, in which our only indication of xenon spin populations 

comes from a π/2 pulse sometime in the middle of the transition process, we can now 

monitor the relative populations of the xenon spin groups throughout the whole run and 

watch the shift in longitudinal polarization in real-time, including the zero-crossing 
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marking the apparent half-life. Below in Figure 59 is an example data set for an attempt 

at this test method. 

 

 

Figure 59. Typical data for the Flipped Polarization method by rotating the quarter-wave plate. As 

usual, the raw data is accompanied by the signal profile and the frequency-spectrum data used to 

create it. 

 

Notice that in the beginning of the run before the plate flip, there is a small but still 

noticeable signal due to the off-resonance stimulation. As we expected, once the plate is 

flipped and the alkali vapor returns to the spin-up state, the drive frequency matches the 

xenon precession frequency much more closely and we see the signal grow up 

immediately before decaying due to longitudinal spin cancellation. 
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Also notice that the FFT does not display a clean peak. This is most likely due to the 

drive being slightly offset from the natural Larmor frequency. However, it is possible that 

the xenon polarization level is high enough to also measurably affect the z magnetic field 

(to a much lesser extent than the alkali), in which case the precession frequency would 

shift slightly as the xenon polarization changes.  Whatever the cause, we cannot fix or 

eliminate the frequency spread for now, so we merely keep it in mind. 

 

Now, if this method simply worked as we first expected, we should be able to calculate 

T1 by plugging the apparent half-life at about 10.9 seconds into equation 2 to find a 

longitudinal lifetime of about 15.7 seconds. 

 

The bad news is the curve obtained from the delayed pulse method using this same cell 

for the same xenon isotope at the same temperature, shown below in Figure 60. 

 

 

Figure 60. The delayed pulse curve exhibits an apparent half-life much lower than that of the flipped 

polarization curve in Figure 50. This discrepancy between the two methods is very common but not 

consistent in magnitude. 
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Disappointingly, this implementation of the flipped polarization method almost always 

exhibits a half-life higher, usually significantly so, than the delayed pulse results. In this 

example, the delayed pulse yields a lifetime of 11.2 seconds, a discrepancy of about 

40.2%. To add to the frustration, we observe little to no consistency in the magnitude of 

the difference between the results from the two methods from cell to cell. 

 

Still, if our understanding of the physics is correct, we should be able to fit the profile in 

Figure 50 by combining the T2 and T1 growth curves, or in other words multiplying 

equations 5 and 6. This gives us 

 

y = A*|e^(-t/T1) – V|*[1 – e^(-t/T2)] + v    (9) 

 

for our fit function. After much trial and error for initial fit guesses, Figure 52 below 

shows the profile with the solved fit overlaid, and Table 8 shows the fit parameters 

associated with the solution.  

 

Table 8. Values used to generate fit solution in Figure 61 below. 

Variable Value Units 

A 1261.344 Volts 

T2 8.146046 Seconds 

T1 6.436635 Seconds 

V 0.190417 Volts 

v 10.43908 Volts 
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Figure 61. Fitted curve generated by the quarter-wave plate approach to the flipped polarization 

method. The parameters used to generate the fit solution are listed in Table 8 above. 

 

While the fit function seems to be able to match the shape of the curve fairly well, there 

are several huge red flags. First of all, notice that the T2 value is larger than the T1, a 

physical impossibility. Second, the solved T1 value is 42.8% lower than the delayed 

pulse value, so not only is it still far off but it is also extremely inconsistent with the 

apparent half-life. Third, note that the relationship of A to V is far different from the 2:1 

ratio we like to see for the delayed pulse curve. These are all warnings suggesting that, 

even though the fit looks pretty good, it is in fact useless to us as is. At best we can hope 

the problem lies in our experimental approach, and not in our fit function. 

 

Fortunately, we can test this hypothesis because there is a second approach to the flipped 

polarization method – the π pulse approach – of which we conceived well into our 

investigation of the flipped polarization method. 
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b. The π Pulse Approach 

 

Of course, the goal remains the same, but the implementation is far simpler. In the plate 

approach we have to deal with the intrinsic T2 growth associated with the change in 

magnetic field strength, not to mention any inconsistencies in the physical rotation of the 

plate. In this approach we never alter the polarization of the light or the alkali. Instead, 

we allow steady state stimulation as usual and then, shortly after initiating data collection, 

we use a π pulse to flip the xenon spins. This preserves any level of stimulation the xenon 

atoms had at the time of the pulse; it simply reverses the spins, as shown in Figure 62 

below. The atoms then begin returning to the initial polarization and are again stimulated 

by the drive, as we are now quite used to seeing. 

 

 

Figure 62. Visual representation of the pulse approach to the flipped polarization method. With the 

atomic precession in steady state from the drive, a π pulse is applied which flips all of the polarized 

xenon spins by 180°. As time passes, the xenon atoms return to positive polarization through 

collisions with the pumped alkali and are again stimulated by the drive. 
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To implement this method, we must inject the small transverse drive on x as usual, on 

which we usually apply the pulse as well. What we realized is that for this test, the pulse 

can be injected on y. Of course, this means it is picked up very strongly in the data, but it 

should not matter since all of the data of interest comes after the pulse. An example data 

profile using this approach for the same cell and isotope is shown below in Figure 63. 

 

 

Figure 63. Data profile obtained using the pulse approach to the flipped polarization method. 

 

This curve looks much more similar to the delayed pulse curve, but it still has some 

strange behavior at the start. Most likely, the π pulse used was not exactly correct, 

causing slightly higher stimulation at the start which decays throughout the run. Still, it is 

somewhat comforting that the apparent half-life is quite similar between the two 

approaches; the method as a whole seems to be self-consistent. Whatever is causing the 

discrepancy in apparent half-life between this method and the delayed pulse method is a 

real effect and is universal across the two approaches to the flipped polarization method.  

We can investigate a little further by repeating the two approaches with a lower 

amplitude drive to see what, if any, effects the level of stimulation has on the shapes of 

the curves. The two profiles for these repeated tests are presented in Figure 64 below. 
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Figure 64. The two approaches to the flipped polarization method repeated with a low-amplitude 

drive 

 

We often see shape deformities near the region of the zero crossing when the cross-axis 

rejection is low. It is impossible to align the coil axes perfectly, and so for these tests 

involving the transverse drive it is unfortunately common for the usually negligible y-

component of the x drive to bleed through on the Faraday detection. Still, even when the 

data never hits a clear zero we can usually estimate the half-life fairly well. 

 

The important thing is that the apparent half-life seems unaffected by the drive amplitude, 

further convincing us that the T1 effects we are measuring here are real and consistent. 

The drive amplitude does seem to affect the shape of the pulse curve, however, which 

leads us to believe that the problem has to do with our understanding of the T2 effects or 

at least our representation of them in the fit function. Also, for both cases the SNR is 

clearly much lower as the scatter is more noticeable, as is the low-frequency beating from 

the inevitable slight frequency offset. 
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For a long time I was stuck at this point, clearly able to see the shapes we expect but 

rarely finding results consistent with the delayed pulse method. I went to great lengths to 

verify every step of the experimental procedure and the analysis of the data several times. 

I even tried using the raw data profile instead of that constructed from the FFT 

amplitudes and found no improvements. I was close to giving up on ever finding a 

solution, and then I discovered the technique of driving off resonance, as we discussed 

for the T2 growth method. 

 

 

c. The Off-Resonance Flipped Polarization Method 

 

Recall, from the T2 growth example, the data profile constructed by focusing on the drive 

frequency in Figure 44; the amplitude of the profile shoots immediately up to roughly the 

steady state value and remains there throughout the test. We take this behavior as an 

indication that we can eliminate most of the T2 effects by driving off resonance and 

constructing the profile from the drive frequency. Of course, for the growth method the 

T2 is the only value of interest so eliminating its effects would have been useless; here, 

on the other hand, we would certainly prefer to look at a pure T1 curve to see if that 

resolves our problem. 

 

We continue on, using a new cell whose delayed pulse results are shown in Figure 65 

below. 
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Figure 65. Delayed pulse curve for current cell on which to perform off-resonance flipped 

polarization tests. 

 

So now we know to look for a zero crossing of about 24 seconds when trying to 

determine the success of the flipped polarization method using the new off-resonance 

drive technique. We perform both the plate approach and the pulse approach to the test, 

this time setting the drive frequency to 165.8 Hz, about 0.2 Hz higher than the natural 

resonance. The data from both tests are shown in Figure 66 below. 

 

0 

0.5 

1 

1.5 

2 

10 15 20 25 30 35 40 A
m

p
lit

u
d

e 
Fo

ll
o

w
in

g 
P

u
ls

e
 (

V
) 

Delay Time (sec) 



120 

 

 

Figure 66. Raw data from both approaches to the flipped polarization method using a stimulating 

drive that was intentionally offset from the natural resonance frequency. 

 

Notice the increased strength in the signal from the natural precession relative to the drive 

when using the pulse approach. This is due to the fact that the π pulse is imperfect and 

almost always introduces some extra level of initial stimulation. For the plate approach, 

the T2 effects are so small in the profile that even with an arbitrary window size we can 

clearly see the T1 curve described by equation 6, although it certainly carries some noise 

along with the beating. On the other hand, the pulse approach profile exhibits an entirely 

different shape in which the beating plays a severe role. Much like the on-resonance 

attempts at this method, the time at which the profile seems to hit zero occurs long after 

the half-life from the delayed pulse method. Interestingly though, the amplitude of the 

beating itself seems to come down to a minimum and then grow back up, and that 

minimum coincides with the expected half-life. 
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In both cases, we use equation 8 to find the proper window size and construct our real 

data profiles along with the fit solutions using equation 6, the details of which are 

presented in Table 9 and Figure 67 below.  

 

Table 9. Summary of results comparing both approaches of the off-resonance flipped polarization 

(FP) method to the delayed pulse (DP) method. 

 FP Plate FP Pulse DP Units 

A 6.919296 13.92363 11.12021 Volts 

T1fit 36.4768 36.22239 28.77839 Seconds 

T10 35.66958 33.46045 33.98598 Seconds 

V 3.513126 7.339662 4.904676 Volts 

v 0.009721 0.255535 0.008523 Volts 

 

 

Figure 67. Signal profiles constructed from data in Figure 66 above, generated using the proper 

window size to eliminate dual-frequency beating and fitted with solutions using equation 6. 

 

Much to our delight, the results from both tests match the delayed pulse T10 value to 

within 10%! They are also extremely similar to one another both in shape and zero-

crossing. The results confirm that we can use either approach, so we usually choose the 

pulse approach given the ease of setup and the consistent data start time it provides. 
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To get an idea of the level of consistency in this measurement, we repeat the pulse test 

ten times to find the statistics outlined in Table 10 below, displaying the mean and scatter 

associated with both T1 metrics as well as for the average of the two metrics for each run. 

 

Table 10. Statistical results from ten repeated measurements of the 
129

Xe T1 using the off-resonance 

flipped polarization method. 

129
Xe T1fit (sec) T10 (sec) Average (sec) 

Statistical Mean 32.24614605 31.930872 32.08851 

Statistical Uncertainty 0.16732932 0.45668 0.213586 

 

The T1fit value seems to be the most precise, presumably because sometimes we get 

curves in which the initial and final amplitudes do not match. This tends to change the 

zero-crossing but not the overall shape of the curve, or in other words it seems to affect 

the relationship between the total amplitude A of the signal and the vertical offset V more 

than any other fit parameters in equation 6. Even though V seems to remain constant, if 

the ratio of A/V strays far from a value of 2, we will see significant changes in the time of 

the zero-crossing.  

 

For some reason, however, when we use this method to measure the 
131

Xe T1 we see this 

effect occur more often and to a greater extent. It also does seem to affect the T1fit value 

more noticeably for 
131

Xe.
  
For example, compare the two fitted profiles below in Figure 

68, whose solution parameters are given in Table 11. Both tests were performed for 
131

Xe 

in the same cell under the same conditions, literally minutes apart from one another, and 

yet the results turned out quite different. 
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Table  11. Comparison of solutions for differently shaped 
131

Xe T1FP curves shown below 

 Run 1 Run 2 Units 

A 2.054513 1.366302 Volts 

T1fit 17.07681 23.41524 Seconds 

T10 25.34726 18.7411 Seconds 

V 0.734324 0.784527 Volts 

v 0.108032 0.079789 Volts 

 

 

Figure 68. Comparison of differently shaped T1 flipped polarization curves for 
131

Xe. 

 

Notice that when the initial amplitude is greater than the final amplitude, the T10 value is 

greater than the T1fit value and vice versa. Also notice that there is quite a large 

discrepancy in the T1 metrics between the two data sets. The shape of the curve in Run 1 

could be due to a π pulse that introduced extra stimulation, but we would expect that to 

disappear with the T2 effects. The shape of Run 2 seems to indicate that the polarization 

had not fully recovered before the test was started, but we were careful to allow the same 

settling time between the data runs. When all is said and done, the statistics for ten 
131

Xe 

flipped polarization tests are as listed in Table 12 below. 
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Table 12. Statistics for 
131

Xe off-resonance flipped polarization T1 results 

131
Xe T1fit (sec) T10 (sec) Average (sec) 

Statistical Mean 20.66189414 21.99977 21.33083 

Statistical Error 0.82087794 0.7528625 0.080835 

 

As we expected, given the strange inconsistencies in the shapes of the curves, the two T1 

metrics have much larger error when used for 
131

Xe. Strangely, however, when taking the 

average of the two metrics we end up with an extremely consistent measurement of T1. It 

is unclear why the 
131

Xe isotope exhibits less consistent behavior than 
129

Xe; it most likely 

has something to do with the quadrupole interactions with both the drive and the pulse 

simultaneously. We at least know that this technique has a measureable effect on the 

quadrupole population relative to the dipole population of 
131

Xe atoms because the 

frequency-spectrum data from the flipped polarization method often differs from the FID 

FFT, as shown in Figure 69 below.  

 

 

Figure 69. Comparison of FFT results for 
131

Xe using Flipped Polarization method and FID method. 

Notice that the quadrupole-induced side peaks seem to have the same frequency separation in both 

cases, but their amplitudes relative to the center peak are much higher in the case of the Flipped 

Polarization method. 



125 

 

Although the frequency spacing seems to remain the same, the flipped polarization 

method seems to bring up the relative amplitudes of the side peaks to the point that they 

actually outweigh the central peak. This may explain the higher occurrence of strange 

shapes when measuring the 
131

Xe T1; since equation 8 is only capable of eliminating the 

T2 effects from the dipole population, quadrupole effects may still distort the curves. In 

any case, we at least seem able to produce reliable results using the average of the two 

metrics. 

 

So, we have proven we can meet a pretty high level of accuracy with the flipped 

polarization method. However, if we want to replace our old method completely, we need 

to be confident that we can distinguish whether a given data run was successful or not. To 

do so, we must understand the sensitivities of the method and identify the most 

significant contributors to inaccurate results. As such, we want to explore some of the 

parameters responsible for shape defects even when using the off-resonance drive. 

 

 

d. Sensitivities in Flipped Polarization Results 

 

Experimentally, we suspect that the shape defects are caused by too large or too small a 

pulse, too high a drive frequency offset, insufficient settling time before the test, or a 

combination of these factors. On the analysis side, we wonder how precise our 

determination of the window size must be. 
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We begin by trying the 
129

Xe test over several pulse amplitudes ranging from a π pulse 

down to nearly a π/2 pulse. The results are actually quite interesting visually, so we 

present all of the curves below in Figure 70, labeled by pulse strength. 

 

 

Figure 70. Flipped polarization curves obtained using various pulse strengths. 

 

Notice that between 2.97 V and 2.37 V, the initial and final amplitudes show greater 

discrepancies with smaller pulse strengths. Then, right around what would be a 3π/4 

pulse, the relationship between the two amplitudes seems to reset, although it definitely 

exhibits more extreme changes with the lower-strength pulses.  

 

Of course, we also want to see the trend in fit solution parameters over this range of pulse 

strengths, so we plot the values of interest against pulse strength as shown in Figure 71 

below. 
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Figure 71. Relevant fit solution parameters plotted against pulse strength. 

 

Again, we see a clear reset of the trends at the 2.17 V pulse mark. We find the most 

reliable results come from the tests in which the ratio of A/V is close to 2. With the 

exception of the amplitude ratio for the 1.77 V run, which probably had some external 

influence that was not accounted for, the two regions of pulse strength return extremely 

similar trends. 

 

It is important to notice that the sensitivity to pulse strength varies greatly between the 

two T1 metrics. The T1fit values only vary by about 5% of the maximum reported value, 

while the T10 values vary by almost 50%. For this reason, we tend to trust the T1fit value 

as the real measurement when using the flipped polarization method. So, for delayed 

pulse tests we use T10 and for flipped polarization we use T1fit. Either way, the two 

metrics should agree to high precision if the flipped polarization test is performed 

correctly, as indicated by the 2.97 V run. If that is not the case for a given run, we now 

know to repeat the test. 
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We would generally expect the shape defects to become more prominent as we get farther 

off from a true π pulse, so overall our predictions are correct. We would not expect a 3π/4 

pulse to return data that competes with the π pulse for a clean shape, and we do not quite 

know how to explain why it does. Still, we have detailed the sensitivity to pulse strength 

for the flipped polarization method and proven the importance of using as true a π pulse 

as possible. 

 

Next, we would like to do the same investigation for drive frequency offset. We repeat 

the test several times with varying offsets, sweeping through the resonance frequency. 

The fitted curves are displayed below in Figure 72. 

 

 

Figure 72. Flipped polarization curves using various levels of drive frequency offset. 

 

The profiles all have fairly similar shapes with the exception of the -1.0 Hz data run; the 

discrepancy between initial and final amplitude seems much less dependent on drive 

frequency than on pulse strength. However, there are some noticeable effects in the 

region of the zero crossing for all of the tests using greater than 0.5 Hz magnitude 
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separation. These effects, as discussed previously, are evidence of poor cross-axis 

rejection; large frequency offsets result in very low signal amplitude and thus the x drive 

actually comes through on the y signal. Still, the cross-axis effects do not seem to hinder 

the fit function much.  

 

Of course, just like with the T2 growth method, when we try to drive right on resonance 

we end up with some very strange effects, as shown in Figure 73.  

 

 

Figure 73. Data from a flipped polarization test using an on-resonance drive. 

 

Ignoring the vastly different apparent half-life, which we already know to expect, the 

strangest part about the curve is that the beating occurs at a period of about 25 seconds, 

which should have a clear frequency separation of about 0.04 Hz. Looking at the FFT, 

though, we see no such frequency separation, just the single distinct peak at resonance. 

The beating also seems to display some phase shifting throughout the run, especially 

apparent at about 76 seconds where there looks to be a sharp point in the curve. This 

complicates the issue even further. All we can really gather from this run is that we still 

know we cannot perform this test on resonance without incorporating the drive into our 

theoretical fit. 
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Now we want to look at the trends in solution parameters over frequency offset, 

displayed below in Figure 74. 

 

 

Figure 74. Sensitivities of the flipped polarization fit solution parameters to drive frequency offset.  

 

Again, we see a clear correlation between the ratio of A/V and the T10 value, while the 

T1fit value seems to behave in the opposite way (increasing when A/V decreases and vice-

versa). Both T1 metrics remain quite precise over the whole range of tested frequencies 

(with the obvious exception of the on-resonance case), but again T1fit is the clear winner 

in terms of consistency. This is highly valuable information because now we know we 

need not worry much about hitting any specific value for frequency offset when setting 

up this test. As long as we allow a large enough separation to yield the data point 

resolution we need, as governed by equation 8, the test should work just fine. 

 

As we discussed, we can also see shape defects if we do not allow sufficient settling time 

before starting a test. If such is the case, we expect to see a smaller initial amplitude than 

final amplitude since the test begins with some longitudinal spin cancellation already 
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taking place. The data ends up looking like the beginning portion of the test gets cut off 

and everything else gets shifted backward to zero seconds. This problem can be avoided 

every time by simply waiting longer than needed; even if it does occur it should not affect 

the T1fit value. Also, it would be quite difficult to set up a repeatable experiment on this 

issue, so we will not spend time exploring it. We do, however, keep in mind that if ever a 

test turns out strangely and we cannot explain why, we should try repeating it with a 

longer settling time. 

 

Now, there is one more factor that we expect can affect the results, and this one is part of 

the analysis process; what if our determination of the two frequencies is off and we use 

an incorrect window size? This is an easy problem to outline; we take the data from one 

of the previous tests that turned out well and alter the window size to see how it affects 

the results, as shown in Figure 75. The true window size should be 3.225 seconds. 
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Figure 75. Fitted profiles and reported T1 values from varying window size for a single test run 

whose true window size should be 3.225 seconds. 

 

Small errors in window size seem to have almost no effect on the profile shape unless the 

error is greater than 0.5 seconds in magnitude. Even then, the T1 metrics are both very 

consistent. We do see a larger discrepancy between the two T1 metrics with larger 

window size errors, but even if we go as far off as a whole second they never disagree by 

more than 10%. If the window size was significantly off for a given test we would clearly 

see problems in the profile, like the high level of scatter in the 4.225- and 2.225-second 

cases, before the reported T1 values would become unreliable; plus, it is hard to believe 

we would ever be as far off as a whole second on the window size anyway.  

 

So we have explored the major factors that we suspect would disrupt the flipped 

polarization test. We have determined that as long as the profile exhibits an A/V ratio 
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close to 2 and the two T1 metrics agree (say, within 10% of each other), the test was 

almost certainly performed successfully. At the very least, we can identify when 

something goes terribly wrong, and we can most likely determine the cause if so. 

 

Now, we can finally argue with confidence that we can replace the delayed pulse method 

with the flipped polarization method as our primary T1 test. We can demonstrate the 

success of this test over a wide range cells; Table 13 below compiles the relevant 

information to compare the two methods over the most recent sample of our growing 

database and to assert the superiority of the flipped polarization method. 

 

Table 13. Compiled results comparing the flipped polarization and delayed pulse methods  

Cell  
# 

Inner Diameter 
(mm) 

Cell 
Geometry 

xenon 
Isostope 

T1FP Error 
(%) 

Testing Time 
Factor (FP/DP) 

Data Resolution 
Factor (FP/DP) 

1 1 Cube 129Xe 5.05 0.23 0.63 

2 2 Cube 129Xe 0.54 0.21 2.05 

3 2 Cube 129Xe 2.68 0.20 1.71 

4 2 Cube 129Xe 6.47 0.25 0.98 

5 2 Cube 129Xe 1.88 0.54 1.43 

6 4 Cube 129Xe 4.35 0.14 2.29 

7 4 Cube 129Xe 1.35 0.17 3.17 

8 8 Sphere 129Xe 0.09 0.20 3.65 

       

9 1 Cube 131Xe 0.00 0.20 0.52 

10 1 Cube 131Xe 5.94 0.21 0.41 

11 2 Cube 131Xe 4.11 0.38 1.02 

12 8 Sphere 131Xe 8.53 0.20 0.63 

       

   Averages: 3.42 0.24 1.54 

 

The T1FP Error column displays the error of the flipped polarization measurement for 

each cell, assuming the delayed pulse measurement to be the true value. The Testing Time 

Factor is the amount of time the T1 measurement took using the flipped polarization 
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method divided by the amount of time it took using the delayed pulse method. The actual 

test times were first scaled by dividing each by its associated T1 value; otherwise, the 

settling time causes the delayed pulse method to take disproportionately longer for cells 

with high T1 times, and we do not want to artificially enhance the already impressive 

time reduction provided by the flipped polarization method. Finally, the Data Resolution 

Factor is a measure of the difference in data point density (number of points per unit 

time) between the two tests; it is generated by taking the number of data points divided 

by the length of time the data spans for each test, and then dividing that number for the 

flipped polarization run by the number for the delayed pulse run. 

 

If we asked a Magic 8 Ball whether we should replace the delayed pulse method with the 

flipped polarization method as our primary T1 test, it should surely read, “All signs point 

to yes!” The new method is more than four times as fast, which means an average of 

about 30 minutes saved for every T1 measurement, producing results with 54% better 

data resolution and an average T1 error of only 3.42%. Plus, we have the added bonus of 

statistical measurement if desired, which opens a completely new aspect of study for us. 

Finally, with such quick results we can more easily measure the T1 profile over 

temperature for every cell, which is important when studying the effects of cell wall 

properties. 

 

Of course, there are still pitfalls of which to beware. First of all, the off-resonance drive 

puts significant SNR limitations on the method. The π/2 pulse of the delayed pulse 

method already provides significantly higher signal than the on-resonance sustained 
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drive; as we move off resonance the SNR difference widens quickly. Still, we have yet to 

encounter a cell where we could not achieve the signal necessary for a flipped 

polarization measurement but could for the delayed pulse. Presumably, this would only 

happen at relatively low temperatures where the magnetometer response is poor, or for 

cells with inherently low signal in which we would have little interest anyway. 

 

The other main issue to remember is that the delayed pulse method essentially has a data 

resolution related to the amount of time taken to produce the data. On the other hand, the 

flipped polarization method has a data resolution related to signal strength since higher 

data point density requires a larger drive frequency offset. This means that for cells with 

very short lifetimes (under 10 seconds, say), it can be difficult to obtain a flipped 

polarization curve with sufficient data before the zero crossing to fit it reliably. However, 

when the T1 is that short, the time saved by the flipped polarization method is minimal, 

so we can make the exception to use the delayed pulse method in such a situation. 

 

Overall, the flipped polarization method is a great success, and we intend to use it as the 

main T1 test henceforth. This means we have accomplished our goal to improve the 

lifetime test methods for NMR gyro cells, and quite authoritatively so! Still, there 

remains one more method we would like to explore – the Pump Growth Method – which 

could potentially measure both spin lifetimes in a single test run. 
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3. Measuring T2 and T1 Simultaneously Using the Pump Growth Method 

 

This last method is sort of a combination of the T2 growth and T1 flipped polarization 

methods. We are looking for a growth curve, but now the growth rate reflects both xenon 

spin lifetimes; although the setup is slightly more involved than the other methods, the 

opportunity to measure everything we need in one data run is quite tempting. Also, as 

with any new type of measurement, the results could reveal previously hidden 

information about the nature of the NMR test station. 

 

The pump growth method is similar to the flipped polarization method in that our goal is 

to monitor the nuclear transition between longitudinal spin states while simultaneously 

stimulating the nuclear precession. The difference is that for this test the initial 

polarization state is the natural equilibrium. Instead of altering the pump direction, we 

want to monitor the atomic behavior from the instant that we first introduce the pump 

light at all. 

 

Technically, the sense beam also performs some pumping, and although that is to a much 

lesser extent we may as well cut off all laser light through the cell when preparing the 

test. We usually do so by placing a solid block in front of each of the two lasers. We 

leave the magnetic fields and transverse drive running because they should have no 

measurable effect until the atoms are polarized by the pump beam. After enough time has 

passed with the blocks in place to allow any and all effects of the pump light to dissipate, 

we begin collecting data and pull up the laser blocks as quickly and synchronously as 
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possible. Presumably, the alkali would be pumped very quickly and begin polarizing the 

xenon atoms as usual. At the same time, the transverse drive begins stimulating any 

xenon atom as soon as it is polarized. Unlike the flipped polarization method, in which 

the xenon stimulation is already at steady state by the start of the test, the pump growth 

exhibits T2 growth dependent upon T1 growth throughout the entire run. This 

complicates issues because, as we have seen, the T2 growth can behave in strange ways. 

Still, if everything goes as planned, we expect something like the process illustrated in 

Figure 76 below. 

 

 

Figure 76. Visualization of the physical process monitored during the pump growth method. With 

the lasers blocked, there is no order to the polarization or the phase of precession among the xenon 

atoms. Once the lasers are unblocked, the atoms begin to get polarized by the alkali and stimulated 

by the drive until the steady state precession is reached.  

 

Before the lasers are reintroduced, the xenon spin states are completely chaotic and 

should generate no gyro signal. By the end, we should see the signal generated by the 
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steady state stimulation that we are used to. The process of the pump growth is the 

interesting part because, unlike any other method we have yet discussed, in this case the 

maximum level of overall stimulation is constantly changing throughout the run as the 

spin-up group becomes more and more populous. We expect to see a growth curve 

described by 

 

y = A*[1 – exp(-t/T2)]*[1 – exp(-t/T1)] + v,          (10) 

 

since the T1 growth directly effects the amplitude of the T2 growth. 

 

The general shape of this curve can change quite significantly based on the ratio of T2 to 

T1. Figure 77 below shows several different theoretical pump growth curves using 

various T2:T1 values. 

 

 

Figure 77. Theoretical pump growth curves using various ratios of T2:T1. 

 

There is a clear difference in shape as the ratio of the two lifetimes changes. It makes 

sense that shorter T2 times would make the curve approach the final amplitude more 
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quickly at the start of the run, as seems to be the case. The interesting part is the shift in 

concavity at the start of the run that emerges as T2 approaches T1. This gives us a sort of 

template with which to compare our actual data profiles, so that we can at least assess 

whether the shape of a profile seems correct given the lifetimes measured by the other 

methods.  

 

Now, let’s look at some real data; Figure 78 below shows the raw and processed data for 

a typical attempt at a pump growth test using the on-resonance drive for stimulation. 

 

 

Figure 78. Example on-resonance-drive Pump Growth test data. 

 

The time that the laser blocks were pulled up is indicated in the raw data by the one-sided 

spike in amplitude at about 5.6 seconds, which most likely comes from the electronics 
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compensating for the large and fast change in light at the detectors. Fortunately, it shows 

up every time and allows us to identify the start of the test. Notice also that the apparent 

amplitude of the raw data shoots up immediately when the blocks are removed, 

presumably because the faraday detection picks up the scattered spins of the entire atomic 

population and effectively increases the noise level. However, the profile shows that the 

signal from the coherent precession of xenon atoms is effectively zero at the same instant, 

which hopefully means the test went well. 

 

Now, the two lifetimes had been measured using the industry standard methods, as shown 

in Figure 79, reporting a T2 of 3.31 seconds and a T1 of 31.8 seconds. 

 

 

Figure 79. T2 and T1  measured by industry standard methods for the pump growth example cell. 

 

So what do we find when we fit the profile from the pump growth test using equation 9? 

Figure 80 shows the fitted solution, which yields 3.77 seconds for T2 and 35.22 seconds 

for T1. So we have a 13.9% error in T2 and a 10.7% error in T1; the values are not 

perfect but they are not terribly far off, either.  
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Figure 80. The fitted solution for the pump growth profile yields results that agree with the industry 

standard methods. 

 

We could certainly make a case for this method if it worked this well every time, but of 

course it does not. This particular test turned out nicely because it was performed on an 

8-mm-diameter spherical cell, rather large compared to our 2-mm and 1-mm cubes used 

as actual gyro cells. The larger size means more alkali vapor which means larger signal, 

which allows us to use a much weaker drive than we normally could, and unfortunately 

this method seems to be extremely sensitive to both drive amplitude and frequency, as 

shown in Figure 81 below. For the test over amplitude, the frequency was held close to 

resonance at 165.4 Hz, and for the frequency test the drive amplitude was held at 1 mV. 
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Figure 81. Pump growth T1 results over course range of drive parameters. 

 

The T2 values in the fit consistently remain around 2 to 3 seconds; with the T1 hovering 

around ten times that value, the T2 barely affects the pump growth curve at all, so the T2 

values are not displayed. The T1 results, on the other hand, show clear trends across the 

two drive parameters. The trend over drive amplitude sort of makes sense; as the drive 

amplitude increases we can convince ourselves that the overall stimulation process 

should speed up, though we would expect that to show up in the T2 rather than the T1. 

We would also expect to see some amplitude threshold below which the growth rate 

remains fairly constant, but we do not see such behavior.  

 

The trend over drive frequency seems quite bizarre. Based on the amplitude behavior, we 

would expect to see the T1 increase as we move farther off resonance since that translates 

to lower effective drive amplitude. Perhaps that is the cause of the dip in the direct 

neighborhood of the resonance frequency; as we begin to move slightly off resonance we 

see the lifetime increase as the effective drive amplitude decreases. Then, some other 

unexplained effect takes over as we move too far off, which begins to drop the lifetime 

significantly. 
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Whatever the reason, the values seem most similar to the delayed pulse results when the 

drive is very low and very close to resonance. Noting this, we want to repeat the tests 

with finer resolution in those regions. Unfortunately, our typical setup relies on an off-

the-shelf function generator whose minimum output amplitude is 1.0 mV; for this test we 

had to insert an inline attenuator between the generator and the coils so that we could 

reduce the amplitude down to 0.1 mV. The results are presented in Figure 82 below. 

 

 

Figure 82. Pump Growth T1 results over fine range of drive parameters 

 

To ensure that we are not simply seeing scatter disguised as a trend, we perform each run 

three times and fit each of the three curves five times. Each data point is an average of the 

three T1 values gathered from averaging the results from the five fits on each run. The 

error bars represent the statistical uncertainty for each point based on the standard 

deviation of the three T1 values for each case. Now, we can be quite certain that these 

effects are real. The reported T1 does indeed dip down at frequencies very near 

resonance, and presumably would again fall out on the wings of the frequency test.  
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The strangest part is that the T1 follows almost the same trend over this narrow range of 

very low drive amplitudes that it did over the wide range of larger drive amplitudes in 

Figure 72 above. Perhaps there is a reset somewhere around 0.8 to 1.0 mV for some 

reason, as we saw in the flipped polarization test over π pulse amplitudes.  

 

The good news is the consistency in T1 values with the drive between 0.1 and 0.3 mV, 

apparently the threshold we had hoped to see earlier. The bad news is that it ends at such 

a low drive amplitude, meaning we will never achieve strong signal with this method; 

most small gyro cells will not even produce a reliable curve at all with such little 

stimulation. 

 

Still, all hope is not yet lost; we can attempt this method, as we have the others, using the 

intentional off-resonance drive. We take a new cell, a 2mm cube this time, with FID T2 

measured at 21.9 seconds and FP T1 measured at 36.3 seconds. The natural resonance 

frequency was measured at around 165.63 Hz. Below in Figure 83 is the data from an off-

resonance pump growth test driven at 165.8 Hz and 0.05V. 
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Figure 83. Data from off-resonance-stimulated pump growth test 

 

Notice that the natural precession frequency is simply non-existent in the FFT data. 

Apparently, the pulse is solely responsible for stimulating the natural precession, so 

without said pulse there is no natural precession to be observed. It still seems like there 

should be some sign of the natural frequency since the z field is still there and the atomic 

spins are offset from it, as we saw with the λ/4 plate approach to the flipped polarization 

method, but the data here suggests otherwise. 

 

Unfortunately, that also means that driving off resonance is not likely to help us since 

there is no beating to set the window size to; we are stuck with any and all drive-

dependent effects. To prove this, we repeat the off-resonance test at several different 

drive amplitudes, the results of which are shown below in Figure 84. 
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Figure 84. Off-resonance pump growth runs at various drive amplitudes 

 

There is still a clear dependence on drive amplitude, even just by judging the shapes of 

the curves. We can certainly still get a good fit for each using equation 9, but the growth 

rate increases dramatically as the drive amplitude increases, and so does the vertical 

offset (most likely due to cross-axis pick up).  

 

We can plot the T1 and T2 results from these tests over drive amplitude, as below in 

Figure 85. Again, the T2 values remain fairly consistent and even accurate to the FID 

measurement to about 10%. On the other hand, the T1 values are off by almost 300% at 

the lower-amplitude end. Oddly, the very high drive amplitude of 0.2 V yields quite an 

accurate T1 value, but a rather high T2 value as well. The T1 is most likely a 

coincidence, and even if not we find it difficult to justify relying on a curve whose 

vertical offset is nearly twice as large as the overall amplitude of the curve. 
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In short, we cannot feel comfortable using a method that has so many inherent 

inconsistencies (or at best, many dependencies we do not yet understand). 

 

 

Figure 85. T1 and T2 results from off-resonance pump growth tests over drive amplitude 

 

It seems strange that the shapes of the curves are so well described by equation 9 and that 

the T2 values are so accurate, even though the T1 values are so far off. There may be 

some valuable information to be gained by studying this method more closely; perhaps 

these curves reflect a real quality about the atomic system not visible by the other 

methods. More likely, however, it is merely a product of our inability to include the drive 

in our theoretical description of the curves, and so the fit function compensates for 

missing components by skewing the T1 value. In either case, the solution lies beyond the 

scope of our current investigation. 

 

As it stands, we know the pump growth method can work because we have seen it from 

time to time, but the conditions need to be ever so perfect that we have no reason to 

prefer this method. With that said, it will be important to continue to study the pump 

growth behavior because it obviously exhibits effects that we do not yet understand. We 
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may be able to gather valuable information about the atomic pumping process in our 

system by developing the means to accurately describe the pump growth curves. For 

now, though, it shall remain an exercise for the future. 
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IV. Conclusions 

 

We opened our discussion with the basic motivation of improving navigation sensors to 

support the future of aerospace technology, and eventually we narrowed our focus to a 

very specific type of sensor – the NMR gyro – which is still in the research phases of 

development but has the potential to dominate the gyroscope industry in the next decade 

or two. After building up a cursory understanding of the operation of the device, starting 

with the basic atomic physics behind magnetic resonance in general, we centered our 

discussion on identifying the main parameters that affect NMR gyro capabilities and 

implementing the common techniques to test those parameters. 

 

We found that the free induction decay method, the industry standard technique for 

measuring transverse spin coherence lifetimes in our test system, is extremely precise, 

with statistical errors on the order of 10 milliseconds for lifetimes in the 10 to 30 second 

range. We also explored the complications involved when working with the electric-

quadrupole-sensitive 
131

Xe atom and established ways to effectively neutralize such 

complications, giving us reliable means to test the coherence of both xenon isotopes 

crucial to the gyro system. 

 

Our other industry-standard technique, the delayed pulse method for measuring 

longitudinal spin lifetimes, we found very slow to produce results; a typical test takes 

about 40 minutes, and even longer tests are not uncommon. However, we outlined ways 

to minimize the time required by collecting only the necessary data points. Also, by 
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establishing a standard fit function, we provided the means to extract more consistent 

results from this test than was previously possible. 

 

The growth methods, both the stimulated growth for measuring T2 and the pump growth 

for measuring the two lifetimes simultaneously, were mostly unsuccessful. Although we 

found clear evidence that the growth tests can be made to yield accurate results, the 

difficulty of setup, sensitivity to drive parameters, and inconsistency of results associated 

with these methods convinced us to seek better options. 

 

Finally, after months of frustration, the flipped polarization method for measuring T1 

proved to be highly successful and, in fact, quite superior to the industry-standard 

delayed pulse technique for several reasons. Primarily, the new method cuts down the 

time required to make a T1 measurement by over 75% on average, saving us as much as 

30 minutes on each cell we test, while yielding results within 3.5% of the industry-

standard measurements. It is generally insensitive to drive amplitude and drive frequency 

(as long as the frequency offset is sufficient to provide the data resolution necessary), and 

we were able to outline the other major sensitivities to help guarantee successful 

implementation on a consistent basis. The statistical error for the new method is in the 

range of 100 to 200 milliseconds, well within our tolerance, and even just the ability to 

provide statistical data gives the flipped polarization a huge advantage over the delayed 

pulse because it would literally take days to gather the data necessary to make a 

comparable statistical assessment of the industry-standard technique. As rare an 
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occurrence as it is, there truly seems to be no downside to the new method, unless you 

count the fact that we spent nearly a year attempting to implement it successfully. 

If time and money permit, we could develop automated loops for these and similar cell 

tests to build up our assessment of cell trends and of our system as a whole as quickly as 

possible. As we continue to gather new data more quickly, we could develop better 

software capabilities to automate the test procedures and to extract the relevant numbers 

from batches of files. Much of the analysis software along these lines has been developed 

in house, but further tailoring would certainly help debug the code and amplify the 

effectiveness of the work presented here. 

 

We have little doubt that NMR-based sensor technology will flourish over the next few 

decades, and likely it will lead the market for certain applications. However, vapor cell 

design remains one of the major obstacles for NMR product development due to the level 

of inconsistency associated with cell production; by expediting the cell test procedure, we 

have not only provided the means to locate gyro-grade cells faster in a production line 

scenario, but have also opened the door for better research in the area of cell design. With 

the promise of faster results, more widespread cell filling and gas mixing techniques can 

be explored, which should lead to greater capabilities in NMR cell manufacturing. Plus, 

now with the added ability to measure gas pressures after sealing the cells, we can easily 

correlate cell performance improvements to specific cell manufacturing processes to help 

optimize the filling and sealing methods. 
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As the field of study matures and NMR starts becoming a standard for sensor systems, it 

will be interesting to see just how far the technology can be pushed. Personally, I look 

forward to the day that the first commercial NMR gyro makes its way into orbit, and 

hopefully we’ll be able to trace some of its successes back to our work here. If nothing 

else, I hope this dissertation has brought readers to the level of fascination in which I 

found myself when I began my studies in NMR. There is much to gain from learning 

about a cutting-edge science, and even more so when given the opportunity to be a part of 

its development. For this I am grateful, and I hope to contribute much more in the years 

to come. 
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