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ABSTRACT 
 

Flying Qualities Built-In-Test for Unmanned Aerial Systems  

Alton P. Chiu 

 

 This paper presents a flying qualities built-in-test for UAS application. A doublet input 

waveform excites the AV and both α and q are used by EUDKF to estimate the A and B matrices 

which are short period approximations of the system. ζ, ω, GM, PM, observability, and 

controllability are calculated to determine flying qualities with the results displayed to the AVO 

in a color-coded, easy to interpret display. 

 While SID algorithms have been flying in vehicles with adaptive control schemes, vehicles 

with other schemes (such as classical feedback) lack this built-in self assessment tool. In addition, 

adaptive control SID results are not analyzed and displayed but instead used internally. This work 

intends to extend this self-assessment option to all UASs regardless of control scheme as a “plug-

and-play” add-on by building a reliable and robust tool that requires little tuning.  
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I. EXECUTIVE SUMMARY 

ATTLE damage or malfunctions can unpredictably compromise the airworthiness of an air 

vehicle. Furthermore, failure modes may be difficult to accurately model, analyze, and 

provide for. Given such challenges, the Flying Qualities Built-In-Test presented in this paper is 

invaluable in providing real-time qualitative metrics so that the air vehicle operator can decide 

whether to terminate the air vehicle or attempt a recovery.   

 Unmanned aerial systems face additional challenges compared to manned platforms in an off-

nominal state. Pilots of manned platforms enjoy high-rate quantitative cues (instrument readouts) 

in addition to having qualitative (seat-of-the-pants) feedback. Unmanned aerial system operators 

suffer from a limited quantitative dataset updated at low rates (due to comm.-link bandwidth 

limitations and time-delay). The lack of qualitative feedback also contributes to the degradation 

of situational awareness, leaving the operator with serious handicaps.  

 The Flying Qualities Built-In-Test addresses these shortcomings by reliably providing the 

operator with accurate real-time airworthiness assessment “at the click of a button”. Using system 

identification algorithms to estimate the state (�̂�𝐴) and input (𝐵𝐵�) matrix, robustness (gain and 

phase margin) and stability (damping ratio and frequency) are evaluated. Controllability and 

observability tests establish test validity. The results are concisely displayed to the operator with 

unequivocal recommendations. 

 Air vehicles with control schemes without an explicit system identification component lack 

the ability to diagnose flying qualities online. This work extends this self-assessment to all large 

unmanned systems (such as RQ-4) regardless of control schemes as a “plug-and-play” add-on.  

 For a copy of the MATLAB files accompanying this work, please contact the aerospace 

department at California Polytechnic State University, San Luis Obispo.   

B 
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II. INTRODUCTION 

he use of Unmanned Aerial Systems (UAS) has risen dramatically in recent years. While 

their robotic nature has them uniquely suited to missions with long-endurance 

requirements, the reduced risk to human operators has also thrust the UASs into an armed role. 

With the rise of responsibilities and strategic importance come mounting intellectual and 

monetary investments that must be conserved. The corresponding shift from their earlier 

disposable nature gives rise to the efforts to increase survivability. This section briefly discusses 

the history of UAS, previous efforts to increase survivability, and the solution that is the topic of 

this thesis.   

A. HISTORY 

The history of UAS is intertwined with manned aviation from the very start. UASs were used 

as technology demonstrators; their flights were used to analyze theory and ideas before 

implementation on manned versions. The Montgolfier Brothers flew the first living beings in a 

balloon to assess the effects of flight in 1783. A sheep was used as it was believed to reasonably 

approximate human physiology; a duck was expected to be unharmed and included as a control 

for the effects of the craft; a rooster was also included as a control as it was a bird that does not 

fly at high altitudes. Samuel Langley’s unmanned Aerodrome No.5, powered by a miniature 

steam engine, flew under its own power seven years before the Wright Flyer’s historic flight at 

Kitty Hawk. However, these early machines lacked the stability and guidance mechanisms found 

on modern UASs.   

By the end of the Great War, legends like the Sopwith Camel and Fokker DR.I had 

indisputably established the manned aircraft as a vital implement of war. Less known was the 

development of the UAS as cruise missiles. Only a decade after Kitty Hawk, Elmer Sperry had 

T 
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developed a gyro-based autopilot 

which provided the basis for the 

Hewitt-Sperry Automatic 

Airplane. Possessing a barometer 

to regulate altitude, gyroscope for 

heading tracking, gyroscopic 

stabilizers for stability, servo-

motors for control surface 

actuation, and engine RPM based 

distance measuring equipment, the 

Automatic Airplane possessed most of the same functional blocks as a modern UAS. A similarly 

equipped Kettering Bug (Figure 1) was designed for deployment at the Western Front. After 

flying at a predetermined height, the wings were detached at a predetermined distance and the 

explosive payload detonated upon impact. However, teething troubles and the armistice prevented 

its operational use. These early drones were characterized by their disposable nature and the pre-

programmed-only method of guidance. 

The interwar years saw advancement of technology in autopilot, television cameras, and radio 

remote-control. The autopilot system was refined to the point where the Norden bombsight could 

perform bomb-runs by issuing guidance commands to be executed by the autopilot. The pilot did 

not fly the bomber during the run, the bombardier only placed the crosshair on the target and fed 

information such as wind into the Norden bombsight; it performs the calculation of flight path 

and release point, and the required adjustments were issued to the autopilot. Television cameras 

and radio remote-control equipment allowed aircraft to be piloted remotely with a higher degree 

of feedback to the human operator. The Second World War sent these technologies into action in 

the form of self-guided (V-1 Flying Bomb) and remotely-piloted (Operation Aphrodite) UAS. 

 
Figure 1. Kettering Bug. 
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After the failure of the 

Luftwaffe to subdue the 

British Isles, Germany 

sought alternative methods 

of bringing war to the British 

population. One such 

solution was the Fieseler Fi 

103, also known as the V-1 Flying Bomb (illustrated in Figure 2). Like the Kettering Bug, the V-

1 possessed mechanisms that regulated course, altitude, speed and distance to detonation. While 

the mechanisms were more refined, the underlying concept remained the same. The V-1 executed 

a pre-programmed sequence-of-events, which could not be modified mid-flight by either the 

vehicle itself or human operators.  

On the other hand, the advent of television and improvements in radio-control allowed a UAS 

to attain closed-loop guidance. Operation Aphrodite was an Allied attempt at destroying the 

German V-weapons site with remotely-piloted B-17/24s laden with explosives. The takeoff and 

climb portions were performed by an on-board pilot. Once at cruise, the pilot bailed out and 

control was handed over to the remote pilot onboard a chase aircraft. A television camera aimed 

outside the windows gave the remote pilot situational awareness while another camera aimed at 

the instrument panel provided telemetry (hence the etymology of the word). The explosive 

aircraft was flown into the target by the remote pilot while he loitered in the chase aircraft outside 

the range of the defenses. While not very successful (one operation cost the life of Joseph 

Kennedy, older brother of John F. Kennedy), this early attempt at RPV provided the human-

machine interaction that was vital to modern UAS. It is noteworthy that these drones of WWII 

were disposable by nature and did not warrant the consideration of survivability.  

 
Figure 2. Fi 103. 
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The Cold War (and the various localized 

hot wars) saw the deployment of UAS as 

reconnaissance platforms. The D-21 

(pictured in Figure 3) is a Mach-3 capable 

drone designed for a one-way trip utilizing 

much of the same technology as the SR-71. 

After flying a pre-programmed route, the 

reconnaissance payload (camera and film) is 

ejected for recover, the drone then self-

destructs12.  

Up to this point, all the UASs discussed are disposable in nature; the Ryan Model 147 (Figure 

4) breaks new ground in being recoverable. Instead of ejecting the reconnaissance payload like 

the D-21, the entire vehicle parachutes to the ground at the recovery site18. The Ryan 147 is also 

notable in that it began replacing manned reconnaissance flights. After the loss of a U-2 during 

the Cuban Missile Crisis, Ryan 147s were almost used 

for reconnaissance until a decision to resume U-2 

flights was made just prior to the launching of the 

drones. In April 1969, an EC-121 was shot down 

during a SIGINT mission, killing all 31 onboard. The 

incident led to the 147T which flew under both 

internal guidance and controller instruction aboard the 

DC-130 launch aircraft through a communications 

datalink. This last element brought the UAS evolution 

from disposable “fire-and-forget” drones to the 

reusable, human-in-the-loop vehicles as we have 

 
Figure 3. D-21 atop an SR-71. 

 

 
Figure 4. Ryan 147. 
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come to associate with modern 

UAS such as the MQ-1 Predator.  

The Ryan 147 represented 

another first by adding weapons 

delivery to the repertoire of the 

UAS. Throughout the Vietnam 

War, SA-2 surface to air missiles 

presented a major threat to the 

US warplanes. Suppression of Enemy Air Defenses missions was undertaken by modified F-105 

and F-4s; losses among such units were especially high. The disposable nature of UASs lent itself 

well to undertaking these highly dangerous missions. In 1972, a Rayn 147 (depicted in this role in 

Figure 5) successfully delivered an AGM-65 Maverick electro-optical guided missile into a radar 

van mockup during test14. Although the system was never deployed operationally, the potential 

was recognized for armed UAS to soften up targets in the initial wave before the manned 

platforms strike40.  

After the Vietnam drawdown, the UAS development lapsed until the RQ-2 Pioneer brought 

UAS to the limelight during the 1991 Gulf War. A DOD report on Desert Shield and Storm 

credited the UAS with “direct and indirect gunfire support, day and night surveillance, target 

acquisition, route and area reconnaissance and BDA.”18 Such services led to Dick Cheney 

commenting that the RQ-2 “appears to have validated the operational employment of UAVs in 

combat.”7 The shortcomings discovered during the Gulf War and the promise shown by UASs led 

to the development of the RQ-1/MQ-1/MQ-9 Predator/Reaper in the medium altitude long 

endurance category and the RQ-4 Global Hawk in the high altitude long endurance area.  

 
Figure 5. Armed Ryan 147. 
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The RQ-1 Predator 

(pictured in Figure 6) 

provided intelligence in the 

forward observation role. In 

marked contrast to previous 

UASs, RQ-1 was capable of 

executing pre-programmed 

operations as well as being flown “stick-and-rudder” style by a remote pilot. In addition, it had 

been modified to carry munitions. In 2002, the designation was changed to MQ-1 (“M” for multi-

role) reflecting its growing use as an armed strike platform. The high demand of this vehicle is 

illustrated in Figure 7. This partly reflects the persistence requirements of the War on Terror, and 

partly the desire to reduce casualties. The long endurance capability of UASs not only lies in the 

airframe, but also with the human operators. Because operators can hand off control to one 

another in order to take a rest, human endurance no longer contributes to the equation. Because of 

the satellite link capability, the deployment cost is also lower in that human operators and their 

Figure 7. MQ-1 usage6.  

 
Figure 6. MQ-1 Predator. 
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attendant supply train need not 

be physically at the operational 

area.  

The RQ-4 (depicted in 

Figure 8) is similar in role and 

operational design as the U-2 by 

providing a theatre commander 

with broad overview and 

surveillance. While sharing much of the architectural design and advantages as the RQ-1, the 

guidance of the RQ-4 Global Hawk differs by dispensing with the “stick-and-rudder” capability. 

Instead, the human operator only issues outer loop commands to the autopilot, specifying desired 

altitude, airspeed, heading, etc.  

Both RQ-4 and RQ-1 have two major components to the system: the air vehicle and the 

ground station. The communications between the two are provided by either a satellite 

communications or a line-of-sight link. The line-

of-sight link, as the name implies, requires an 

unimpeded straight line between the air vehicle 

and the ground station. The range is limited by 

the power of the transmitter and the curvature of 

the Earth to about a hundred nautical miles.  

Referencing Figure 9, R is the radius of the 

Earth, h is the height of the air vehicle, and d is 

the geometric distance between the ground station (at sea level) and the air vehicle. Pythagorean 

Theorem gives the following relationship, 

 
Figure 8. RQ-4 Global Hawk. 

 

 
Figure 9. Earth horizon. 
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d2 = (R+h)2 – R2 = 2Rh + h2 

Since h is much less than R, d can be approximated as, 

𝑑𝑑 ≈ √2𝑅𝑅ℎ 

However, radio signals propagate in a curved line due to atmospheric diffractions. A factor k is 

used to adjust for this; under normal weather conditions, k of 4/3 is used. If h is given in m and d 

is in km, distance can further be simplified into  

𝑑𝑑 ≈ 4.12√ℎ 

If the air vehicle is flying at 7000ft, the range of the link is 100nmi. With buildings and terrain in 

sight, the air vehicle must be flying at medium altitude to maintain line-of-sight. The assumption 

of 100nmi is carried through for the rest of the latency analysis.  

The limited distance involved does have an upside in that the lag between a command input at 

the ground station and its execution at the air vehicle is markedly less than that achieved through 

a satellite link. The satellite link provides operational flexibility by allowing the air vehicle to be 

operated from almost anywhere in the world. However, this comes at the price of increased 

electrical power and physical space requirements for larger transmitters to reach the satellites. 

Both RQ-1 and RQ-4 have line-of-sight and satellite communications (KU band) capabilities.  

An idealized calculation can be made to show the difference in the latency. By neglecting 

atmospheric effects, which among other things, makes the propagation speed lower, the speed of 

the radio signal is idealized to be the speed of light (299,792,458 m/s). The range of a line-of-

sight link is assumed to be a hundred nautical miles. The satellite is assumed to be in 

geosynchronous orbit (35,786 km above the mean sea level) like most other communications 

satellites. Note that the command sent has to travel from the ground station to the air vehicle, and 

then the results have to travel back to the ground station; in other words, the distance concerned is 
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twice the physical 

distance between the 

human operator and the 

air vehicle. The 

calculations show a travel 

time of 1.2 milliseconds for a line-of-sight link and 0.24 seconds for a satellite link. While this 

does not account for other latency factors such as processing time, the numbers do illustrate that 

the satellite latency can be as much as three-orders of magnitude higher. The implications are 

immense for the “stick-and-rudder” controls of the RQ-1. The latency is in effect adding phase 

lag into the system which can easily lead to pilot induced oscillation during closed-loop high gain 

tasks like landings as shown by the operational history of the RQ-1 (discussed in the next 

section).  

Both RQ-1 and RQ-4 represent major monetary investments. Table 1 shows the cost of a selected 

few UASs described above. In addition to the dramatically higher cost, the technologies utilized 

 
 

Figure 10. UAS flight hours43. 

 

Table 1. UAS unit cost adjusted for FY2011. 

 Adjusted per Unit Price ($ millions) 
RQ-48 218 
MQ-13 56.1 
Ryan 14711 12.7 
D-2111 53.1 
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are also more sensitive. While a lost D-21 may allow opponents insight into the hypersonic 

engine or heat distribution, no vital electronics equipment or encryptions are endangered. In 

contrast, the low observable techniques applied on the RQ-170 lost near Iran in December 2011, 

negatively impacted a key component in the technological dominance of the US. The stakes in 

improving UAS survivability have increased along with rising cost and ever-increasing sensitivity 

of onboard technology.  

Meanwhile, the operations tempo has dramatically increased in the last decade. The 

exponential trend seen in the MQ-1 (Figure 7) is not limited to one system or service. Figure 10 

shows the exponential trend across all service. The rise of UAS in comparison with manned 

missions can be seen in Figure 11. While flight hours for manned assets have grown linearly, the 

hours for Predator/Reaper grow exponentially. The increased flight hours naturally lead to higher 

attrition rates, which is discussed in the next section.  

 As the UAS matured during the last century, it developed from disposable, one-use vehicles to 

 
 

Figure 11. CENTCOM ISR flight hours19. 
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intricate systems as expensive and strategically valuable as manned platforms. During the last 

decade, UASs were thrust into the frontlines of the War on Terror and saw their use increase 

exponentially. Given the high monetary and technology investments as well as the political 

sensitivity of their missions, UAS survivability has risen in importance from negligible to the 

front page of priorities.  

B. PROBLEM STATEMENT 

In face of unknown anomalies or battle damage, UAS pilots face additional challenges in 

diagnosing and 

correcting problems in 

comparison to their 

counterparts on manned 

platforms. Pilots of 

manned platforms enjoy 

high-rate quantitative 

cues in the form of 

instrument readouts. 

They also have the 

qualitative “seat-of-the-pants” feel. Since the data is displayed within the air vehicle, there is little 

to no lag in displaying system statuses; and with the modern electronic flight information 

systems, almost any parameter can be displayed to assist in troubleshooting. Even if the 

qualitative cues fail to provide sufficient information, the “seat-of-the-pants” feel might give 

clues that can help recover the air vehicle. In contrast, UAS operators are burdened with a limited 

data set with noticeable time delay. The communications link between the air vehicle and the 

ground station has limited bandwidth which restricts the number of parameters displayed to the 

 
Figure 12. UAS mishap rate. 
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operator. In addition, the satellite link entails latency in the tenth-second order. The negative 

implications upon the flying qualities of the system are illustrated in the next paragraph. 

The United States Air Force classifies mishaps according to severity into A, B, and C. Class A 

is the most severe category where the damage is more than $1,000,000, or the aircraft is damaged 

beyond repair, or fatal injury / permanent disability is incurred. A summary of all class A mishaps 

involving UASs is summarized in section A of the appendix and is plotted in Figure 12. The 

upward trend in Figure 12 matches the increased flight hours shown in Figure 11. Of these 

mishaps, there are five cases of pilot induced oscillations; all happened aboard the Predator 

family with the “stick-and-rudder” style control. One of the accident reports explicitly points to 

the fact that “the Predator’s lack of sensory cues contributed to the MP’s [mishap pilot] decision 

to continue to go-around attempt after the MRPA [mishap remotely piloted aircraft] had become 

unflyable.”1  

The restricted situational awareness of UAS not only causes trouble at closed loop high gain 

tasks, it also affects the troubleshooting ability of the operator. Because the operator was 

“confused over the flight characteristics of the MPRA [mishap remotely piloted aircraft], the MP 

[mishap pilot] erroneously concluded that there was a control problem…”2 During the 

troubleshooting process, the operator turned off the stability augmentation system which resulted 

in “the aircraft banking excessively in a nose down attitude, thereby losing its satellite 

communication link. The MP was unable to regain control of the aircraft, which subsequently 

impacted the ground.”2  

In order to increase survivability of the UAS, some function must exist onboard the vehicle to 

either adapt to the anomaly, or explicitly compare the current performance against the expected 

values in order to check for anomaly. These functions must occur on the vehicle due to the 
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bandwidth limitation and latency of the communications link between the air vehicle and the 

ground station.  

 

C. ADAPTIVE CONTROL IS INSUFFICIENT 

Much work has been done 

in the field of adaptive control 

to account for anomalies. The 

advantage of adaptive control 

is that any reasonable 

anomaly will be washed-out 

and become transparent to the 

human operator. However, 

with the exception schemes 

with an embedded SID algorithm, none of the adaptive control schemes can easily lead insights 

into the flying qualities. 

Adaptive control schemes attempt to overcome plant or actuator uncertainties by adjusting the 

gains on-line. An example of adaptive control (explicit model following) is displayed in Figure 

13. One adaptive scheme that does not guarantee stability is mechanized as the Honeywell MH-

96 controller and is used on the third vehicle of the X-15 (the other two vehicles are fitted with 

conventional gain-scheduled controllers). The MH-96 increases the gain until limit cycle 

oscillations are observed, at which point the gain is lowered. As the gain approaches the critical 

level and the rudder chatter amplitude at the limit cycle frequency increases, the gain is lowered9. 

Theoretically, such a controller gives the highest performance possible by keeping the gain at 

critical level, while maintaining stability by lowering the gain when oscillation is observed. 

 
 

Figure 13. Explicit model following architecture. 
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However, this scheme does not guarantee stability; this fact is reflected in the 1967 crash of the 

X-15-3 during which the elevator entered into a limit cycle oscillation. There is no warning that 

the controller will fail; and the degradation is not graceful. 

Another adaptive scheme is the explicit model following scheme. Usually, the closed-loop 

behavior of the plant is used as the reference model. The control inputs are given to the reference 

model and the error between the model and the plant is used to drive the adaptive law. The law 

calculates the appropriate plant input so that the system behaves like the reference model. Such a 

scheme allows the control system to overcome anomalies such as loss of control effectiveness or 

nonlinearity. The stability of such a scheme is proven in a dissertation.20 Note that while stability 

and performance are maintained, there is no indication of how hard the controller is working to 

keep the air vehicle flying or how many margins there are; in other words, there is no way to 

characterize system robustness. 

Plant inversion is a modern control technique that, depending on implementation, can contain 

an adaptive flavor. Instead of driving the error between the model and the plant to zero, this 

scheme puts an inverted plant in-line with the plant to achieve pole-zero cancellation. After the 

system dynamics are taken out, pole placement is used to achieve desired dynamics. If the plant is 

non-minimum phase, the right-half plane zero becomes a right-half plane pole in the inverted 

plant. If the model of the plant is exactly correct, pole-zero cancellation occurs; otherwise, there 

exists a pole in the right-half plane resulting in an unstable closed-loop system. While accurate 

modeling can prevent such a disastrous occurrence, anomalies can unexpectedly change that. By 

adding an adaptive component in the form of a system identification algorithm, pole-zero 

cancellation can be reliably achieved42. Metrics on system robustness are calculable only in the 

case of adaptive plant inversion. 
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With the exception of adaptive schemes having an embedded SID algorithm, none of the 

control strategies can easily estimate the margins. While the performance of the closed loop 

system can be established by examining the reference model in explicit model following and pole 

placement techniques (even though the latter is not an adaptive scheme), the robustness cannot be 

easily established. For systems using other control schemes (such as traditional PID controllers), 

there is no easy way to obtain a flying qualities estimate on-line. FQ-BIT addresses this 

deficiency. 

D. FQ-BIT 

FQ-BIT remedies the deficiency by delivering a plug-and-play software package that is 

applicable to air vehicles with any control scheme: classical or modern, fixed-gain or adaptive. 

Once damage or anomalies occur, the control system is either capable of returning the air vehicle 

(AV) to straight and level flight, or it becomes uncontrollable. In the uncontrollable case, the AV 

either crashes despite best efforts, or the operator chooses to terminate without consulting FQ-

BIT due to time constraints. In either case, FQ-BIT is not involved in the decision process. 

If the AV is able to maintain straight and level flight after sustaining damage, the AVO can 

execute the FQ-BIT. If the AV is observable, controllable, stable, and robust, the AVO is advised 

to return-to-base (RTB). If the BIT is invalid, the AVO is advised to re-run the BIT. If the AV is 

not observable, controllable, stable, or robust, the AVO is advised to terminate the AV at the 

earliest opportunity. As the air vehicle approaches the landing phase, the AVO is advised to 

progressively step down in altitude and to execute FQ-BIT at each altitude step. This is done as a 

build up to the culminating event where the air vehicle simulates a landing approach at a safe 

flight condition in order to evaluate the flying qualities required for recovery. If the flying 

qualities are within acceptable limits, the AVO is advised to recover the air vehicle.  

The decision tree presented above is graphically summarized in Figure 14. 
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Figure 14. ConOps. 
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III. SYSTEM DESCRIPTION 

 

he architecture of the FQ-BIT is outlined in Figure 15. A known input waveform (u) is 

injected into the air vehicle and the pertinent states recorded (albeit corrupted by sensor 

error into y+ε). The SID algorithm outputs a linear estimation of the air vehicle dynamics (�̂�𝐴,𝐵𝐵�), 

which are then evaluated by the flying qualities analysis block, and the metrics are displayed to 

the air vehicle operator (AVO). FQ-BIT assumes that the longitudinal and lateral modes of the 

UAS are decoupled, and estimates them separately. Because the roll and yaw axis are coupled, 

they are estimated together in the lateral axis.  

Given the limited communications bandwidth available between a UAV and the ground 

station, FQ-BIT process data onboard the AV and only transmit the results to the ground station. 

As such, FQ-BIT must be computationally simple so as not to burden the flight computers. This 

requirement not only influences the SID algorithm selection, but also the order of the estimation 

model. This implication is further discussed in SID algorithm subsection below. 

T 

 

 

Figure 15. FQ-BIT architecture. 
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The following subsections detail the theory and mechanization of each block illustrated in 

Figure 15; the process of arriving at these choices is discussed in the results and analysis sections.  

A. INPUT WAVEFORM 

The purpose of the input waveform (u) is to excite the plant so that output states can be 

measured for use by the system identification algorithm. An optimal waveform choice maximizes 

the informational content in all the output states. At the same time, the waveform should avoid 

destabilizing the plant with too much input energy.  

Most modern air vehicles, manned or unmanned, exhibit open-loop relaxed stability or even 

instability; this in turn requires the control system to be operating at all times. The dynamic 

instability stems from a wide variety of requirements, from maneuverability (high rates can be 

achieved with an unstable system, as exemplified with the Lockheed F-22), to low-observability 

(shape of the airframe as determined by radar signature may not be aerodynamically stable, such 

as the case for the Northrop B-2), and even aerodynamic efficiency (lower trim-drag can be 

achieved with low static-stability margin, as was done with the Airbus A-320). With this in mind, 

the input waveform must excite 

the closed-loop dynamics of 

both the airframe and control 

system. 

 Three artificial waveform 

candidates (pulse, 3-2-1-1, 

doublet) and one natural 

waveform candidate 

(turbulence) were considered for 

use by FQ-BIT. After a selection 

 
 

Figure 16. Doublet Input 
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process discussed in the appropriate subsections of section IV, V, and VI, the Doublet waveform 

(depicted in Figure 16) was chosen for its balance of stability and accuracy. The amplitude is 

tuned as a compromise between exciting the system enough to produce good estimates, and 

avoiding destabilizing the system.  For the longitudinal axis, the doublet is injected only to the 

elevator. For the lateral axis, the doublet is injected into the both aileron and rudder. The aileron 

is first perturbed, then fifteen seconds later the rudder is perturbed. The separation between the 

aileron and rudder perturbation allows for the transient motions to dampen out so as not to corrupt 

the results of the rudder estimation results.  

B. AIR VEHICLE PLANT 

 Large UASs serve strategically 

important roles in intelligence-

surveillance-reconnaissance and strike 

missions are reflected in the large 

monetary and intellectual investments 

(the reader is referred to the history 

subsection of the introduction for 

statistical information). In addition, 

their large size is more likely to cause casualties in the event of a mishap. Given this, FQ-BIT is 

focused on serving large UASs; the comparative size of a large UAS is illustrated by an RQ-4A 

in company with a thirteen passenger Beechcraft C-12 in Figure 17.  

C. SENSOR 

 The air vehicle must have sensors to measure the following longitudinal states [α, q] and 

lateral states [β, ϕ, p, r] for use by the SID algorithm. In addition, all perturbed control surface 

positions [δe, δa, δr] must also be measured and recorded; this requirement should be easily 

 
Figure 17. RQ-4A. 
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fulfilled as most actuators already incorporate a position measurement for use in their internal 

command tracking control system. Likewise, the Euler angle rates [p,q,r] and roll angle [ϕ] 

should easily be obtainable from the onboard navigational unit(s). The angles between the body 

and stability axis [α, β] are more difficult to obtain accurately.  

In comparison to the other measurement requirements, [α, β] are not necessarily required by 

the basic control architecture. While one can safely assume the navigational and actuator needs 

will provided [p,q,r,ϕ] and [δe, δa, δr] to FQ-BIT at no additional cost, [α, β] are not required by 

any function. The control system may require them for stability augmentation, but that necessity 

cannot assuredly exist on all UAS of concern. As such, FQ-BIT levies additional requirements on 

the UAS to either possess α and β sensors, or to have a method of synthesizing the measurements 

with a state estimator. Note that the following equations 

α = θ – γ 

β = ψ – ground track 

are unsuitable for FQ-BIT use. The α equation is only valid for wings-level straight and level 

flight, and the transients during a pitch doublet make that calculation invalid. The β equation is 

invalid because it assumes that no wind exists (in other words, the air mass is not moving). While 

wind may be correct for post-flight with accurate weather information, it is impractical to do so in 

an operational environment real-time.  

D. SID ALGORITHM 

The system identification (SID) component estimates the plant which is then analyzed for 

flying qualities. SID algorithm assumes the lateral and longitudinal dynamics of the air vehicle 

are decoupled and processes them separately. For the longitudinal mode, the states [α,q] and input 

δe are used for SID. For the lateral mode, the states [β,ϕ,p,ψ,r] and the input [δa,δr] are used.  
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Three candidates (equation error in time domain, equation error in frequency domain, and 

Extended UD Factorized Kalman Filter) are evaluated in the appropriate subsections of section 

IV, V, and VI with EUDKF being chosen for use. The following paragraphs describe the 

implementation of EUDKF in detail. 

1. Extended UD Factorized Kalman Filter 

 The system identification (SID) algorithm of choice is the Extended Kalman Filter in UD 

factorized form (hereafter referred to 

as EUDKF), which is a member of the 

Kalman Filter family. Kalman Filter 

uses statistical probability to meld the 

measurements and the model together. 

It is a recursive process that assumes a 

Gaussian white noise distribution. The 

Kalman Filter only operates upon the 

data one time step prior and hence has 

low memory access requirement; in 

contrast, batch filters require the entire 

measurement and hence have high 

memory access requirement. Although 

generally applied towards state estimation, the Kalman Filter family can also be used for system 

identification by augmenting the state matrix with the elements of A and B matrices.  

The Kalman Filter architecture is displayed in Figure 18. From the last state estimate, the state 

is propagated forward in time using the state transition matrix ϕ such that x�k+1 = 𝜙𝜙x�k , where ϕ is 

given as the matrix exponential of the state matrix A (ϕ=eAt) . To save computational resources, a 

truncated Taylor series expansion of the exponential can be used such that eAt = I+At. 

 
 

Figure 18. Kalman filter architecture. 
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Alternatively, any numerical technique (such as the fourth-order Runge-Kutta scheme) can be 

used to propagate the states as �̇�𝑥 = 𝐴𝐴𝑥𝑥. Since any nth-order ordinary differential equation can be 

written as n-number of 1st order differential equations, the solution to any nth-order ordinary 

differential equation can be written as a matrix exponential problem. While the states are 

propagated, the covariance matrix P is also extrapolated. This P is used in the measurement 

update step. As implemented in FQ-BIT, the initial augmented state matrix guess is that of the 

initial states augmented by the nominal A and B matrices, and the initial covariance P is guessed 

to be 50%.  

Q is the covariance matrix of process noise. It is mathematically represented as a square matrix 

of size nxn if the state vector is of size nx1. Tuning of the Kalman Filter can be performed by 

adjusting the magnitude of each Q element. Each noise injection must be proportional to the 

magnitude of each individual state. Assuming a state vector of [10; 1000], the diagonal of the Q 

matrix could be a scalar multiple of [1; 100]. If improper noise magnitudes are specified, the 

Kalman Filter could track the largest magnitude state(s) and ignore others. Too little excitation 

could lead to filter “smugness” in which the filter erroneously trusts the model too much and does 

not pay attention to the measurement updates. Alternatively, too much excitation could drive the 

system unstable.   

Once the state is propagated to the next time step, and the state measurements are available 

through the sensor, the next step is to combine the two. Using statistical probability, the Kalman 

gain K is calculated using a combination of the covariance matrix P, predefined measurement 

noise matrix R, and sensor matrix C such that 𝐾𝐾 = 𝑃𝑃� − 𝐶𝐶𝑇𝑇[𝐶𝐶𝑃𝑃�𝐶𝐶𝑇𝑇 + 𝑅𝑅]−1. If the covariance is 

high, this indicates a high confidence in the model or the filter considers the measurement is an 

outlier; as such, K approaches zero and the measurement is ignored. The states are updated using 

the Kalman gain as such, 𝑥𝑥� = 𝑥𝑥� + 𝐾𝐾[𝑦𝑦𝑚𝑚 − 𝐶𝐶𝑥𝑥�], where ym is the measurements. After this, the 
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covariance matrix is updated as well using the equation 𝑃𝑃� = [𝐼𝐼 − 𝐾𝐾𝐶𝐶]𝑃𝑃� where I is the identity 

matrix.  

The “Extended” flavor of the Kalman Filter differs by having an A matrix linearization step at 

each iteration, whereas the plain Kalman Filter has a predefined, fixed A matrix. The linearization 

step allows the filter to account for plant non-linearity. In the FQ-BIT implementation, the 

linearized A matrix is found by numerically taking the Jacobian of the non-linear function around 

the current states (first-order accurate in the Taylor series expansion sense); the sensor matrix 

could be likewise linearized if necessary. An Extended Kalman Filter is a non-optimal solution 

for nonlinear systems because it uses a linear approximation of a nonlinear system. In contrast, 

plain Kalman Filter is the optimal solution for a linear system as no system approximation is 

utilized. The Extended Kalman Filter also incurs penalties in the form of computational 

requirements associated with the linearization step. As implemented in FQ-BIT, each element of 

the Jacobian matrix is calculated by the central difference method where �̇�𝑓 = 𝑓𝑓(𝑥𝑥+∆𝑥𝑥)−𝑥𝑥(𝑥𝑥−∆𝑥𝑥)
2∆𝑥𝑥

. 

The states are propagated forward using the matrix exponential method.  

Rounding errors can cause the Kalman Filter to diverge. If the covariance matrix P has a small 

positive eigenvalue to be computed as zero or a negative number, it thereby turns the covariance 

matrix P indefinite (it should be positive-definite). The UD factorized flavor of the Kalman Filter 

addresses this problem by operating on P in a unit-triangular and diagonal (UD) decomposed 

form. Because P is a positive-definite matrix, the square-root can be calculated. By performing 

operations on the square-root and then recombining, P is guaranteed to be positive-definite. 

However, square-root operations are slightly more expensive than the divisions used by the UD-

decomposition37. UD-decomposition retains the numerical properties of the square-root while 

requiring less computational resources. P can be decomposed using the following equation 

P=UDUT where U is the unit-triangular component and D is the diagonal component.  The bonus 
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of such factorization comes in storage space requirements: UD-decomposition requires only half 

the word length compared to explicitly calculating P.  

Divergence could occur due to things like incorrect initial guesses, nonlinearity, and rounding 

error; EUDKF and tuning strategies are chosen to avoid such problems. To handle incorrect 

initial guesses, the output from other SID algorithms can be used to initialize the KF; but this 

negates the advantage of a recursive process. As implemented in FQ-BIT, EUDKF makes an 

initial guess with the nominal values and 50% covariance. While the large initial covariance can 

increase convergence time, the increased robustness is worth the trade-off. The mechanization of 

the EUDKF is summarized below.  

State and Covariance Propagation 

The State Vector propagates through time according to the transition matrix ϕ where 𝑥𝑥� is the 

current state estimate, 𝑥𝑥� is the extrapolated state at the next time step, and 𝑤𝑤𝑘𝑘  is the process noise. 

(1) 

Using the definition of covariance matrix P(k) = E{x(k)T x(k)} and the assumption that state error 

and process noise (Q) are uncorrelated, the error covariance matrix can be written as  

(2) 

However, explicitly calculating P could lead to divergence, so the upper triangle term U and 

diagonal term D are introduced such that  

(3) 

With the following definitions:  

 V = [ϕ𝑈𝑈� | G] 

VT = [v1, v2,..., vn] 

𝐷𝐷�= diag[𝐷𝐷�,Q] 

The extrapolated P can be written as  

(4) 

( ) ( ) ( ) kwkxkkkx ++=+ ˆ1,1~ φ

( ) ( ) TT GQGkPkP +=+ φφ ˆ1~

TUDUP ˆˆˆˆ =

TVDVP ~~~~ =
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where U and D are recursively calculated with the following algorithm. 

for (j=1...number of states) { 

 

   for (i=1...j-1) { 

 

 

   }  

} 

 

Linearization 

Note that for a non linear system described by the following state equations where Θ is the vector 

of unknown parameters,  

(5) 

(6) 

EKF linearizes the system around the current estimate such that, 

 

(7) 

 

(8) 

And the transition matrix is given as, 

(9) 

Hence the extrapolated state vector can be found using equation 1 using ϕ from the equation 9. 

 

Measurement Update  

After a new measurement is available, K the Kalman gain is calculated as such, 
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where R is the measurement noise covariance matrix. The state and error covariance matrix is 

updated with the following equations. ym is the measurement. The sensor matrix C used is from 

equation 8.   

(10) 

(11) 

 

2. 𝑨𝑨�,𝑩𝑩�  Matrix Size 

A lower-order estimation is used for FQ-BIT in the longitudinal states in order to reduce 

computational requirements. Textbooks typically linearize air vehicle plants into four states: 

[VTAS,α,θ,q] in the longitudinal mode and five states [β,ϕ,p,ψ,r] in the lateral mode, and inputs 

are linearized to two states [δe,δth] in the longitudinal mode and two states [δa,δr] in the lateral 

mode25, 35. However, the physics of large UAS allow an order reduction to just [α, q] in the plant 

and [δe] for the input. 

[ ]PKCIP ~ˆ −=

[ ]xCyKxx m
~ˆˆ −+=

 
 

Figure 19. Typical UAS control system. 
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A typical control system for 

UAS is illustrated in Figure 19. 

In the longitudinal mode, the 

autopilot forms a tight inner 

loop with altitude and airspeed 

tracking. This augmentation 

effectively suppresses the 

phugoid mode. This is 

illustrated in Figure 20 where 

the open-loop dynamics is that 

of a Cessna 172 (shown in the 

appendix) with an initial 

VTAS disturbance of 5kt; the 

augmentation is achieved through pitch rate feedback architecture with a gain of 20 in the 

feedback path.  

The Phugoid is a “slow” mode in comparison to the short period mode with the dynamics 

primarily showing up in the VTAS and θ states. Similarly, the throttle input has a comparatively 

higher lag time than the elevator and only minimally affects the short period. The long period 

(roughly forty seconds in Figure 20) in comparison to the maneuver length (fifteen seconds), as 

well as the fact that the autopilot / inner-loop controller is never disengaged on a UAS; the 

phugoid mode can be removed from the longitudinal estimation. Hence, the state vector is 

reduced to [α, q] and input vector reduced to [δe]. The five lateral states cannot be reduced 

because all states are necessary to capture the coupled rolling and yawing motions.  

 
Figure 20. Phugoid suppression. 

 
 

0 20 40 60 80 100 120
-5

0

5

V
TA

S

0 20 40 60 80 100 120
-0.02

0

0.02

0.04

θ 
(d

eg
)

Time (s)

 

 
Open-loop
Augmented



 29 

Because of the tight inner-loop controller, the phugoid mode can be ignored. The relevant 

longitudinal states and input are [α, q] and [δe]; the relative lateral states and inputs are [β,ϕ,p,ψ,r] 

and [δa,δr]. 

E. FQ ANALYSIS 

To access the flying qualities (FQ) of the air vehicle, the stability / performance, robustness, 

controllability, and observability of the system must be determined. Since the SID algorithm 

outputs the linear closed-loop dynamics of the air vehicle in the state-space form, all analysis will 

be performed in the state-space form as well.  

1. Stability / Performance 

The pole locations (in the Laplace domain) or eigenvalues of A (in state-space representation) 

determine the stability of the system. Considering the system with no external input or 

disturbances so that  �̇�𝑥 = 𝐴𝐴𝑥𝑥, the system is stable if and only if all eigenvalues of A are inside the 

left half of the complex plane. In other words, the real parts of the eigenvalues of A are all 

negative. Assuming A is diagonalizable with all the eigenvalues in the left half plane, the 

following relationship exists:  

‖𝑒𝑒𝐴𝐴𝐴𝐴‖ ≤ 𝑘𝑘0𝑒𝑒𝜎𝜎𝐴𝐴  

where k0 is the condition number and σ is the largest real eigenvalue of A. Because all the 

eigenvalues of A are in the left half plane, σ < 1. Multiplying both sides of the inequality with the 

magnitude of the initial state x0, and applying the fact that the solution �̇�𝑥 = 𝐴𝐴𝑥𝑥 to is  𝑥𝑥 = 𝑒𝑒𝐴𝐴𝐴𝐴𝑥𝑥0, 

the following can be seen: 

‖𝑒𝑒𝐴𝐴𝐴𝐴𝑥𝑥0‖ ≤ 𝑘𝑘0𝑒𝑒𝜎𝜎𝐴𝐴 ‖𝑥𝑥0‖ 

‖𝑥𝑥(𝐴𝐴)‖ ≤ 𝑘𝑘0𝑒𝑒𝜎𝜎𝐴𝐴 ‖𝑥𝑥0‖ 
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If the system is exponentially stable the steady-state norm of x(t) should be zero as time 

approaches infinity. Observing the right hand side of the equation above, one can see that the 

quantity approaches zero as time approaches infinity because of the negative exponential (σ is a 

negative number). Thus, the following relationship exists: 

𝑙𝑙𝑙𝑙𝑚𝑚
𝐴𝐴→∞

‖𝑥𝑥(𝐴𝐴)‖ ≤ 𝑙𝑙𝑙𝑙𝑚𝑚
𝐴𝐴→∞

𝑘𝑘0𝑒𝑒𝜎𝜎𝐴𝐴 ‖𝑥𝑥0‖ 

lim
𝐴𝐴→∞

‖𝑥𝑥(𝐴𝐴)‖ ≤ 0 

However, the definition of a vector norm states that ‖𝑥𝑥(𝐴𝐴)‖ ≥ 0. For both the relationship derived 

above and the vector norm definition to be true, the following must be true, 

lim
𝐴𝐴→∞

‖𝑥𝑥(𝐴𝐴)‖ = 0 

Hence, given the system with dynamics such that  �̇�𝑥 = 𝐴𝐴𝑥𝑥, the system is stable if and only if the 

real part of all the eigenvalues of A are negative. 

Armed with the knowledge above, the stability of the system is easily established. As 

implemented in FQ-BIT, the eigenvalues of the A matrix is calculated and the real and imaginary 

parts are determined. If all the real parts of the eigenvalues are negative, then the system is stable. 

However, the FQ-BIT does not explicitly check for stability as a Boolean. Instead, this is 

implicitly established along with performance section.   

The flying qualities of an air vehicle are specified in 

damping frequency (ωd) and damping ratio (ζ) for second 

order responses, time constants (τ) for first order 

responses in MILSPEC 8785. Since the desirable metrics 

derive from stable systems, metrics from unstable systems 

will lie outside the desirable region along with stable 
 

Figure 21. FQ stability metrics. 
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systems that do not perform up to par. Hence, by just analyzing the flying qualities metrics, the 

stability and performance of the air vehicle can both be established at the same time.  

For a second order response, the damping frequency and ratio can be calculated based upon 

the pole locations. The relationship is illustrated in Figure 21. The imaginary part of the 

eigenvalue is the damping frequency. The modulus of the eigenvalue gives the natural frequency. 

The real part of the eigenvalue is the product of the damping ratio and natural frequency. The 

short-period, Dutch-Roll, and Phugoid modes are second order responses and can be analyzed 

with this method.  

For first order response, approximations are needed to convert the pole locations to time 

constants. Note that poles for first order responses lie on the real axis of the root locus plot; thus, 

the damping frequency is zero and damping ratio is one. Observe that the magnitude of the 

eigenvalue is the natural frequency of the first order response. The following approximations25  

between time constant, rise time, and the natural frequency, and eigenvalue (λ) are used to 

calculate the metric, 

𝐴𝐴𝑟𝑟 ≅
1 + 1.1𝜁𝜁 + 1.4𝜆𝜆2

𝜔𝜔𝑛𝑛
=

3.5
|𝜆𝜆|  

𝜏𝜏 ≅ �1 −
1
𝑒𝑒
� 𝐴𝐴𝑟𝑟

2.2
|𝜆𝜆| 
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The desirable flying qualities for manned platforms are outlined in MILSPEC 8785. However, 

these requirements are written for pilots having direct “stick-and-rudder” inputs to the UAS; 

while having relevance to a remotely-piloted-capable platform such as the RQ-1/MQ-9, it is not 

pertinent to the RQ-4 with “keyboard-and-mouse” inputs. The difference in input style is 

illustrated in Figure 22. With the RQ-4 style of inputs, the human operator is issuing high level 

commands like desirable heading and altitude while the inner-loop autopilot is performing the 

tracking task; in the RQ-1, the human operator both issues high level commands and performs 

tracking. Because of different styles of human-machine interface, the desirable flying qualities are 

left to the UAS designers to specify.  

Because different turbulence conditions might impose different response times, the desirable 

performance metrics are split into three progressively stringent categories of light, medium, and 

heavy turbulence. The performance metrics calculated from the SID algorithm output are 

compared against the requirements and the result is a “go / no-go” for flight in different 

atmospheric conditions.  

 
 

Figure 22. Keyboard-and-Mouse vs. Stick-and-Rudder 
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2. Robustness 

Even if the system is 

found to be stable with 

adequate performance, 

robustness must still be 

established. Robustness 

assures stability even if the 

results from the SID 

algorithm have up to 6db 

and 45degs of errors in gain 

and phase. Referencing the 

system architectural diagram in Figure 15, error sources can be identified. Sensor error (ε) in form 

of bias, scaling, noise, or nonlinearity corrupts the state outputs. This has the cascading effect on 

the SID results. In addition, the SID algorithm introduces process noise by estimating a linear, 

reduced-order model since the “real-world” is non-linear with an infinite number of states. While 

the SID algorithm is tuned to give the best results despite these errors (described in the relevant 

test and analysis sections), margins must be built in. 

The robustness of the system is characterized by the gain and phase margins. Gain margin 

indicates the amount of error in the modeled magnitude before system instability occurs. 

Assuming a linear representation at an input of 1 is output = 3 x input, and the system has 6dbs of 

gain margin, then it can be said that the model (amplification of 3) can have 6dbs of error (i.e., 

true amplification can be as high as 6) before the system becomes unstable. The instability is a 

result of the phase being 180degs apart where negative feedback becomes positive feedback. On 

the other hand, phase margin indicates the amount of error in the modeled phase before instability 

occurs. Assuming a modeled phase margin of 45degs, then the true phase lag can have an 

 
 

Figure 23. Bode Plot 
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additional 135degs before instability occurs due to the feedback switching sign. Gain and phase 

margins are determined from the Bode plot; their relationship is illustrated in Figure 23. The 

reader is referred to textbooks25, 35 for further explanation.  

MILSPEC 9490 defines the desirable gain and phase margins as 6db and 45degs respectively. 

Since there is no fundamental difference between manned and unmanned platforms regarding 

robustness, these criteria are adopted for determining robustness of the system. Once the 

robustness of the air vehicle is determined, a Boolean flag indicates to the human operator 

whether the system has the required 6dbs and 45degs robustness.  

3. Observability 

Observability is critical to the function of the control system. Given an observable system, the 

current states can be determined in finite time using the observed outputs. Alternatively, this 

means that it is possible to determine system behavior given the outputs available. If the system is 

unobservable, then some of the output values are not known to the controller and cannot fulfill 

the control specifications.  

Since the SID algorithm output a linear time-invariant state-space representation of the closed-

loop air vehicle, the observability matrix (O) is constructed as such where n is the number of 

states: 

 

 

 

If the rank of the observability matrix is n (in other words, full rank), then each row is linearly 

independent and each state can be determined; thus the system is observable. The operator is 
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informed if the system is observable. If the system is unobservable and no sensor faults are 

indicated, then the FQ-BIT results are invalid and should be re-performed as soon as practical.  

4. Controllability 

Controllability is the mathematical dual of observability. Given a controllable system, then the 

states can be changed from one to another in a finite amount of time. Alternatively, this is a 

measure of whether all the states can be altered by a combination of inputs. If the system is 

uncontrollable, the control system cannot change all the relevant parameters of the flight path, 

which presents a danger to both the air vehicle and the surroundings.  

Given a linear time-invariant state-space representation of a system, the controllability matrix 

(R) where n is the number of states can be written as such: 

 

If R is full rank, then there are n numbers of linearly independent columns and all the states are 

reachable given a combination of inputs; thus the system is controllable. The operator is informed 

if the system is controllable.  

F. AVO INTERFACE 

The raw, numerical, results from FQ analysis in subsection E, while providing a wealth of 

engineering information, should not be directly displayed to the air vehicle operator (AVO).  

Instead of overwhelming a presumably stressed operator with a deluge of numbers, the results are 

presented as a series of “go / no-go”, respectively green and red, flags so that the pilot can 

determine the flying-qualities in a glance. The interface is displayed in Figure 24.  

[ ]BABAABBR n 12 −= 
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Area I allows the AVO to select the axis to be tested; if both axes are selected, longitudinal 

will be tested first, then lateral. The execute button in area II is used to initiate the test(s) selected 

in area I. Area III is the detail status button which allows the AVO to thoroughly examine the 

results (further elaborated in the next paragraph). Area IV indicates whether the AV is safe to 

operate in differing levels of turbulence. If all three columns are green, then the AV is safe to 

operate in conditions up to heavy turbulence; if the light and medium columns are green but the 

heavy column is red, then the AV is unsafe to operate in the presence of heavy turbulence. If all 

three columns are red, the AVO is advised to terminate the AV as soon as practical. Area V 

displays other flying qualities metrics. Observability and controllability should be green for a safe 

recovery. If observability is red while no sensor faults are indicated, then the invalid flag will turn 

red in area VI. If either gain or phase margin flags turn red, the AVO is advised to terminate. 

Area VI displays the validity as well as termination recommendation. If the results are invalid, the 

operation should re-execute FQ-BIT at the earliest convenience. If any of the aforementioned 

criteria for termination are met, the terminate flag will light up and the AVO is advised to 

terminate. The FQ-BIT will not automatically terminate the AV. 

 
 

Figure 24. AVO interface. 
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The detail status display is illustrated in Figure 25. This corresponds to a scenario in which the 

AVO observes red items in area IV and V, and further investigates before deciding upon a course 

of action. Both Yaw and Roll are red boxed because at least one metric failed to meet the 

requirements. In the yaw axis, one observes that the damping frequency lies outside of the 

acceptable range for heavy turbulence and the damping ratio is inadequate for anything but light 

turbulence. In the roll axis, there is insufficient gain margin. Given this information, the operator 

can make an informed decision. 

 A few scenarios are presented for reference. Figure 26 displays a nominal scenario where 

no restrictions are implied.  

Figure 27 shows a scenario in which it is inadvisable to operate in the presence of medium or 

heavy turbulence. Figure 28 shows a scenario in which the AV is no longer airworthy and should 

be terminated. Figure 29 illustrates a scenario where FQ-BIT returns an invalid result. 

 
 

Figure 25. Detail Status. 

 



 38 

 

 

 

 

 

 

 

 

 
 

Figure 27. Restricted. 

 

 
 

Figure 26. Nominal. 
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Figure 29. Invalid. 

 

 
 

Figure 28. Terminate. 
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IV. Test Suites 

A. Air Vehicle Plant (Characterization) 

The air vehicle plant used for evaluating the candidates is split into two cases: linear and non-

linear. In both cases, the longitudinal and lateral dynamics are assumed to be uncoupled. The 

plants chosen represented an air vehicle comparable in size to a large UAS; the flight conditions 

are selected to be at the heart of the envelope. In the linear case, a Cessna 172 at an altitude of 

5000ft and airspeed of 120kts is used. For the nonlinear case, an F-16 at an altitude of 20000ft 

and airspeed of 400kts is modeled. The six degrees-of-freedom nonlinear model of the F-16 is 

based on the information in Aircraft Control and Simulation35 and improved by the Software 

Enabled Control group at the University of Minnesota34.  

The linear model of the Cessna 172 is presented in the appendix section B. For the 

longitudinal case, four states are simulated [VTAS,α,θ,q]. Note that only two longitudinal states 

are estimated by the SID algorithm, so process noise is intentionally introduced to assess the 

supposition that Phugoid mode can be neglected. The lateral model simulates five states 

[β,ϕ,p,ψ,r], all of which are used by the SID algorithm.  

 

B. Sensor (Characterization) 

Sensor error corrupts the input to the SID algorithm and may affect the accuracy of its 

solution; hence, these errors must be modeled in order to accurately evaluate the candidates. 

Several types of errors are displayed in Figure 30. Noise, not graphed, corrupts the truth value 

with undesirable random perturbations. Bias error indicates a constant offset from the truth value; 

for example, the truth is y=x while the sensor readout is y+ε=x+2. A scaling error is an error in 
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the slope; for example, the 

truth is y=3x while the 

sensor readout is y+ε=2x. 

Nonlinearity error indicates 

that while the sensor 

readout is approximately 

equal to the truth over a 

range of values, the error 

nonlinearly expands outside 

said range; for example, the 

truth is y=tan(x) while the 

sensor readout is y+ε=x. Quantization error occurs during an analogue-to-digital conversion 

where the resolution is not high enough to fully describe the analogue function.  

Scaling errors often happen when the output units (e.g. volts) are not correctly translated to 

engineering units (e.g. ft). This error is not inherent to any sensor and is likely to be discovered 

and rectified before the air vehicle is put into service. Therefore, scaling error is ignored for the 

purpose of these evaluations. The same argument goes for nonlinearity, and thus is left out of the 

analysis. With the advanced electronics, it is safe to assume that the sampling bins are fine 

enough to make quantization an inconsequential issue. Bias and noise are the two consequential 

components that are modeled for evaluation. 

The states required by the SID algorithm can be gathered by two subsystems. [VTAS,α,β] can 

be gathered by the air data system (ADS), and [θ,q,ϕ,q,ψ,r] can be gathered through the inertial 

navigation unit (INS), specifically the rate sensors. While [α,β] can be estimated using inertial 

navigation outputs, the results are only valid for steady-state flight in the case of α and zero-wind 

 
 

Figure 30. Sensor error types. 
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in the case of β. As neither assumption is appropriate for FQ-BIT, the errors from both INS and 

ADS are investigated. 

1. INS 

In addition to the aforementioned errors, mechanical misalignment, stress deformation, and 

temperature are contributors to sensor errors. Mechanical misalignment errors stem from the 

accelerometers / rate-gyros not being perfectly orthogonal to each other. This error is disregarded 

because it is largely constant and can be filtered out by sensor-fusion algorithms (namely Kalman 

Filters) internal to the INS. Load factor from high-G maneuvers can cause deformation of the 

sensor which affects the readings. Since the FQ-BIT is performed in steady-state level flight, this 

error source is disregarded. Temperature fluctuations are disregarded with the assumption that 

environmental conditions will not exceed design limits. 

INS determines angles by integrating the rotation rate over time, and sensor fusion algorithms 

mesh the integration results (which have unbounded errors) with other sensor readings (such as 

GPS) to keep the error within the acceptable bounds. Ignoring the sensor fusion part, the noise of 

the integration output can be 

specified in three formats: 

function of frequency using 

power spectral density (PSD) 

or Fast Fourier Transform 

(FFT), and function of time 

using angle random walk 

(ARW). ARW is usually used 

in specification of INS 

because it represents the root-

 
 

Figure 31. Integrated angle noise. [ref Stockwell] 
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mean-squares error. ARW is a noise specification is in units of angle per square-root of time that 

directly the average deviation that occurs with integration. Because the integration process 

involves time, ARW is also a function of time. The statistical distribution, described by the 

standard distribution, of noise is linearly scaled with the noise level (deg) and with the square root 

of time (√hr). ARW is assumed to be a Gaussian white noise process, and hence, has a normal 

distribution13. An integration of ARW is shown in Figure 31.  

Bias results from error in the sensor fusion process (e.g. Kalman filter). Referencing the 

Kalman filter architecture in Figure 18, the state propagation portion represents the integration of 

angular rates to obtain angles. The measurement comes from another sensor such as a GPS. The 

measurement update 

process fuses the 

inertial and GPS 

measurements together. 

Being a statistical 

process, the error is 

never driven to zero as 

nothing is absolutely certain, which results in a constant offset. Figure 32 compares the 

unbounded error of the pure integration against the bounded bias error of the embedded GPS/INS 

(EGI). 

To characterize noise and bias, manufacturer spec-sheets26 are consulted. Noise is assumed to 

a Gaussian white noise process with a 1-σ value of 0.15 deg/√hr 24. The bias error comes from 

the integration of noise and is provided in units of deg/hr. Fibre optic gyros have shown to display 

about 0.025 deg/hr of bias26.  

 
 

Figure 32. Sensor fusion. 
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2. ADS 

Angle of attack can be measured by the ADS 

through two methods: vane (illustrated in Figure 33) 

or pitot-static. The vane type sensor works by aligning 

the vane with the airflow and the difference between 

the vane and tare angle is the difference between the 

air-path axis and body axis respectively. This is the angle-of-attack. The pitot-static based sensor 

has two ports angled differently; the difference between the pressure-readings can be used to 

solve for the angle-of-attack. Due to the scarcity of open-sure literatures for error of pitot-static 

alpha sensors, the type is disregarded for the purposes of this paper.  

ADS data is often processed before being used by the flight controls program. One such 

algorithm, a first-order complementary filter, is illustrated and simulated with the bias of 0.125 

deg and noise of 0.05 deg (1-σ) in Figure 34 to demonstrate the functionality. Note the ability of 

the filter to suppress the noise but not the bias error. To remain conservative, no filtering is 

assumed in the SID algorithm selection 

process. Literature quotes the 

performance of a vane type sensor as 

having a total error less than ±0.25 deg31. 

Due to a shortage of information as most 

companies regard this information as 

proprietary, the bias is arbitrarily set at 

±0.1 deg and noise at a 1-σ value of 0.05 

deg with Gaussian white noise 

properties. 

 
 

 
 

Figure 34. Complementary Filter (τ=2) 
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Figure 33. Vane sensor. 

 
 
 



 45 

The bias error and noise properties as described above are synthesized for use in the SID 

algorithm evaluations. Three sensor test cases are used: noise only, bias only, and noise with bias. 

Each case allows the evaluation of the SID algorithm with each type of sensor error; the noise 

with bias case presents the worst-case scenario as a “stress-test” of the algorithm.  

C. Input Waveform (Evaluation) 

1. Candidates 

Besides the doublet, three additional waveforms were considered: 3-2-1-1, pulse, and natural 

turbulence. NASA had investigated other waveforms such as the sinusoid for stability derivative 

(parameter) estimation, but found them wanting32. The lack of clearly defined edges leads to a 

subpar estimate. In addition, system identification makes the assumption that flight conditions 

(such as Mach number and altitude) remain constant; while other input waveforms allow the air 

vehicle to remained trimmed, sine waves (especially long sweeping inputs) tend to vary the flight 

conditions, further degrading their results. In Figure 35, note the poor estimate as well as large 

error bounds exhibited by the sine wave inputs.  

 

 
Figure 35. Inputs compared. Chart reproduced from NASA report32. 
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Since the FQ-BIT is aimed at serving large UAS 

that are likely to be subsonic and possess highly 

augmented (tight) control systems, the sinusoidal 

input is discounted and 3-2-1-1, doublet, pulse, and 

turbulence inputs investigated. For a description of 

the doublet input, refer to the system description 

section, subsection A. 

A 3-2-1-1 waveform is illustrated in Figure 36. The maneuver is so named because it provides 

input in time duration of three, two, one, and one, with the direction of the input reversing at 

every new time bin. Input energy is spread out (lower amplitude) because of the long duration. 

On the positive, the low amplitude maintains the linearity assumption. Additionally, the different 

time duration acts like a pseudo-frequency sweep, which can benefit frequency-domain based 

SID algorithms. The drawback is that the low amplitude input yields less accurate results due to 

lower SNR and corner-rounding from the inner-loop autopilot. The long duration may also violate 

the assumption that flight conditions stay the same. Because of these issues, the 3-2-1-1 

waveform is rejected. 

A pulse waveform displayed in Figure 37 has a high magnitude that gives good signal-to-noise 

ratio. The input is designed to mimic the Dirac delta function, the length of the pulse is set to 

account for actuator response time. The short 

duration of the pulse means it is less likely to 

induce oscillations. However, the high magnitude 

input may violate the linearity assumption of SID 

algorithms. A series of tests are conducted to 

further characterize the pulse waveform. 

 
 

Figure 36. 3-2-1-1. 
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Figure 37. Pulse. 

 

0 5 10
-4

-2

0

2

4

Time (sec)

δ e
 c

m
d 

(d
eg

)



 47 

A natural source of input is turbulence. The inner-loop controller issues control surface 

commands to maintain the desired flight path in the presence of turbulence. This creates a 

correlation between the control surface activity and the response of the air vehicle which an SID 

algorithm can exploit. With the minimal disturbance to flight path, turbulence has the benefit of 

being easily adaptable for a continuous FQ-BIT implementation. However, the frequency and 

magnitude of the turbulence encountered are uncertain so that it may be unreliable. In addition, 

the turbulence input is not exactly known or repeatable (in contrast to a pulse or doublet), which 

introduces process noise and can degrade the solution.  

Turbulence is simulated by the Dryden discrete turbulence model as published in MILSPEC 

8785, which is a stochastic process. Given the altitude and wingspan or the vehicle, wind 

velocities are generated along all three axes. The wind speed at ground level of 10ft/s is defined 

 
 

Figure 38. Turbulence intensity. 
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to set the moderate wind magnitude for the model. A “medium severity” probability of 

exceedance is selected. The turbulence intensity is determined from a lookup table (graphed in 

Figure 38) as a function of altitude, and the probability of exceedance gives the probability that 

the turbulence intensity exceeds the table lookup value. The turbulence acts as an input to which 

the autopilot of the air vehicle responds with control surface commands.  

2. Evaluation Methods 

To choose between the waveforms, the estimation results must be compared against the truth 

data using a metric for accuracy. The norm of �̂�𝐴,𝐵𝐵�  can be compared against the norm of A, B. 

However, there are dizzying variety of norms available (max-norm, Frobenius-norm, Schatten-

norm, etc) with no clear directions on which is best. In addition, norm is only a scalar value and 

provides no information on convergence or trends. In contrast, by simulating the states using �̂�𝐴,𝐵𝐵�  

and input u to get 𝑦𝑦�, a frame-by-frame comparison can be made against the recorded response (y). 

All candidate SID algorithms are used to process 𝑦𝑦� in order to determine if any correlation exists 

between SID algorithm and input waveform. The sensors are assumed to be perfect (no noise, 

bias, etc) for the purpose of this test. The plant used is the longitudinal linear plant because it is 

the easiest estimation problem. Because EUDKF is a stochastic process, fifty Monte Carlo trials 

are run and the ensemble of data at each time step are processed by the root-mean-squares (RMS) 

error equation: 

��
1
𝑘𝑘

(𝑦𝑦�𝑁𝑁 − 𝑦𝑦𝑁𝑁)2
𝑘𝑘

𝑁𝑁=1

 

The results are evaluated based on transient behaviour, convergence rate, and steady-state error.  

To test the effectiveness of atmospheric turbulence as an input waveform, a 15sec long 

simulation is built in SIMULINK for testing. The block “Dryden Wind Turbulence Model” is 
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used to generate the wind gusts with horizontal, vertical, and lateral components. The Dryden 

model generates gusts that smoothly ramp from zero velocity to the gust magnitude, stay at that 

magnitude for a period of them, then ramp back to zero. The time duration of the ramps and the 

interval at maximum magnitude, as well as the gust magnitude itself, are stochastic processes that 

follow the models and equations outlined in MILSPEC 8785. For the purposes of this evaluation, 

the air vehicle altitude is considered to be invariant at 5000ft; in addition, the roll and yaw angles 

are assumed to be invariant at zero as well. The aircraft plant is the linear time-invariant 

representation of the longitudinal dynamics of a Cessna 172 at an altitude of 5000ft and airspeed 

of 120kts. Because only the longitudinal dynamics are simulated, the lateral wind gust is not used. 

The plant incorporates the horizontal turbulence by adding it to the airspeed state. The vertical 

turbulence is incorporated by calculating the induced angle-of-attack, and then adding it to the 

corresponding state. An altitude hold autopilot is constructed with altitude rate feedback. The 

airspeed is multiplied by the pitch angle (small angle approximation is assumed to remove the 

sine function on θ) to represent altitude rate. A proportional gain feedback is used to generate the 

elevator command. The block diagram of this simulation setup is displayed in Figure 39. The 

power spectral density of the horizontal and vertical wind gusts from the Dryden model is 

 
 

Figure 39. Turbulence SIMULINK model setup. 
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displayed in Figure 40. 

Note that turbulence is 

mostly concentrated at low 

frequencies.  

The resulting states and 

elevator movements from 

the turbulence are 

recorded, processed by the 

SID algorithm, and the 

estimated states generated. 

The RMS equation is again 

applied to evaluate the usefulness of turbulence as an input.  

D. SID Algorithm (Evaluation) 

In addition to Extended UD Factorized Kalman Filter (EUDFK), two other methods were 

considered: Equation Error (Time Domain) and Equation Error (Frequency Domain) methods. 

Output error method is not considered due to the long runtime (fifteen to thirty minutes) and 

occasional instability observed by the author in industry use. For a description of EUDKF, the 

reader is referred to the system description section, subsection A. 

Unlike EUDKF, equation error is a deterministic batch filter which operates on all the 

measurements; it is also a “one-step” method that performs all the computation once whereas 

EUDKF performs the same steps recursively for each data measurement. Equation error was one 

of the first analytical techniques used to estimate aircraft dynamic model parameters from flight 

data; modern updates to the method had negated much of earlier problems22. In essence, equation 

error is the linear least squares problem in matrix form. It assumes the system is linear time-

 
Figure 40. Turbulence power-signal-density. 
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invariant, the measurements are known without error, and that noise is Gaussian white noise. The 

method utilizes relatively elementary and undemanding mathematical operations. Being a batch 

filter however, it processes all the measurements at once, and the large number of measurements 

(large matrix sizes) makes matrix multiplications expensive propositions. In addition, the 

algorithm cannot process the data until all measurements are gathered. This concentrates all the 

computational requirements in one short time period, which may affect the other programs being 

run.  

The estimation error is a linear function of the measurement error. If no measurement noise is 

present, then the estimated value is a deterministic quantity exactly equal to the plant (assuming 

no process noise). In the presence of noise, the estimated value becomes stochastic and possibly 

biased. For an unbiased estimation, the residuals have a zero mean; this property can be used to 

detect sensor bias. 

1. Candidates 

Two variations of the equation error method are considered: one operating in the time domain, 

the other in the frequency domain.  

Equation Error (Time Domain) 

The central idea of the least squares method revolves around minimizing the errors expressed 

in a cost function. Starting with the state space formulation of the problem, the error, cost 

function, and solution are derived below. The state equation can be written as, 

(12) 

With the subscript m denoting measurement, the error (ε) can be written as, 

(13) 

BuAxx +=

mmmm BuAxxxx −−=−= ε
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If the A and B matrices along with xm and um vectors are collected together, their augmented 

forms can be written as,  

 

 

(14) 

Then equation 13 can be rewritten, 

(15) 

Using the deterministic least squared method, the cost function to be minimized can be written as, 

(16) 

To minimize J, the first derivative is taken with respect to xam and set to zero. This results in the 

estimated augmented matrix.  

(17) 

The residuals are,  

(18) 

Equation Error (Freq Domain) 

Time domain methods have the advantage that measurements are sampled in discrete time 

domain form and ready for processing. Frequency domain methods, despite the additional 

computational requirements for the transformation, can prove advantageous due to the sampling 

window acting like a band-pass filter so as to focus only on the area(s) of interest. The lower 

frequency bound is set higher than the sensor drift rate; the high frequency bound is set lower 
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than the structural resonance to exclude undesirable dynamics. As a bonus, this frequency domain 

technique is less dependent on sharp input corners than its time domain cousin29.  

The window size is chosen between half of the sampling rate and 1/8Hz. Of all the air vehicle 

modes both longitudinal and lateral, the short period mode is expected to be the fastest with a 

nominal period no more than four seconds (or 1/4Hz). With this assumption, the minimum 

window frequency is set at 1/8Hz for added margins. The maximum window frequency is set by 

the critical frequency of the Nyquist-Shannon sampling theorem. For example, if the sampling 

rate is 50Hz, then the highest discernable (and maximum window) frequency is 25Hz.  

The number of frequency bins is chosen as the next higher multiple of two of the sample size; 

e.g. 500 samples would have 512 frequency bins. The number of bins is a multiple of two so as to 

increase Fast Fourier Transform (FFT) 

efficiency. In addition, the frequency 

resolution is refined to be at least 0.04Hz or 

better; e.g. the frequency resolution of 512 

bins is 0.5Hz, then the bins are increased until 

the resolution is at least 0.04Hz 

(512bins×0.5Hz÷0.04Hz = 6400bins) which is 

then raised to the next multiple of two 

(8192bins). The algorithm thus far has spread the bins evenly across the frequency spectrum, but 

additional bins are desirable in the area of interest. In the longitudinal case, additional bins are 

added between 1/2Hz and 1/4Hz for enhanced resolution near the expected short period 

frequency with the resulting histogram displayed in Figure 41 (note that the period is displayed 

instead of frequency for clarity). The nominal periods of the lateral modes are more difficult to 

characterize and the frequency bins remain un-augmented.  

 
Figure 41. Histogram of frequency range 
(displayed in period for clarity).  
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The only difference between the mechanization of equation error in time domain and 

frequency domain is that the later is comprised of both real and complex numbers. The derivation 

process follows the same broad strokes. The discrete Fourier transform can be written as,  

(19) 

Rewriting the state equation in the frequency domain, the following results, 

(20) 

Following the same logic as the time domain method, the cost function can be written as, 

(21) 

where m is the number of bins used in the Fourier transform, 𝑥𝑥�𝑘𝑘(𝑛𝑛) denotes the k-th element of 𝑥𝑥� 

for 𝜔𝜔𝑛𝑛 , and 𝐴𝐴𝑘𝑘and 𝐵𝐵𝑘𝑘denote the k-th row of the matrix.  

By defining the X and Y the following way, 

 

 

(22) 

 

the cost function can be rewritten as, 

(23) 

where * denotes the complex conjugate transpose and θ is, 
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The minimum of the cost function is met with the following criteria, 

(25) 

where Re( ) means the real part of the matrix. Note that equation 25 is the same as equation 18 if 

only real numbers are concerned.  

 

2. Evaluation Methods 

In order to evaluate the 

three SID candidates, each 

combination of air vehicle 

plant and sensor must be 

tested. Two plant types (linear 

and non-linear), four sensor 

error types (no error, noise 

corruption, bias offset, noise and bias together), and three candidate SID algorithms (equation 

error in time domain, equation error in frequency domain, and EUDKF) combine to form twenty-

four test conditions for both longitudinal and lateral dynamics. This means forty eight total tests 

are performed.  

The test process outlined in Figure 42 uses the selected input waveform (doublet) to excite the 

plant (two flavors), and then the signal is injected with sensor noise (four choices), finally the 

signal is routed through the SID algorithm under test (three selections). The resulting �̂�𝐴,𝐵𝐵�  are 

used to generate the estimated system response (𝑦𝑦�), which is then compared against the true 

system response y using the root-mean-squares (RMS) error metric shown below, 

( )[ ] ( )YXXX TT ReReˆ 1−
=θ

 
Figure 42. Evaluation Process. 
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1
𝑘𝑘

(𝑦𝑦�𝑁𝑁 − 𝑦𝑦𝑁𝑁)2
𝑘𝑘

𝑁𝑁=1

 

In order to more easily interpret the results, they are separated into two categories: linear plant 

and non-linear plant. In each category, the four sensor-error types are presented separately. 

Finally, in each sensor-error type, the RMS errors of each state resulting from all three SID 

algorithms are plotted together so as to give an “apples-to-apples” comparison that allows one to 

draw conclusions as to whether a SID algorithm is universally superior, under certain 

circumstances, or otherwise.   
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V. Test Results 

A. Input Waveform 

Turbulence 

Fifty Monte Carlo trials were performed to obtain the results in Figure 43 thru Figure 46. Note 

that both equation error methods (time domain and frequency domain) diverged and were 

not plotted. The red lines in the figures represent the RMS error from EUDKF. The significance 

of the results is discussed in chapter VI. 

 

 

  

 
 

Figure 43. Turbulence error, no sensor noise, linear Cessna 172 longitudinal plant. 
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Figure 45. Turbulence error, with sensor bias, linear Cessna 172 longitudinal plant. 
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Figure 44. Turbulence error, with sensor noise, linear Cessna 172 longitudinal plant. 
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Doublet vs. Pulse 

Fifty Monte Carlo trials were performed using the linear Cessna 172 longitudinal plant. The 

RMS errors of the pulse input waveforms are shown in Figure 47 while the RMS errors of the 

doublet input waveform are shown in Figure 48. Note that in Figure 47, equation error 

(frequency domain) method diverged and the results were not plotted. The significance of the 

results is discussed in chapter VI. 

 
 

Figure 46. Turbulence error, with sensor noise and bias, linear Cessna 172 longitudinal plant. 
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Figure 48. Pulse error, no sensor noise, linear Cessna 172 longitudinal plant. 
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Figure 47. Pulse error, no sensor noise, linear Cessna 172 longitudinal plant. 
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B. SID Algorithm 

Fifty Monte Carlo trials were performed for each of the following charts. The results with the 

longitudinal linear plant are presented in Figure 49 thru Figure 52. The results with the 

longitudinal nonlinear plant are presented in Figure 53 thru Figure 56. The results with the lateral 

linear plant are presented in Figure 57 thru Figure 60. The results with the lateral nonlinear plant 

are presented in Figure 61 thru Figure 64. Note that equation error (frequency domain) 

method universally diverged and the results were not plotted. The significance of the results 

is discussed in chapter VI.  

 

 

Figure 49. SID RMS error, no sensor error, linear longitudinal plant 
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Figure 50. SID RMS error, with sensor noise, linear longitudinal plant 

 
 
 
 

 
Figure 51. SID RMS error, with sensor bias, linear longitudinal plant 
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Figure 52. SID RMS error, with sensor noise and bias, linear longitudinal plant 

 

 
 
 
 
 

 
Figure 53. SID RMS error, no sensor error, nonlinear longitudinal plant 
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Figure 54. SID RMS error, with sensor noise, nonlinear longitudinal plant 

 
 
 
 
 

 
Figure 55. SID RMS error, with sensor bias, nonlinear longitudinal plant 
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Figure 56. SID RMS error, with sensor noise and bias, nonlinear longitudinal plant 

 
 
 
 
 
 
 
 

 
Figure 57. SID RMS error, no sensor error, linear lateral plant 
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Figure 58. SID RMS error, with sensor noise, linear lateral plant 

 
 
 
 
 
 
 
 
 
 

 
Figure 59. SID RMS error, with sensor bias, linear lateral plant 
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Figure 60. SID RMS error, with sensor noise and bias, linear lateral plant 

 
 
 
 
 
 
 
 
 
 

 
Figure 61. SID RMS error, no sensor error, nonlinear lateral plant 
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Figure 62. SID RMS error, with sensor noise, nonlinear lateral plant 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 63. SID RMS error, with sensor bias, nonlinear lateral plant 
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Figure 64. SID RMS error, with sensor noise and bias, nonlinear lateral plant 
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VI. Analysis 

A. Input Waveform 

Turbulence  

Both equation error methods diverged quickly and their RMS errors were not plotted. There 

was not enough energy content in the appropriate frequencies for the equation error methods to 

generate good estimates. The short, sharp gust portion of turbulence inputs were averaged out by 

the method due to their Gaussian, zero-mean, statistical properties. The long period gusts were 

not able to excite the system enough for a good estimate.  

Even the mathematically sophisticated Extended UD factorized Kalman Filter was only able to 

generate a poor estimate. The diverging trends in the RMS error of both states indicated a 

persistent error in the system estimate. Through the noise in q, it was observable that the error 

was diverging. This was due to the fact that the input (refer to Figure 40) was not a white noise 

function. However, one cannot filter a physical phenomenon to improve EUDKF performance. 

The poor estimate from EUDKF indicated that it was not suitable for use by FQ-BIT.  

 Regardless of sensor noise, RMS error divergence was observed with all three SID 

algorithms. Both equation error methods diverged spectacularly. EUDKF was only able to 

generate a poor estimate that nevertheless showed divergent trends in all RMS errors. The poor 

performance, lack of regularity, and the general unpredictable nature led to the elimination of 

turbulence as a valid input waveform.  

Doublet vs. Pulse 

In examining Figure 47 and Figure 48, it was easily observed that the RMS error behaviors in 

both α and q showed the same trends. The pulse input showed a diverging trend in error. In 
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addition, the equation error method in frequency domain diverged and was not plotted while it 

converged with a doublet input and was plotted in Figure 48. The order of magnitude in RMS 

error showed the superiority of the doublet input; the pulse RMS error was O(10-2) while the 

doublet RMS error was O(10-3). The linearly-growing RMS error (ten to fifteen second segment) 

observed with both equation error (time domain) method and EUDKF in pulse input was 

consistent with a steady-state error in the system estimate. Since the pulse maneuver was 

completed by t=3, and the lack of dynamic spikes indicated that the transients had settled down 

by t=10, the steady-state growth of RMS error indicated a sample-invariant error in the estimate.  

The RMS error divergent trends and higher error order of magnitude with the pulse input 

showed it to be a poor input waveform choice. In addition, the high magnitude input may violate 

the linearity assumption. Hence, the doublet was established as the best of the input waveform 

candidates. The tests to evaluate SID algorithm candidates were conducted with a doublet input.   

B. SID Algorithm 

Longitudinal Linear Plant 

First analyzing the results tested with a linear plant of the longitudinal dynamics, it was noted 

EUDKF consistently performed the best in view of four differing sensor error types. Equation 

error (time domain) method performed only slightly worse than EUDKF as sensor error increased 

in complexity. Equation error (frequency domain) method performed better than EUDKF with a 

perfect sensor, but noise caused divergence and bias markedly deteriorated the solution.  

In no-noise case (Figure 49), the equation error (frequency domain) method performed the best 

with EUDKF a close second. Equation error (time domain) method performed the worst. This 

showed the power of the frequency domain technique when no corruption exists. When sensor 

noise was added (Figure 50), the flaw of the equation error (frequency domain) method shows 

itself in the divergent trend. Also, the more sophisticated mathematical techniques of EUDKF 
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showed its worth by performing better than the equation error (time domain) technique. In face of 

sensor bias (Figure 51), equation error (frequency domain) method converged, but excessive 

RMS error was observed. Meanwhile, EUDKF and equation error (time domain) method show 

similar transient performance. With both sensor noise and bias (Figure 52), equation error 

(frequency domain) showed problems in converging. The convergence with bias still managed to 

overpower the divergence tendencies with noise so that the technique was globally convergent, 

albeit with large transient errors. Again, EUDKF and equation error (time domain) techniques 

were similar in performance with EUDKF showing better transients.  

Considering the results from all four sensor error types, EUDKF converged the fastest with the 

least transient error. Equation error (time domain) method was a close second. This is by no-

means an invalidation of the sophisticated mathematical techniques of EUDKF, but merely a 

reflection of the fact that it was a non-optimal solution for a linear problem due to the numerical 

errors stemming from the Jacobian calculation. Equation error (frequency domain) method was 

prone to divergence; this property was observed throughout all the tests performed. 

Longitudinal Nonlinear Plant 

While staying in the realm of longitudinal dynamics, a nonlinear plant was substituted and the 

same set of tests repeated. In such environment, equation error (frequency domain) again showed 

the divergent trends. In addition, EUDKF showed unequivocal superiority over the equation error 

(time domain) method.  

In all cases, equation error (frequency domain) method showed an oscillating trend in the 

RMS error. This indicated an overly-estimated sensitivity in the 𝐵𝐵�  matrix. With each control 

input, the estimated measurements (𝑦𝑦�) showed an over-reaction in comparison with the truth 

measurements (y). It was also noticeable that the RMS errors in equation error (frequency 

domain) method, while bounded, did not approach zero. With the equation error (time domain) 
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method, the RMS error approached zero exponentially after the transients died down (post t=10). 

This reflected the averaging nature of the method where the error incrementally approached zero. 

In contrast, EUDKF abruptly went to zero in a discontinuous fashion due to the statistical 

probability calculations of the method. While EUDKF showed higher peak RMS error than 

equation error (time domain) method, the overall RMS error (“area under the curve”) was 

favorable to EUDKF.  

In the case of a nonlinear plant, equation error (frequency domain) method showed its 

instability. EUDKF was superior to equation error (time domain) method because it was designed 

to deal with a nonlinear plant. In addition, its sophisticated mathematical techniques allowed it to 

minimize the overall RMS error.  

Lateral Linear Plant 

In examining the lateral dynamics, the linear plant was first tested. EUDKF proved superior 

not because it consistently had the least RMS error, but because both equation error methods 

diverged. Equation error (frequency domain) dramatically diverged and was not plotted.  

In the no-noise case (Figure 57), equation error (time domain) method consistently showed 

slightly better performance across all states. It was noteworthy that both equation error (time 

domain) and EUDKF showed steady-state RMS error in the “slow” states of [ϕ,ψ]. This was 

potentially due to the fact the input waveform did not adequately excite the slow states. The fast 

states, being more excitable, did not show this deficiency. In the case with sensor noise (Figure 

58), equation error (time domain) diverged. With sensor bias (Figure 59), equation error (time 

domain) showed markedly better performance than EUDKF. However, in the face of both noise 

and bias (Figure 60), equation error (time domain) diverged in [β] even though EUDKF showed 

the transient spikes of RMS error across all five states. Equation error (time domain) managed to 

converge with a quite small RMS error in the other four states as the convergent tendencies 

overpowered the divergent trend from sensor bias.  
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In the case of a linear lateral plant, EUDKF proved the superior method. Equation error 

(frequency domain) method diverged in all four sensor error cases. Equation error (time domain) 

method diverged in face of sensor bias but otherwise performed quite well. While the problem of 

using EUDKF to estimate a linear system showed itself, the robustness of the method decisively 

favored the technique.  

Lateral Nonlinear Plant 

In the test suites performed with a lateral nonlinear plant, the superiority of EUDKF was not 

quite so clearly established. Equation error (time domain) and EUDKF both showed superiority in 

different situations. Meanwhile, equation error (frequency domain) method diverged and was not 

plotted.  

As explained in the previous paragraphs, the RMS errors in both slow states showed 

divergence with EUDKF being the worst offender of the two. In some cases such as in Figure 62, 

the ability of the EUDKF to abruptly reduce the error while equation error (time domain) 

incrementally averaged out the error was seen in [β,p,r] states past t=20. In the case of sensor bias 

(Figure 63), EUDKF showed less RMS error than equation error (time domain) in the fast states. 

This was likely due to the assumption made by the equation error method that the error was zero-

mean being violated. However, equation error (time domain) method showed less RMS error in 

estimating with the roll input in Figure 64. Both methods showed superiority under different 

situations.  

While the lateral nonlinear plant provided no conclusive guidance on EUDKF vs. equation 

error (time domain), it reinforced the observation that equation error (frequency domain) was 

prone to divergence.  
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Summary 

EUDKF showed superiority in linear and non-linear longitudinal dynamics, as well as linear 

lateral dynamics. EUDKF and equation error (time domain) showed pre-eminence under different 

situations with non-linear lateral dynamics. Overall, EUDKF showed superiority in minimizing 

RMS error, convergence time, and stability.  
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VII. Conclusions 

FQ-BIT increased safety margins on UAS by reliably providing the AVO with accurate real-

time flying qualities assessments. The design choices documented in this work showed the 

robustness, accuracy, and relevance of the metrics generated. In addition, FQ-BIT interfaced with 

the human operator in a clear and concise manner to facilitate swift and well-informed decision 

making. While the FQ-BIT is automated, a human is always in-the-loop; the data interpretation 

and final decision is left to the human. 

The FQ-BIT used a doublet input waveform. [α,q] and [β,ϕ,p,ψ,r] were states gathered for 

processing in the longitudinal and lateral axis respectively. Extended UD-factorized Kalman 

Filter generated a linear-time-invariant state equation approximation in state-space form. Flying 

qualities metrics in the form of τ, ζ, ω, gain margin, phase margin, observability, and 

controllability were calculated. The results are displayed to the AVO in a color-coded, easy to 

interpret display. In addition to providing additional safety to operational UASs, FQ-BIT can be 

used in envelope-expansion flight tests where the real-time results can reduce risks and result in 

time and cost savings. 

Future work on FQ-BIT includes tuning the EUDKF to better track the slow states in the 

lateral axis and to achieve unequivocal superiority over equation error (time domain) method. In 

addition, other SID algorithms can be investigated for use as a “sanity check” against the EUDKF 

results. An air vehicle dependent improvement involves investigating the use of regular artificial 

disturbances small in magnitude to provide continuous flying qualities monitoring (FQ-CBIT). 

 For a copy of the MATLAB files accompanying this work, please contact the aerospace 

department at California Polytechnic State University, San Luis Obispo.   
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APPENDIX 

A. USAF UAS Class A Mishap FY 2000 to 2010 

Date AV  Failure Type 
29-Nov-07 MQ-1L Comms Failure 
20-Nov-10 MQ-1B Electrical Failure 
22-Feb-09 MQ-1B Electrical Failure 
20-Apr-09 MQ-1B Electrical Failure 
17-Dec-07 MQ-1B Electrical Failure 
8-May-09 MQ-1B FCS Failure 
14-Sep-09 MQ-1B FCS Failure 
30-Dec-01 RQ-4A FCS Failure 

17-May-02 RQ-1L FCS Failure 
4-Oct-00 RQ-1L FCS Failure 

17-Sep-02 RQ-1L Hazardous Meteorological Conditions 
6-Dec-99 RQ-4A Mission Planning Error 
9-Dec-10 MQ-1B Pilot Error 

31-Aug-10 MQ-9 Pilot Error 
16-Aug-10 MQ-1B Pilot Error 

28-Jul-10 MQ-1B Pilot Error 
20-Apr-10 MQ-1B Pilot Error 

3-Oct-09 MQ-1B Pilot Error 
26-Mar-07 MQ-1B Pilot Error 
21-Oct-05 MQ-9 Pilot Error 

20-Mar-06 MQ-1 Pilot Error 
3-Aug-06 MQ-1B Pilot Error 

13-Oct-04 MQ-1B Pilot Error 
24-Nov-04 MQ-1L Pilot Error 
14-Jun-04 MQ-1L Pilot Error 
22-Sep-04 MQ-1L Pilot Error 
25-Oct-02 RQ-1L Pilot Error 
22-Jan-02 RQ-1L Pilot Error 
25-Jan-02 RQ-1B Pilot Error 

30-Mar-01 RQ-1L Pilot Error 
14-Sep-00 RQ-1L Pilot Error 
11-Dec-03 RQ-1 Pilot Error / FCS Failure 
5-May-11 MQ-1B Propulsion Failure 
19-Sep-10 MQ-1B Propulsion Failure 
19-Oct-08 MQ-1B Propulsion Failure 
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20-Mar-09 MQ-9 Propulsion Failure 
28-Apr-09 MQ-1B Propulsion Failure 
13-Aug-09 MQ-1B Propulsion Failure 

4-Sep-09 MQ-1B Propulsion Failure 
17-Jan-07 MQ-1B Propulsion Failure 
23-Feb-07 MQ-1B Propulsion Failure 
30-Jul-07 MQ-1B Propulsion Failure 
31-Jul-07 MQ-1B Propulsion Failure 

22-Jun-06 MQ-1L Propulsion Failure 
27-Mar-05 RQ-1L Propulsion Failure 
30-Mar-05 RQ-1L Propulsion Failure 
17-Aug-04 MQ-1L Propulsion Failure 

1-Jan-03 RQ-1B Propulsion Failure 
25-May-02 RQ-1B Propulsion Failure 

10-Jul-02 RQ-4A Propulsion Failure 
23-Oct-00 RQ-1K Propulsion Failure 
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B. Linear Plant (State-Space)  

Cessna 172, 5000ft, 120kt VTAS 
 
1. Longitudinal 

A = 
    

  
VTAS α θ q 

 
VTAS -0.04422 18.74408 -32.2 0 

 
alpha -0.00135 -2.20202 0 0.97925 

 
theta 0 0 0 1 

 
q 0.00244 -23.72524 0 -6.13122 

      
      B = 

    
  

δe 
   

 
VTAS -6.24803 

   
 

α -0.20446 
   

 
θ 0 

   
 

q -39.48824 
    

 
 

2. Lateral 
 

A = 
     

  
β ϕ p ψ r 

 
β -0.1474 0.14703 -0.00144 0 -0.99184 

 
ϕ 0 0 1 0 0 

 
p -28.74922 0 -12.40917 0 2.53464 

 
ψ 0 0 0 0 1 

 
r 10.11937 0 -0.38174 0 -1.25975 

       
       B = 

     
  

δa δr 
   

 
β 0 0.08892 

   
 

ϕ 0 0 
   

 
p 57.49844 4.74847 

   
 

ψ 0 0 
   

 
r -8.25118 -10.22835 
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