
SPACE COMMUNICATION CHANNEL EMULATION USING DIGITAL

AND ANALOG SIGNAL PROCESSING

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Tom Hickok

March 2010

c© 2010

Tom Hickok

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Space Communication Channel Emulation
using Digital and Analog Signal Processing

AUTHOR: Tom Hickok

DATE SUBMITTED: March 2010

COMMITTEE CHAIR: Albert A. Liddicoat, Ph.D.

COMMITTEE MEMBER: James Harris, Ph.D.

COMMITTEE MEMBER: Fred DePiero, Ph.D.

iii

Abstract

Space Communication Channel Emulation using Digital and Analog Signal

Processing

Tom Hickok

New communication protocols intended for large distances, including low orbit

and deep space, can be inherently difficult to evaluate since trial implementa-

tions are often impractical. In order to accurately measure the performance of a

new protocol, it is important to evaluate it in an environment that most closely

matches that in which it will be used. This thesis demonstrates the ability to em-

ulate a space communications channel through digitizing a transmission centered

at an intermediate frequency of 70 MHz with a bandwidth of 24 MHz, digitally

introducing the characteristics of a transmission through space, and reconstruct-

ing the digital data to its analog counterpart. Delay, Doppler shift, Gaussian

noise, and fading are among the most prevalent characteristics of such a channel,

and thus were the focus of this thesis. Special care was given to the design of

each digital and analog component to maintain the integrity of the original signal

by minimizing all undesired noise introduced. The final design can accurately

produce a given dynamic transmission signature or continually output a static

set of channel characteristic parameters to test new communication protocols.

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 5

2.1 Doppler Effect . 5

2.2 Delay . 8

2.3 Noise . 9

2.4 Fading . 10

3 System Description 12

3.1 General Description . 12

3.2 System Requirements and Overview 13

3.3 Analog Input Stage . 15

3.4 Digital Signal Processing Path . 20

3.4.1 The Memory Controller 21

3.4.2 Interpolation Finite Impulse Response (FIR) Filter 23

3.4.3 Digital Single Side Band Modulation 27

3.4.4 Digital Attenuation . 35

3.4.5 White Gaussian Noise Generator 36

3.4.6 Digital Output Filter . 37

3.5 Digital and Analog Output Stage 37

3.6 Clock Management . 40

4 System Comparisons 45

v

5 Component Design and Evaluation 49

5.1 Component Selection . 49

5.1.1 FPGA Development Board 50

5.1.2 Analog to Digital Converter (A/D) 52

5.1.3 Digital to Analog Converter (D/A) 54

5.1.4 Oscillator . 55

5.1.5 Direct Digital Synthesis 58

5.2 Digital Components . 71

5.2.1 The Memory Controller 72

5.2.2 Interpolation Finite Impulse Response (FIR) Filter 76

5.2.3 Digital Single Side Band Modulation 91

5.2.4 White Gaussian Noise Generator 101

5.2.5 Digital Output Filter and Upsampler 104

5.2.6 Power Measurement . 108

6 RF Channel Emulator System 112

6.1 System Assembly . 112

6.1.1 Clock Network . 112

6.1.2 Digital Components . 114

6.2 Communicating with the User Interface 116

6.2.1 Delay Settings . 116

6.2.2 Doppler Effect Settings . 117

6.2.3 Noise and Attenuation Settings 118

7 Conclusion and Future Work 119

7.1 Future Work . 119

7.1.1 Phase Noise Measurements 119

7.1.2 Spurious Noise in the Clock Signal 121

7.1.3 Sampling with Deterministic Clock Jitter 121

7.2 Conclusions . 127

Bibliography 131

A Statement of Work 134

vi

List of Tables

3.1 RF Channel Emulator System Requirements 14

4.1 Specification Comparison between the RF Channel Emulator and
the SLE700 . 48

5.1 Multiple Adder Configuration Comparison 85

5.2 Best Fit Gaussian Functions for AWGN Data 102

7.1 Harmonic Frequencies due to Quantization of the 56 MHz Sinusoid
Generated by the DDS . 122

vii

List of Figures

1.1 A Typical Communication Scheme 2

2.1 A Common Example of the Doppler Effect. 6

2.2 Example of Frequency Scaling due to the Doppler Effect 8

2.3 Diagram of a Multipath Communication Channel 11

3.1 RF Channel Emulator Laboratory Setup 13

3.2 Overall System Block Diagram of RF Channel Emulator 14

3.3 Block Diagram of the Analog Input Stage 15

3.4 Possible Noisy Input Signal . 17

3.5 Aliasing Effects of a Sampled Noisy Signal 17

3.6 Possible Noisy Input Signal with BPF Response 18

3.7 Minimal Aliasing Effects of a Sampled Noisy Signal 18

3.8 Block Diagram of the Proposed DSP Path 21

3.9 Block Diagram of the Designed DSP Path 22

3.10 FIFO Implementation of a Delay Line 23

3.11 Using Interpolated Points to Time-Scale a Signal 25

3.12 Using Tables to Approximate a Function 28

3.13 Hartley Method for SSB Modulation. 31

3.14 Weaver Method for SSB Modulation. 33

3.15 Balanced Hartley Method for SSB Modulation. 35

3.16 Block Diagram of Original Analog Output Stage with Quantization
Harmonic Noise . 38

3.17 Block Diagram of an Improved Analog Output Stage with Reduced
Quantization Harmonic Noise . 39

viii

3.18 Upsampling with Highpass and Lowpass Filters 41

3.19 D/A Spectral Output with Required Bandpass Response 42

3.20 Theoretical SNR and effictive number of bits (ENOB) Due to Jitter
vs. Input Frequency . 43

3.21 Effect of Clock Phase Noise on Ideal Digitized Sinewave 44

4.1 Front Panel of the SLE700 Satellite Link Emulator 46

4.2 dBm SLE700 Satellite Link Emulator Block Diagram 47

5.1 Digilent XUP-V2P Development Board 51

5.2 Block Diagram of MicoBlaze and Peripheral Connections 51

5.3 Using Input/Output Blocks to Minimize Latency Discrepancies . 52

5.4 Analog Devices AD6645 Evaluation Board 53

5.5 Analog Devices AD9772A Evaluation Board 55

5.6 Test Setup for Measuring the Spectral Plots and Phase Noise of
the Reference Oscillators . 56

5.7 Spectral Plots for Oscillators . 57

5.8 Phase Noise Plots for Oscillators 57

5.9 Spectral Plot for 56 MHz Clock Generated with the DDS 59

5.10 Phase Noise Plot for 56 MHz Clock Generated with the DDS . . . 60

5.11 Spectral Plot for 56 MHz Clock Generated with BPFs on Clocks . 61

5.12 Phase Noise Plot for 56 MHz Clock Generated with BPFs on Clocks 62

5.13 Setup for Measuring A/D Performance Given Different Reference
Oscillators . 63

5.14 FFT of A/D with a 7
6
fs (65.33 MHz) Input 64

5.15 FFT of A/D with a 5
4
fs (70.0 MHz) Input 64

5.16 Setup for Measuring D/A Performance Given Different Reference
Oscillators . 66

5.17 Spectral Plot of D/A with a 7
6
fs (65.33 MHz) Input 66

5.18 FFT of D/A with a 5
4
fs (70.0 MHz) Input 67

5.19 Setup for Measuring System Performance Given Different Refer-
ence Oscillators . 68

5.20 Spectral Plot with a 7
6
fs (65.33 MHz) Input 69

ix

5.21 Spectral Plot with a 5
4
fs (70.0 MHz) Input 70

5.22 Phase Noise for Injection Test . 70

5.23 Spectral Plot of Various Designs with 70 MHz Injection 71

5.24 Memory Controller Simple State Diagram 73

5.25 Memory Controller Write Logic 74

5.26 Memory Controller Read Logic 76

5.27 Interpolator FIR Coefficients from Sinc Function 78

5.28 Interpolator FIR Coefficients Increasing Resolution using Linear
Interpolation . 79

5.29 Block Diagram of Interpolator Coefficients Calculation using LUTs
and Linear Interpolation . 80

5.30 Interpolation FIR Block Diagram 81

5.31 Basic Implementation of a 4:2 Counter using 3:2 Counters 82

5.32 Design for a Parallel 16 Value Adder Using 4:2 Counters 83

5.33 Performance Results of Sinc Function Generator 87

5.34 Spectrum Analyzer Output for Dynamic Interpolation 89

5.35 Detailed Spectrum Analyzer Output for Dynamic Interpolation . 90

5.36 Block Diagram of Standard and Matched Hartley Methods using
a Hilbert FIR Transformer . 92

5.37 Performance Results of Hilbert Transform FIR 94

5.38 Block Diagram of Sine and Cosine Generator 96

5.39 Implementation of a π Multiplier using 3:2 and 4:2 Counters and
Booth Encoding . 97

5.40 Sine and Cosine Error Analysis 98

5.41 Performance Results of Sinc Function Generator 99

5.42 Spectral Plot of SSB Modulation 100

5.43 Detailed Spectral Plot of SSB Modulation 101

5.44 Additive White Gaussian Noise Probability Distribution Function
Measurements . 103

5.45 Fitted AWGN Probability Distribution Function 103

5.46 Additive White Gaussian Noise Spectral Plot 104

5.47 Theoretical Frequency Response of Output Filter 105

x

5.48 Measured Frequency Response of Output Filter 106

5.49 Block Diagram of Upsampler with Highpass Filter 107

5.50 Frequency Response of Highpass Filter 107

5.51 Block Diagram of the Power Measurement Component 108

5.52 Power Measurement Component 1-Pole IIR Filter Responses . . . 109

5.53 Step Response for the LPF of the Power Measurement Component 110

5.54 The Power Output of the AWGN Generator using Various Methods111

6.1 Block Diagram of the Clock Network 113

6.2 Block Diagram of the Digital Components 115

7.1 Spectrum Analyzer Block Diagram 120

7.2 Simulation Results for Sampling using a Clock Signal with Monochro-
matic Deterministic Phase Noise 126

7.3 Final Assembly . 130

xi

Chapter 1

Introduction

Testing space communication systems and associated protocols is a daunt-

ing task when considering the operating conditions in which these systems will

be utilized. Often, such tests can truly only be performed directly by putting

the systems in their respective operating environments, in the vastness of space

and moving at high velocities, which not only proves to be impractical, but also

eliminates the ability to change and improve the systems in operation. Emulat-

ing the distances and velocities of these systems as they will be used allows for

laboratory testing which enables engineers to make necessary adjustments and

improvements before final implementation. The scope of this research project is

the design of such an emulator to reproduce the operating environment of these

systems as accurately as possible.

The environment these systems will be subject to is referred to as the space

communication channel or RF channel. The term “channel” is used here in a

broad sense. The most general sense of the word can be described as everything

between the source and the destination of a signal. A common communication

scheme is shown in Figure 1.1. Here, the domain of the channel, as used in this

work, can be seen starting from the intermediate frequency (IF) signal of the

transmitter to the IF signal of the receiver. Thus, the emulator must accurately

reproduce the effects of everything in between these two points.

1

Figure 1.1: A Typical Communication Scheme. The domain of the
channel, as defined in this work, is depicted.

In essence, the emulation of an RF channel may be thought of as a represen-

tation, in mathematical or algorithmic form, for the transfer characteristics of

any contiguous subset of the communication medium. [12] A channel model may

include any number of physical medium elements including waveguides, wires, the

atmosphere, or the ideal medium, free space. Although generally these elements

are modeled to fit external observations, much of this work is based around the

underlying physical phenomena experienced through the relative distance and

velocity of the transmitter and receiver.

The RF Channel Emulator is designed to emulate different communication

scenarios for NASA’s future space missions. A relatively simple scenario is to

create the dynamic characteristics of the RF channel between a spacecraft and

a ground station on the moon. In this scenario, the spacecraft passes above the

ground station at an orbital altitude of approximately 300 km for a period of

several minutes. During this time, the delay changes slightly with the relative

distance between the spacecraft and station which creates a small and varying

Doppler Effect, the signal is dynamically attenuated depending on the relative

orientation and geometry of the antennae, and noise is dynamically varied de-

pending on the necessary gain required to accommodate the attenuation.

Another possible scenario is emulating communication between two space-

craft. Here, one of the spacecraft might be near the earth while the other orbits

2

the moon. This will result in a propagation delay of 1-2 seconds. The effects of

the physical phenomena that alter the signal in these dynamic scenarios will be

created by the RF Channel Emulator.

This thesis presents the implementation and verification of the RF Channel

Emulator and its ability to reproduce typical dynamic communication scenarios

as described above as well as static and semi-static communication conditions

within a scenario. The RF Channel Emulator is a mixed analog and digital sys-

tem. Many of the analog portions of the system were designed and tested by

Kyle Woolrich [22], although some of these portions are revisited in this work.

The entirety of the digital portions are covered in this thesis including design

considerations, system development, and the test and measurement for the dig-

ital portions as well as refinements to the analog portions of the RF Channel

Emulator.

The first few chapters provide a higher level view of the elements required

in the implementation of the RF Channel Emulator. Chapter two of this thesis

gives a background of the physical phenomena common in a space communication

channel. This includes discussions of the Doppler Effect, delay, additive white

Gaussian noise, and fading. Chapter three contains a detailed description of the

overall system architecture. Furthermore, this chapter includes a background into

the theory required for design choices of the various digital components as well

as modifications of some of the analog portions previously done by Woolrich [22].

Chapter four provides a system level comparison of the RF Channel Emulator

with similar systems on the market.

The remaining chapters provide a more detailed analysis of the system devel-

opment, component verification, and integration of the RF Channel Emulator.

Chapter five is a comprehensive verification of each digital component in the

system as well as the major analog and mixed signal components. Chapter six

discusses the integration and final system functionality including the user inter-

face. Finally, chapter seven provides a brief conclusion, possible future work that

3

can be pursued, and a description of contributions made by this work.

4

Chapter 2

Background

Before discussing the design and characterization of the RF Channel Emula-

tor, this chapter will provide some of the essential definitions and theory behind

the major operating principals. As mentioned in the introduction, the primary

features of the emulator are modeled to fit the underlying physical phenomena of

the channel. The main phenomena–the Doppler Effect, additive white Gaussian

noise, fading, and delay–are described here to assist in the understanding of their

respective model implementations in the chapters to follow.

2.1 Doppler Effect

The Doppler Effect is a physical phenomenon that occurs when a signal is

transmitted from a source to a receiver with a relative non-zero velocity between

the two. This velocity creates a perceived shift in the frequencies of sinusoidal

signals transmitted that is proportional to the frequency and dependent on the

relative velocity. This effect goes hand-in-hand with delay as well since the rela-

tive velocity between the source and the receiver describes the rate of change in

the distance between the two.

Observations of the Doppler Effect are not limited to the electromagnetic

spectrum in which radio frequencies reside. Any transmitted signal that has a

5

Figure 2.1: A Common Example of the Doppler Effect

known propagation velocity will be influenced by this phenomenon. The pitch

(frequency) of a train whistle approaching is quite easily discernible as a higher

frequency than when it is leaving. This occurs because, to the observer, the prop-

agation velocity of sound through the air remains constant while the source, the

train whistle, is moving relative to both the air and the observer. The whistle cre-

ates periodic high and low points of pressure in the surrounding air; the distance

between these points is closer in front of the train when the train moves forward

but are further apart behind. The frequency shift can be expressed in terms of

the velocity (vS) of the source, in this case the train, and the velocity in which

the signal travels (v), in this case the velocity of sound through the air. Since the

velocity of sound through the air changes relative to the velocity of the listener,

the listener’s velocity (vL) must also be taken into account. The frequency at the

listener (fL) can be expressed as follows relative to the frequency at the source

(fS).

fL =
v + vL
v + vS

fS (2.1)

The effect works essentially identical in the electromagnetic domain with mi-

nor exceptions. Einstein noted that since the propagation velocity of electromag-

netic signals appear to be constant regardless of the point of view, the relative

time of the moving party, be it the source or the receiver, appears to slow down

from the other’s point of view. Thus, not only are the waves themselves com-

pressed or expanded as in the example with the train whistle, but the frequency

6

at which they appear to be transmitted slows due to the apparent time dilation.

The relativistic Doppler Effect in terms of frequency can be expressed as follows:

frx =

√
1± v

c

1∓ v
c

ftx (2.2)

Here, ftx is the transmitted frequency from the point of view of the source,

while frx is the observed frequency at the receiver. The constant c is the speed

of light, and v is the relative speed of the source toward the receiver.

Since the application of the RF Channel Emulator is to reproduce the effects

of traveling spacecraft, |v| is going to be much smaller than c. This can simplify

the equation down to the following relationship:

frx ≈ ftx(1±
v

c
) (2.3)

It is important to note that frx is dependent not only on c and v but on ftx

as well. This means that the the transmitted frequency is not simply shifted to

reproduce what is received but rather is multiplied by a scaling factor, (1 ± v
c
).

Scaling the signal in the frequency domain becomes necessary to accurately re-

produce the Doppler Effect rather than simply performing a frequency shift. An

example of this can be seen in figure 2.2.

∆f ≈ v

c
f0 (2.4)

The Doppler Effect is a change in frequency as perceived by the receiver, from

the nominally transmitted frequency, caused by the relative velocity of the source

and the receiver [20]. The various frequencies in the transmitted signal must be

accounted for in order to improve the performance of a communication system.

A simple solution would be to know the range or band a carrier frequency is

expected to be received and simply band-pass all frequencies within that range.

7

Figure 2.2: Example of Frequency Scaling due to the Doppler Effect.
∆f increases with f0.

The consequence of this approach is that there is much noise energy passed which

will result in a poorer signal-to-noise ratio (SNR). Alternatively, better perfor-

mance is achieved by the use of a carrier-frequency tracking loop which allows a

narrower frequency band to be passed improving the SNR.

2.2 Delay

The propagation delay of a transmitted signal is always non-zero between

two distinct points given a finite propagation velocity. For much of terrestrial

communication, the distances in proportion to the speed of light (propagation

velocity) are such that delays are negligible. With space communications, the

distances are vast enough to incur significant delays. Space communications,

as discussed in the previous section, also have a high enough velocity that the

Doppler Effect must be taken into account. By definition, velocity is the rate of

change of distance and thus the rate of change of delay. This dynamic delay must

also be incorporated into an emulator with the goal of accurately reproducing the

8

effects of space communications.

Communication systems that deal with long delays must have protocols in

place that can tolerate the long delays and still transfer data quickly and accu-

rately. As an example, the average distance between the earth and the moon

is roughly 384,303 km. Traveling at the speed of light, propagation times are

roughly 1.3 seconds one-way. This makes a round trip transmission roughly 2.6

seconds. Terrestrial signals, on the other hand, rarely experience delays of this

magnitude from node to node.

2.3 Noise

Noise is defined as the undesired electrical signals in a given system. The

presence of noise inhibits the receiver’s ability to correctly distinguish the signal’s

information [20]. Noise comes from a variety of sources both man-made and

natural. Natural noise includes atmospheric disturbances, radiation from galactic

sources, and noise inherent in the electronic hardware. The dominant source of

noise is usually that which is inherent in the hardware itself.

The typical model for the noise inherent in the hardware is white Gaussian

noise. White noise has a power spectral density that is constant across all fre-

quencies. Pure white noise can’t realistically be used given that the spectral range

is infinite which would require an infinite power source to produce. Therefore, the

noise is often bandwidth limited to something much greater than the bandwidth

of interest in a system such that a finite bandwidth can be used to approximate

noise with infinite bandwidth [20].

A common approach to introducing noise to a system for analysis is to simply

add the noise to the system. This is referred to as the Additive White Gaussian

Noise (AWGN) model. The AWGN channel is a good model for many satellite and

deep space communication applications given that this is the model best suited

9

to emulate the noise introduced by the inherent noise in the electronic system

itself. Terrestrial communications, however, have to deal with other phenomena

such as multipath, terrain blocking, and interference.

2.4 Fading

All forms of communications must deal with the limitations and inherent dif-

ficulties imposed by transmitting through the medium. The medium is often

a dynamic system changing over time as is often the case with wireless com-

munications. For example, in satellite communications, the weather can have a

significant impact on the propagation characteristics of the signal through the

atmospheric medium. The effect of meteorological alterations causes the atten-

uation of the signal to change over time [3]. Antenna patterns and the relative

geometry between the source and receiver can cause more deterministic but sim-

ilar changes in the attenuation of the signal.

Having distinctly different paths in which a signal could travel from the source

to the receiver, simply called multipath, can also affect the attenuation of the re-

ceived signal in a variety of ways (see figure 2.3). The propagation times for

each path can create constructive and destructive interference dependent on the

difference in time and frequencies transmitted. The inherent propagation char-

acteristics of each path will also contribute to the overall multipath effect as can

be seen in figure 2.3.

There are two popular statistical models used to determine the effects that

fading may have on the reliability of a communication system. First, Rician

fading is a non-zero mean stochastic model that describes the fluctuations in the

received signal’s amplitude. This fading model is commonly used when the line-

of-sight signal dominates any multipath signals. When no one path dominates

the others, the Rayleigh fading model is often used [19]. Rayleigh fading is a

zero-mean stochastic model that describes the fluctuations in the received signal

10

Figure 2.3: Diagram of a Multipath Communication Channel. The
transmitted signal reaches the receiver following multiple paths of vary-
ing path lengths. These varying lengths cause interference to the sig-
nal at the receiver. This figure illustrates a line-of-sight path, which is
characteristic of Rician fading.

amplitude. In space communications, the line-of-sight signal is almost exclusively

the dominant signal. Therefore, the Rician fading model is a more accurate

representation in these circumstances.

11

Chapter 3

System Description

This chapter gives an overall implementation approach for both the analog

and digital portions of the RF Channel Emulator. The system requirements,

included in Appendix A, are used to outline design considerations and component

or topology choices. Various design options are considered and discussed for some

analog portions and all digital portions of the system.

3.1 General Description

The RF Channel Emulator uses a combination of both analog and digital

techniques to accurately emulate the space link channel. The space link channel,

in this case, is the RF signal path from the transmitter, while the signal is at

the IF stage, to the receiver’s IF stage. Emulation of this path will introduce

the effects of the physical phenomena that are inherent to it, namely the Doppler

Effect, delay, noise, and fading. This will allow the emulator to be placed between

the communication systems under test for a realistic analysis. The emulator is

digitally controlled from an external computer through an Ethernet connection.

Figure 3.1 displays an example test setup in a laboratory setting.

The emulator works at the IF stages of both the source and receiver since

digitizing actual transmission frequencies is impractical. As dictated by the sys-

12

Figure 3.1: RF Channel Emulator Laboratory Setup [Appendix A].

tem requirements provided by JPL (Appendix A), the emulator uses a 70MHz

Intermediate Frequency for the channel emulation. The IF signal is used to in-

troduce the effects of the channel. The following sections of this chapter discuss

the requirements, system implementation and design.

3.2 System Requirements and Overview

The RF Channel Emulator contains both analog and digital components. An

overall implementation block digram is shown in figure 3.2. The emulator consists

of five major sections at the top level. First, there is the analog input stage

responsible for the accurate digitization of the incoming IF signal. Next, there is

the digital path, implemented in an FPGA, that introduces the emulated effects

of the space link channel. The signal is then reconstructed to analog form through

the analog output stage. The DDS analog section is responsible for creating the

clock signals necessary for the three previously mentioned sections to operate

correctly. Finally, the control software resides on an external computer and is

used to control the channel’s parameters to produce different communication

scenarios.

A summary of the requirements for each of the five components can be seen

in table 3.1 as defined in the statement of work provided by JPL(Appendix A).

13

Figure 3.2: Overall System Block Diagram of RF Channel Emulator.
[Discussion of top level diagram].

RF Channel Requirement
Emulator Section

Analog Input Stage Input Power: -7 dBm to -12 dBm
Center Frequency: 70 MHz

Bandwidth: 24 MHz

Analog Output Stage Output Power: -12 dBm(max)
Center Frequency: 70 MHz

Bandwidth: 24 MHz

FPGA DSP Path Delay: 1 msec to 2.0 sec
Noise: Minimum of 4 standard deviations.

Independently applied to I and Q
channels.

Attenuation: 0 dB to 50 dB. Independently ap-
plied to I and Q channels.

Doppler Shift: Uniform frequency shift: ±3.5 kHz
Resolution: 1.0 H
Instantaneously Rate: 1000 Hz/sec
to 200 Hz/sec

External PC Control Interface: Ethernet
GUI: Controls system parameters

Energy Per Bit to Eb/N0 10 dB Maxiumum
Noise Desity Ratio 0 dB Minimum

Table 3.1: RF Channel Emulator System Requirements. Appendix A.

14

3.3 Analog Input Stage

The analog input stage receives the signal from the UHF transceiver and

conditions it to be digitized minimizing any aliasing in the process. Figure 3.3 is

a block diagram for the implementation of the analog input stage [22].

Figure 3.3: Block Diagram of the Analog Input Stage [22].

The UHF transceiver sends a signal with a center frequency of 70 MHz and

a bandwidth of 24 MHz to the RF Channel Emulator. The first component of

the input stage is a low-noise amplifier. The output of this is fed into a power

combiner which allows an outside analog noise signal to be added to the original

signal in the case that a noise signature other than the Gaussian white noise

created in the FPGA is desired. After the power combiner, the signal is routed

through a bandpass filter (BPF) and attenuated prior to being digitized by the

analog-to-digital converter (A/D). The A/D undersamples the signal at 56 MHz

and sends the digitized signal to the FPGA. Undersamping has the effect of

down-converting the original analog signal centered at 70 MHz to a digital signal

centered at 14 MHz.

There are two primary design considerations for the analog input stage. The

first is to minimally contribute any unwanted noise to the signal during the digi-

tizing process. The second is to assure that only the band of interest is digitized

to greatly reduce any aliasing that might take place from the down conversion.

The input analog stage of the RF Channel Emulator can negatively affect the

15

signal-to-noise ratio of the incoming signal with the inherent noise in each com-

ponent [11].

The signal-to-noise ratio degradation can be quantitatively measured by the

noise figure. Each component has a noise figure associated to it which can be

combined with the other components to create a composite noise figure. The

composite noise figure can be described with the following formula with n com-

ponents.

Fcomp = F1 +
F2 − 1

G1

+
F3 − 1

G1G2

+ ...+
Fn − 1

G1G2...Gn−1
(3.1)

It can easily be seen that the first component in a series predominantly deter-

mines the noise figure of the entire series. Ideally, the first stage in a series should

have a low noise figure and a high gain to minimize the noise figure contributions

of the subsequent components.

Aliasing of unwanted signals outside the band of interest is also a large concern

in minimizing SNR degradation. When sampling, any frequency greater than one-

half the sampling frequency (fsample) will be aliased to a frequency within that

range (0 Hz to fsample/2). It is this fact that makes undersampling possible to

down-convert the IF from 70 MHz down to 14 MHz with a 56 MHz sampling

frequency, but it is also this undersampling that will create a noise component in

the digital domain due to any signals outside the band of interest in the analog

domain that are not properly attenuated [10]. An example of this is shown in

figure 3.4 where there is noise outside of the band of interest. Figure 3.5 shows

the digital frequency spectrum that results after sampling at fsample.

Once the signal is digitized, it is impossible for the out-of-band noise to be

distinguished from the desired signal. Thus, the analog input stage must atten-

uate any signals out of the band of interest. An example of this is shown in

figure 3.6 and figure 3.7. The former figure shows the input signal in the analog

frequency domain with the passband of the bandpass filter superimposed. The

16

Figure 3.4: Possible Noisy Input Signal. A possible input signal in the
analog frequency domain with noise outside of the band of interest.

Figure 3.5: Aliasing Effects of a Sampled Noisy Signal. Without any
attenuation of the out-of-band noise, aliasing takes place corrupting
the signal in the band of interest.

latter shows the digital frequency response after sampling at the output of the

bandpass filter with a minimal aliasing effect.

The attenuation of the signals outside the band of interest is done through

the use of a Surface Acoustic Wave (SAW) filter. SAW filters in general have

relatively flat responses in the passband while having sharp transitions to out-of-

17

Figure 3.6: Possible Noisy Input Signal with BPF Response. A noisy
input signal is now filtered with a BPF to attenuate out-of-band noise.

Figure 3.7: Minimal Aliasing Effects of a Sampled Noisy Signal. The
band of interest is now minimally affected by the out-of-band noise.

band frequencies. One of the major drawbacks to using these types of filters is

the high insertion loss and the delay introduced into the system.

Ideally sampled signals can be thought of as being multiplied by a train of

impulses as described by the equation 3.2. One of the properties of the Fourier

Transform is that multiplication in the time domain is analogous to a convolution

in the frequency domain. This can be used to describe the sampled signal in

18

the frequency domain as shown in equation 3.4. The convolution of impulses

can be rewritten as a summation of the frequency representation of the original

signal shifted to intervals of the sampling frequency. These shifted replicas of the

original signal are called spectral images and are the cause of aliasing as shown

in figure 3.5 and allow for the down-conversion as seen in figure 3.7.

xs(t) = xc(t)
∞∑

n=−∞

δ(t− n

fs
) (3.2)

Xs(F) = Xc(F) ∗ fs
∞∑

k=−∞

δ(F − k) (3.3)

= fs

∞∑
k=−∞

Xc(F − k) (3.4)

Eb/N0 Requirement

Reducing noise sources, such as aliased noise, is important to meeting the

Eb/N0 requirement. The maximum value for this is specified as 10 dB Hz/sec.

With this, one can calculate the noise spectral density, N0, since the nominal

power output is known to be -12 dBm and the given maximum data rate is 4

Mb/sec or 66 dB Hz (see Appendix A).

N0 =
fdataPoutput

Eb/N0

=
(66dB Hz)(−12dBm)

10dB Hz/sec
= −88dBm/Hz (3.5)

Knowing the maximum noise spectral density indicates the upper bound of the

noise floor if the noise is stochastic, but it doesn’t give much insight into the

maximum power of spurious signals. Theoretically, a spur, or sharp peak in the

spectral power measurement, is modeled as a single frequency with an infinite

spectral density at that frequency and zero spectral density elsewhere. Practically

speaking, this is never this case. Knowing the spectral density of a spur would

19

require knowing the width in the frequency spectrum which the spur spread.

Measuring this for each spur is not only tedious but is dubious as discussed in

section 7.1.1. For the purposes of this work, spurs are cautiously estimated to

have 1 Hz width in the frequency spectrum; in reality it is often much greater.

This would simply mean that in order to fulfill this requirement, no spur can be

measured to exceed -88 dBm.

3.4 Digital Signal Processing Path

Much of the physical phenomena that characterize the space channel are best

created through digital means due to their relative complexity. The high through-

put that the sampling frequency of 56 MHz demands requires many fast, concur-

rent computations. This precludes the use of a single processor to perform the

necessary operations. Instead, an Field Programmable Gate Array (FPGA) is

used. This allows for the high-level of parallel processing required.

The data path proposed by JPL, shown in figure 3.8 and outlined in the JPL

statement of work (Appendix A), splits the incoming signal into separate in-phase

(I) and quadrature (Q) paths. The main advantage of doing this is that the main

DSP path only needs to operate at half the sample frequency. The drawback

to this is the data path is now twice as wide. Given that the current operating

speeds of an FPGA easily meet the 56 MHz requirement, a simpler single data

path approach was chosen as shown in figure 3.9.

It should be noted that the statement of work also requested the ability to

control some of the operating parameters separately for the I and Q channels.

It was later determined that such separation is done on an arbitrary basis as

described by the statement of work allowing for no benefit in having separate

control of the two channels. JPL relaxed this requirement and approved the

single data path design.

20

Figure 3.8: Block Diagram of the Proposed DSP Path.

The DSP path can be broken down into a few main areas as shown in fig-

ure 3.9. These areas correspond to the main space communication channel char-

acteristics namely delay, the Doppler Effect, and AWGN. Each is discussed in

further detail in the following subsections.

3.4.1 The Memory Controller

As mentioned previously, adding delay to the signal is essential to recreating

the characteristics of the space channel. For this project, it was requested that

the added delay range from less than 1 ms to greater than 2.5 seconds with a

granularity of less than 1 ms. As shown in figure 3.9 the delay stage is the first

to be implemented in the DSP path. The reason for this is to allow any changes

in the parameters not related to delay to take immediate effect without having

to wait the current delay setting.

In the original project description provided by JPL (Appendix A), it is re-

quested that the delay be applied independently to both the I and Q channels.

One possible benefit of having distinct delays for the I and Q channels might

21

Figure 3.9: Block Diagram of the Designed DSP Path.

be to provide a better emulation of multipath effects and fading. Aside from

the inherent added complexity in creating two separate delay paths, the I and Q

channels are discerned arbitrarily in the scheme presented–the I and Q channels

might be quite different from test to test given the sample input signals making

their separation almost problematic when designing a repeatable environment for

which to test the signal. As was previously stated, it was decided to abandon the

I and Q separation and implement a single delay path.

The implementation of the delay in the DSP path relies on a memory con-

troller to store the incoming sampled signal for a discrete number of samples in

a bulk memory bank. At the sample frequency of 56 MHz and an upper limit

of 2.5 seconds for the delay, the total number of samples that needs to be stored

is 140 million. With roughly two bytes per sample this comes to slightly greater

than 256 megabytes of memory.

The memory controller is designed around the idea of a first-in-first-out (FIFO)

type buffer. The sampled data coming in will fill a circular type buffer while the

data fed out to the remainder of the DSP path will be pulled from an index that

22

Figure 3.10: FIFO Implementation of a Delay Line [11]. The data
written to the FIFO fills successive locations until it wraps around after
N samples. Data read from the FIFO reads from successive locations
with a distance from the write address equal to the delay desired.

follows the input index by the number of samples to be delayed.

The delay is to be changed dynamically during testing to accommodate the

scenario of a continually changing distance over time between the source and the

receiver. Given the discrete nature of the memory controller, any change in delay

will result in a loss or repeat of data causing a discontinuous signal to be output.

To alleviate this issue the memory controller has been designed with the ability

to clock data out at a different rate than it is being clocked in changing the delay

time while keeping the signal continuous. The memory controller was designed to

handle this two different ways: allow for different clocks at the input and output,

and allow for multiple samples to be extracted at any given time. While the first

approach is much more straight forward, it does pose problems with generating

clock signals. This will be discussed further in the clock management section

of this chapter. The second approach gives multiple samples to be used in the

following interpolation stage and will be further discussed in section 3.4.2.

3.4.2 Interpolation Finite Impulse Response (FIR) Filter

As discussed in the previous chapter, the Doppler Effect can be thought of in

the frequency domain as having a scaling factor, namely 1± v
c

where v is relative

velocity between the source and the receiver and c is the speed of light. Since

23

this scaling factor amounts to a shift in frequency proportional to the original

frequency itself, a simple static shift in frequency will not suffice to accurately

reproduce the Doppler Effect. Also, the Doppler Effect occurs from the fact that

there is a changing distance, and thus a changing delay, between the source and

the receiver.

F−1
{

1

|α|
X

(
f

α

)}
= x(αt) (3.6)

Viewed in the time domain instead of the frequency domain, as in equation 3.6,

one can see that a scaling in the frequency domain translates to a corresponding

scaling in the time domain. Essentially what this means is that the Doppler Effect

can be reproduced by simply pulling data from the delay buffer slightly faster or

slightly slower than it is being put into the buffer. This “throttling” of the data

achieves both the desired frequency scaling as well as the desired dynamically

changing delay.

There is some hardware difficulty when changing the frequency of the output

sample rate dynamically internal to an FPGA. The main difficulty arises from the

fact that most clock signals entering an FPGA are run through a Digital Clock

Manager (DCM) to correct the duty cycle and condition the signal to be used on

the global clock network. The DCMs require a reset with any input frequency

change in order to establish a lock with their internal phase lock loops (PLLs).

This reset creates a discontinuity in the output signal–a result that the throttling

technique was intended to eliminate in the first place.

To change the output data rate without changing the sample clock frequency

requires a dynamic interpolation filter. Figure 3.11 shows an example of this

approach. Ideally, the value between samples is determined successively getting

further away from one sample point with each clock. This gradual change in

interpolation position effectively changes the output data rate of the sampled

input signal. This method also enables delays that are a fraction of a sample

24

Figure 3.11: Using Interpolated Points to Time-Scale a Signal. The
sampled input signal is used to find points between samples that will
construct a time-scaled version of the original signal that can be output
without changing the sample frequency.

rather than being forced to a discrete sample delay as solely using a FIFO does.

There are multiple approaches to the design of an interpolation filter. The

most direct approach is to determine a mathematical representation of an arbi-

trary point in time given the sampled data. This is shown in equation 3.9. Passing

the continuous-time representation of the sampled signal through a lowpass filter

(LPF) with a cutoff frequency at fs/2, which assumes the input signal doesn’t

contain any frequencies above this that might be aliased, yields a reconstructed

continuous-time signal. Thus, any point in this reconstructed signal can be deter-

mined based on the sampled input signal given filter coefficients that correspond

to the time of interest desired. This approach is called Sinc interpolation.

25

xc(t) = xs(t) ∗ LPF (3.7)

=
∞∑

n=−∞

xs[n]
sin[(t− n

fs
)fs]

(t− n
fs

)fs
(3.8)

=
∞∑

n=−∞

xs[n]sinc[(t− n

fs
)fs] (3.9)

The major concern with the Sinc interpolation method is, as one can see in

equation 3.9 is that to get the exact result of the interpolated points, an infinite

number of data samples is required. There are other interpolation methods that

trade off accuracy for simplicity such as the zero-order hold, linear interpolation,

and raised cosine interpolation. Each of these are more cost effective, with respect

to the computational effort required, in producing an estimation, but none can

approach the accuracy of the Sinc method.

Since the Sinc interpolation coefficients gradually approach zero as they ex-

tend to infinity, a finite length filter can be used to approximate the sinc inter-

polation in order to produce the desired precision. This allows for the use of

a finite impulse response (FIR) filter implementation. Although the length can

be adjusted to meet any precision desired, the causal nature of an actual FIR

implementation results in a delay, measured in samples, of half the filter size.

Thus, there could be the possibility of conflicting constraints in acceptable delay

and acceptable accuracy.

The resolution of the interpolation filter–the number of points that the filter

can distinguish between samples–can be determined by the desired resolution of

the Doppler Effect: 1 Hz. This in itself is not enough to calculate an accept-

able resolution since it has already been determined that the Doppler shift is

dependent upon the input signal frequency. The scaling factor α = 1 ± v
c

can

be determined for the center frequency, fc, of 70 MHz when ∆f is equal to 1 Hz

26

using this simple formula:

∆f = (1− α)f, f = fc (3.10)

The number of interpolation points, N , must be |1 − α|−1 to achieve proper

time-scaling. Thus, N is simply 70 million.

Storing that many different values for each of the filter’s coefficients is some-

what impractical with the capabilities of today’s FPGAs. Often, a bipartite table

system is used to reduce the size if data stored for the coefficients into something

more manageable while assuring a certain degree of accuracy [18]. Bipartite ta-

bles basically stores two coefficients: one for a very coarse approximation and

one for a correction factor. The sum of the two table parameters will give a

very close approximation while only requiring a simple adder and much less table

space. The maximum table compression is found with this approach when there

are N2/3 entries in each table. This comes to approximately 170 thousand entries

in each table. While there are FPGAs with the capability of storing 340k values

for each coefficient, adding a little more complexity can reduce the table size

significantly.

Most FPGAs have hardware multipliers built in that can be used to create

linear approximations by storing a table of values of the desired function along

with another table for the slope. The value for any point can then be approxi-

mated by the sum of the stored value and the value linearly interpolated given

the slope and the distance from the stored value. Figure 3.12 shows the bipartite

and linear interpolation methods.

3.4.3 Digital Single Side Band Modulation

In the previous sections, it has been shown that the Doppler Effect shifts a

given input frequency by an amount dependent on that frequency itself and a

27

Figure 3.12: Using Tables to Approximate a Function. The bipartite
method of approximating a function is considerably simpler to imple-
ment but generally requires much larger tables than does the linear
interpolation approach [18].

28

scaling factor. Using a dynamic interpolation filter, this scaling factor can be

applied to a sampled signal. So far, the inherent down-conversion of the sampled

signal in the sampling process has been not been addressed. This down-conversion

results ins all frequencies being shifted down by from the original center IF of 70

MHz to the 14 MHz IF. Thus, the sampled signal can be written generally as:

Sin(f) = SIF [f − (fc − fIF)], f ≥ 0 (3.11)

Sin(f) = SIF [f + (fc − fIF)], f < 0 (3.12)

where SIF is the sampled signal at an IF of 14 MHz, fc is the actual center

frequency of transmission, and fIF is 14 MHz. When this is scaled by the Doppler

Effect with the scaling factor α = 1± v
c
, the result is:

Sin(αf) = SIF [αf − sgn(f)α(fc − fIF)] (3.13)

Thus the change in frequency (δf) is,

∆f = (1− α)f − sgn(f)(1− α)(fc − fIF) (3.14)

in the digital domain. Given α, the expression (1 − α)(fc − fIF) is a constant

frequency shift not dependent on the input frequency, f . This shift is applied to

all positive frequencies. A shift of all positive frequencies in one direction and all

negative frequencies the other is called single side-band modulation (SSB).

Single side-band modulation in the digital domain can prove slightly more

difficult than in the analog domain when the desired shift is less than the width

of the band of interest and the band of interest consumes more than half of the

total bandwidth of fs/2 where fs is the sample frequency. Much of the difficulty

occurs from aliasing effects when frequencies move above fs/2 or below DC. It

is common to multiply the signal by a cosine function to shift the frequency

both up and down, then filter off the undesired direction. When shifting by an

29

amount that leaves the two overlapping, it becomes difficult to discern the two

thus making filtering impossible.

One popular method for achieving SSB modulation in is the Hartley Method [16].

The basic diagram for the Hartley Method is shown in figure 3.13. This method

employs a Hilbert Transform to first shift the phase of the signal by −90◦sgn(f)

for all frequencies. Thus, signals A and B can be described by the following

equations:

A(F) = X(F) (3.15)

B(F) = e−j
π
2
sgn(F)X(F)

= −jsgn(F)X(F) (3.16)

C and D can then be described by:

C(F) =
1

2
X(F)(ej2πFcn + e−j2πFcn)

=
1

2
[X(F − Fc) +X(F + Fc)] (3.17)

D(F) =
1

2
sgn(F)X(F)(ej2πFcn − e−j2πFcn)

=
1

2
sgn(F) [X(F − Fc)−X(F + Fc)] (3.18)

Thus Y (F) = C(F) +D(F),

Y (F) =
1

2
[1 + sgn(F)]X(F − Fc) +

1

2
[1− sgn(F)]X(F + Fc)

=

X(F − Fc), F ≥ 0

X(F + Fc), F < 0
(3.19)

The Hartley Method had one major drawback: any discrepancies in the mag-

nitude responses of the Hilbert Transform and the matched delay will result in

allowing an undesired shift direction which does not perfectly cancel. Implement-

30

Figure 3.13: Hartley Method for SSB Modulation [16]. This method
requires a Hilbert Transform whose response perfectly cancels the all
pass match delay.

ing this transform with an FIR filter, as it most likely would be, will result in an

imperfect response due to the finite nature of the filter. Thus, some amount of

error is to be expected. However, the relative simplicity of this method makes it

attractive for implementation.

Another popular approach to SSB modulation is the Weaver Method [16].

This method is detailed in figure 3.14. From the diagram, points A and B are

passed through a lowpass filter with a cutoff frequency of 1
4

cycles/sample. As

31

such, these points can be expressed as follows:

A(F) =

X(F − 1
4
) +X(F + 1

4
), |F | < 1

4

0, otherwise
(3.20)

B(F) =

−j
[
X(F − 1

4
)−X(F + 1

4
)
]
, |F | < 1

4

0, otherwise
(3.21)

Points C and D then follow to be:

C(F) =
1

2

[
A(F − Fc −

1

4
] + A(F + Fc + 14)

]

=

1
2

[
X(F − Fc − 1

2
) +X(F − Fc)

]
, Fc < F < Fc + 1

2

1
2

[
X(F + Fc) +X(F + Fc + 1

2
)
]
, −Fc − 1

2
< F < −Fc

0, otherwise

(3.22)

D(F) = −j 1

2

[
B(F − Fc −

1

4
]−B(F + Fc + 14)

]

=

1
2

[
−X(F − Fc − 1

2
) +X(F − Fc)

]
, Fc < F < Fc + 1

2

1
2

[
X(F + Fc)−X(F + Fc + 1

2
)
]
, −Fc − 1

2
< F < −Fc

0, otherwise

(3.23)

Thus, summing the two yields the result, Y (F) = C(F) +D(F):

Y (F) =

X(F − Fc), Fc < F < Fc + 1

2

X(F + Fc), −Fc − 1
2
< F < −Fc

0, otherwise

(3.24)

With the periodic spectral images at every integer value in the digital frequency

spectrum, this result matches exactly to that of the Hartley Method as one would

expect.

32

Figure 3.14: Weaver Method for SSB Modulation [16]. This method
requires two ideal LPFs with corner frequencies at F = 1

4
.

The major drawback of the Weaver Method is similar to that of the Hilbert

Method; the required LPF cannot be perfectly implemented. Some transition

band will be present allowing a slight attenuation of the higher frequencies, but

more notably, will cause aliasing for the imperfections in the stop band.

A final approach to consider for SSB modulation is the Balanced Hartley

Method, otherwise known as the Modified Hartley Method [17]. This approach is

shown in figure 3.15. Here, fractional Hilbert Transforms [21] are used to ensure

identical responses for each path. To start the analysis, points A and B can

be described as the following after being passed through the Fractional Hilbert

33

Transforms.

A(F) = ej
π
4
sgn(F)X(F) (3.25)

B(F) = e−j
π
4
sgn(F)X(F) (3.26)

Points C and D are then described below after being multiplied by the sine and

cosine functions similar to the normal Hartley Method but with a correction in

the phase to accommodate the fractional Hilbert Transforms.

C(F) =
1

2
ej

π
4
[sgn(F)−1]X(F − Fc) +

1

2
ej

π
4
[sgn(F)+1]X(F + Fc)

=

1
2
X(F − Fc) + j 1

2
X(F + Fc), F ≥ 0

−j 1
2
X(F − Fc) + 1

2
X(F + Fc), F < 0

(3.27)

D(F) = j
1

2
e−j

π
4
[sgn(F)+1]X(F − Fc)− j

1

2
e−j

π
4
[sgn(F)−1]X(F + Fc)

=

1
2
X(F − Fc)− j 12X(F + Fc), F ≥ 0

j 1
2
X(F − Fc) + 1

2
X(F + Fc), F < 0

(3.28)

The final result is:

Y (F) =

X(F − Fc), F ≥ 0

X(F + Fc), F < 0
(3.29)

As mentioned before, this approach gets around the major drawback of the

standard Hartley Method by ensuring both paths have the same, even if imper-

fect, responses for the Hilbert Transform. This approach also isn’t burdened with

the drawback of the Weaver Method since this method does not depend on LPFs

to eliminate unwanted aliasing. As with all three methods, this will be subject

to any aliasing inherent in the shifting of frequencies.

34

Figure 3.15: Balanced Hartley Method for SSB Modulation [17]. This
method ensures an identical response on each path by passing both
through Fractional Hilbert Transforms.

3.4.4 Digital Attenuation

When dealing with a space communication channel, the medium is often con-

sidered lossless for electromagnetic transmissions. This is based on the assump-

tion that the medium is a perfect vacuum. In reality, space is not a perfect

vacuum, being populated by sparse particles. Therefore, the assumption of a

lossless medium is not the best model in all space communication scenarios [22].

Also, the power of a signal is spread over an ever increasing area as the signal

propagates causing the power that reaches the receiver to be proportional to the

35

inverse square of the distance. To recreate the conditions of an imperfect medium

and the power loss due to distance, attenuation is digitally applied to the signal

in the DSP path.

Attenuation is achieved by simply multiplying the signal data by a constant

within the range [0, 2N − 1]. Here, N is the number of bits in the digital mul-

tiplicand. A value of 1.0 is assigned 2N−1 which allows for digital amplification

up to approximately 2.0. While emulating a dynamic scenario, the amount of

attenuation applied to the signal may fluctuate over time. If the dynamic atten-

uation changes are set correctly, the fluctuations realistically mimic multipath

interference on the signal. As a result, the ability to vary the attenuation with

time allows accurate emulation of the effects of Rician fading [12].

3.4.5 White Gaussian Noise Generator

In space communications, the signal receives the addition of noise from two

main sources: natural sources such as nearby celestial sources, and noise inherent

in the electronic systems conducting the communication. The latter is most often

the stronger source coming mainly from the input gain that attempts to auto-

matically keep the input signal at a constant power known as the automatic gain

control (AGC). In order to accurately reproduce such noise sources, a Gaussian

random process is used for the noise model. White noise is approximated, for the

sake of implementation, using a pseudo random noise generator with a selectable

mean and variance. A true Gaussian process results in values that extend from

negative infinity to positive infinity which, of course, cannot be realized in dis-

crete digital values. Therefore, the digital Gaussian process is truncated to a set

number of standard deviations, a value of 4σ for this application, to eliminate

the extreme positive and negative noise peaks.

To implement a digital noise generator in the RF Channel Emulator, an exist-

ing Adaptive White Gaussian Generator noise core developed by Xilinx is used.

36

This core produces a pseudo-random number with a zero-mean and 4.8 standard

deviations. This pseudo-random number is then scaled to the desired mean and

variance. This adjusted noise value is added to the signal in the digital signal

path.

3.4.6 Digital Output Filter

The space communication medium is near perfect–passing all frequencies

equally well. It is important, when emulating the space channel, to have this

near perfect response as well. As the signal passes through the digital path, it

maintains, in theory, a fairly flat frequency response. In reality, there are some

minute discrepancies. When dealing with the analog components, this imperfect

reality is distinctly more pronounced. The digital-to-analog converter (D/A) will

also affect the output magnitude due to the sinc response inherent in a zero-order

hold topology. The output filter is necessary to alleviate any deviations from a

flat response for the entire band of interest regardless of their origin.

The output filter, which is attached to the end of the digital path, is best

realized using an FIR filter like many of the components in the path. Using an

odd number of symmetric coefficients, a linear phase response can be achieved

to assure that phase as well as magnitude is minimally affected by the emulator.

The coefficients are determined by measuring the response of the entire system,

Hsystem(F) and setting the response of the filter to |Hfilter(F)| = 1/|Hsystem(F)|.

3.5 Digital and Analog Output Stage

The output stage reconstructs the analog equivalent of the digital signal. This

was originally proposed to be realized as is shown in figure 3.16 [22]. The FPGA

feeds the D/A with the digital signal data. The D/A upsamples the data stream

and passes this through an internal, digital lowpass filter. Using a mixer, this

37

signal is then up-converted from an IF of 14 MHz to that of 70 MHz.

Figure 3.16 also shows the harmonic noise inherent in any system with quan-

tized values. As one can see by the possible locations of the harmonics, as shown

in the figure, these mainly fall within the band of interest. This is due to the

fact that the harmonics are digital constructs and fold per the rules of spectral

images along the digital frequencies of n/2. The upsampling performed by the

D/A does leave some space for the harmonics to fall that is out-of-band, but can

be improved upon. The harmonics themselves cannot be eliminated but only

reduced by increasing the data width.

Figure 3.16: Block Diagram of Original Analog Output Stage with
Quantization Harmonic Noise. A quantized output digital signal can
introduce harmonics which fall both inside and outside the band of
interest.

38

Figure 3.17 shows a modified version of the output stage that includes a

digital upsampler in the FPGA which essentially creates more out-of-band space

for the harmonic noise to reside. This reduces the total harmonic noise inherent

in quantization. This topology also minimizes the number of analog components

needed in the system thus greatly reducing any analog noise introduced.

Figure 3.17: Block Diagram of an Improved Analog Output Stage
with Reduced Quantization Harmonic Noise. More out-of-band space
is given for harmonic noise to fall using an upsampler in the FPGA.

The design of the upsampler is fairly straight forward. Initially a digital

signal, x(n), has zeros interspersed between each sample. This is the equivalent

of:

y(n) = x(n/2)
1

2
[1 + cos(πn)] (3.30)

39

which yields a frequency response of:

Y (F) = 1
2

[
X(2F) + 1

2
X[2(F − 1

2
)] + 1

2
X[2(F + 1

2
)]
]

= X(2F) (3.31)

This is illustrated in figure 3.18.

The D/A is designed with a selectable highpass or lowpass filter after the

upsampling to allow one or the other to be used as the output. In the case of the

original output stage design, the lowpass filter was needed to keep the signal at

the 14 MHz IF. However, with an upsampler and highpass filter in the FPGA,

the data reaching the D/A has an IF shifted by 28 MHz to create a 42 MHz

IF. Selecting the lowpass filter on the D/A, in this case, would keep the 42 MHz

IF while also keeping the mirror image of the signal in the frequency spectrum.

Selecting the highpass filter allows for the signal to be shifted again by 28 MHz

effectively up-converting it to the 70 MHz center frequency that is desired.

The output of a D/A is commonly a zero-order hold attenuating spectral

images according to a sin(x)/x response. This is illustrated in figure 3.19. The

spectral images, if not attenuated by a bandpass filter, might cause problems at

the input of a transceiver [4]. A common issue is out-of-band noise and spectral

images saturating the input of the transceiver.

3.6 Clock Management

The clock distribution network serves many purposes in the RF Channel Emu-

lator. It contains the embedded processor system clock to execute the code which

handles dynamic system parameter changes. This same clock is also responsible

for the communication with and control of the external memory module used

to implement the delay. Code execution is necessary to initialize the Dynamic

Digital Synthesizer (DDS) which is used to generate the sampling clocks for both

40

Figure 3.18: Upsampling with Highpass and Lowpass Filters.

the A/D and D/A components.

The DDS is essentially a sinusoidal wave generator which utilizes a lookup

table and built in D/A converter along with a phase incrementor which allows

a wide range of frequencies to be generated while also ensuring a fine granu-

larity in frequencies. The DDS was chosen given the requirement of a non-

standard frequency–a frequency for which off-the-shelf components are not easily

obtainable–to be used for sampling and recreating the input and output analog

signals respectively.

Use of the DDS can inadvertently introduce noise in various forms into the

sampled and reconstructed signals. Some of this noise is due to deterministic

41

Figure 3.19: D/A Spectral Output with Required Bandpass Response.
The bandpass filter attenuates any spectral images created by the D/A.

jitter which has multiple sources: the quantization error introduced from the

14-bit D/A in the DDS, any PLLs used for clock multiplication within the DDS

itself, and, to a much lesser degree, induced noise from nearby high speed digital

switching circuits and traces. The design of this portion of the system must

be done with care to eliminate as much deterministic noise as possible. (See

section 7.1.3 for more discussion pertaining to the effect of deterministic jitter in

sampling.)

The second form of noise that can be introduced into the sampling and re-

construction clocks is stochastic jitter, commonly quantified as random phase

noise. This, too, can be a by product of any PLL used in the DDS itself. More

importantly, this is best reduced at its initial source: the clock driving the DDS.

It is imperative that this clock source be as “clean” as possible. Maximum jitter

specifications can be found in figure 3.20 [14].

A simplistic model for the effect of random phase noise on a sampled signal

can be understood by a quick look at the sampling theorem [6]. Here, the sampled

signal is expressed as the clock signal, or an infinite series of impulses in time,

multiplied with the continuous-time signal.

xs(t) = x(t)
∞∑

k=−∞

δ(t− k) (3.32)

This multiplication in the time domain can be be viewed as a convolution in the

42

 ANALOG-DIGITAL CONVERSION

6.84

Figure 6.78: Theoretical SNR and ENOB Due to Jitter

vs. Fullscale Sinewave Analog Input Frequency

Recall from Chapter 2 of this book that there is a very useful relationship between
effective number of bits (ENOB) and the signal-to-noise-plus-distortion ratio (SINAD)
given by:

dB02.6
dB76.1SINAD

ENOB
−

= . Eq. 6.8

For the purposes of this discussion, assume that the ADC has no distortion, and therefore
SINAD = SNR, so Eq. 6.8 becomes:

dB02.6
dB76.1SNR

ENOB
−

= . Eq. 6.9

The SNR values on the left-hand vertical axis of Figure 6.78 have been converted into
ENOB values on the right-hand vertical axis using Eq. 6.9.

Figure 6.79 shows another plot of Eq. 6.7, where maximum allowable jitter, tj, is plotted
against fullscale analog input frequency for various values of ENOB. This plot is useful
for determining the jitter requirements on the sampling clock (assuming that it dominates
tj) for various input frequencies and resolutions. For instance, digitization of a fullscale
30-MHz input requires less than 0.3-ps rms jitter to maintain 14-bit SNR performance.

SNR
(dB)

ENOB

100

80

60

40

20

16

14

12

10

8

6

4

1 3 10 30 100

tj = 1ns

tj = 100ps

tj = 10ps

tj = 1ps

tj = 0.1ps

120

18

FULL-SCALE SINEWAVE ANALOG INPUT FREQUENCY (MHz)

SNR = 20log 10
1

2π ftjSNR = 20log 10
1

2π ftj

tj = 50fs

Figure 3.20: Theoretical SNR and effictive number of bits (ENOB)
Due to Jitter vs. Input Frequency[14].

frequency domain of the clock spectrum with the signal spectrum. Figure 3.21

shows this representation. As can be seen, the phase noise in the clock is incor-

porated into the sampled signal which reduces the spectral resolution. Again,

this demonstrates the need for a “clean” clock source. It should be noted that

this simplistic model really only holds in practice for random clock jitter. Some

experimental evidence of this can be found in section 5.1.4.

The final aspect of the clock distribution network that cannot be overlooked

is the necessity to maintain synchronization between the various clocked com-

ponents. This includes synchronization between the external components such

as the A/D and D/A as well as between internal components operating from

different clock sources. These clock sources could be potentially out of phase

with each other or running at different frequencies altogether such as the main

processor clock and the sampling clocks. This requirement can be fulfilled in

the design through proper identification of in-phase clock sources and through

internal FPGA logic tolerant of differences in phase and frequency.

43

INTERFACING TO DATA CONVERTERS
6.5 SAMPLING CLOCK GENERATION

6.87

The sampling process is basically a multiplication of the sampling clock and the analog
input signal. This is multiplication in the time domain, which is equivalent to convolution
in the frequency domain. Therefore, the spectrum of the sampling clock oscillator is
convolved with the input and shows up on the FFT output of a pure sinewave input signal
(see Figure 6.82). The "close-in" phase noise will "smear" the fundamental signal into a
number of frequency bins, thereby reducing the overall spectral resolution. The
"broadband" phase noise will cause a degradation in the overall SNR as predicted
approximately by Eq. 6.7.

Figure 6.82: Effect of Sampling Clock Phase Noise Ideal Digitized Sinewave

It is customary to characterize an oscillator in terms of its single-sideband phase noise as
shown in Figure 6.83, where the phase noise in dBc/Hz is plotted as a function of
frequency offset, fm, with the frequency axis on a log scale. Note the actual curve is
approximated by a number of regions, each having a slope of 1/f x, where x = 0
corresponds to the "white" phase noise region (slope = 0 dB/decade), and x = 1
corresponds to the "flicker" phase noise region (slope = –20 dB/decade). There are also
regions where x = 2, 3, 4, and these regions occur progressively closer to the carrier
frequency.

Note that the phase noise curve is somewhat analogous to the input voltage noise spectral
density of an amplifier. Like amplifier voltage noise, low 1/f corner frequencies are
highly desirable in an oscillator.

We have seen that oscillators are typically specified in terms of phase noise, but in order
to relate phase noise to ADC performance, the phase noise must be converted into jitter.
In order to make the graph relevant to modern ADC applications, the oscillator frequency
(sampling frequency) is chosen to be 100 MHz for discussion purposes, and a typical
graph is shown in Figure 6.84. Notice that the phase noise curve is approximated by a
number of individual line segments, and the end points of each segment are defined by
data points.

IDEAL
ADC

ANALOG
INPUT, fa DSP

fsfa

fs

fa
IDEAL SINEWAVE

INPUT

SAMPLING CLOCK
WITH PHASE NOISE

FFT OUTPUT

SNR

FOR IDEAL ADC
WITH N → ∞

N → ∞

(MEASURED FROM DC TO fs/2)

CLOSE-IN

BROADBAND
SNR = 20log 10

1
2π ftjSNR = 20log 10

1
2π ftj

f

f

f

Figure 3.21: Effect of Clock Phase Noise on Ideal Digitized
Sinewave[14].

44

Chapter 4

System Comparisons

For many communication applications, simulators are more than adequate

to handle the needs of characterizing the performance of a given communication

protocol. With today’s computer systems, robust software can be written to

produce the effects of noise, delay, and Doppler among others. However, software

simulations are inadequate when testing the performance of real-time systems

implemented in hardware. Despite the current speed of processors, the processing

required to handle the DSP computations involved in reproducing the desired

effects in real-time exceeds their ability. These processors, although very good

at serial computing, cannot handle the extreme parallel processing involved in

this application. Thus, hardware designed for this specific task is required. Such

systems, as one might expect, are rare. One such system found with similar

capabilities as the RF Channel Emulator is the SLE700 Satellite Link Emulator

produced by dBm Corp.

The SLE700 is a satellite link emulator that produces the effects of a channel

common in satellite communications [2]. The channel emulation is achieved by

producing propagation delay, attenuation, flat fading, phase shift, and Doppler

shift. The emulator allows for bidirectional or earth-to-satellite transmission

paths.

The SLE700 is designed to be controlled by the front panel or through a

45

Figure 4.1: Front Panel of the SLE700 Satellite Link Emulator.

computer connected through an Ethernet LAN. The emulator operates in either

static mode or in dynamic mode. The static mode allows the user to set a fixed

set of conditions such as delay or Doppler shift. In dynamic mode, the hardware

is equipped with preprogrammed satellite trajectories including low earth orbit,

medium earth orbit, geostationary, and geosynchronous orbits. A simplified block

diagram of the signal path of the SLE700 emulator is shown in figure 4.2.

The operation of the SLE700 is fairly straight forward. First, this input

signal is down converted to using a direct digital synthesizer (DDS) and a mixer

to baseband. Next, the baseband signal is passed through a lowpass filter to

reduce aliasing. After the signal is buffered, it is digitized using a 12-bit analog-

to-digital converter. The digital signal is then passed through a large first-in-

first-out (FIFO) buffer to implement the delay. The data from the FIFO is

reconstructed as an analog signal using a digital-to-analog converter. The analog

output is then buffered and passed through a mixer to be up converted using

another DDS back to the desired output center frequency. This is where a slight

shift in frequency can be introduced. Finally, the signal is buffered and passed

though a variable attenuator which sets the final output to the desired power

level to emulate distance and fading.

The SLE700 comes with proprietary, GUI-based software that allows a user

to program orbit and ground station coordinates, path loss models, and orbit

models [22]. The user input is used to generate data files which are sent to the

46

34

The basic operation of the SLE700, as seen in Figure 4.1, is as follows. First, the input

signal is down converted using a direct digital synthesizer (DDS) based oscillator to baseband.

Next, the resulting signal is then filtered and fed into a 12-bit analog-to-digital converter.

Following the digitization process, the digital signal is placed in a first- in-first-out (FIFO)

memory to achieve the desired delay. After the delay stage, the signal is converted back to an

analog signal by a 12-bit D/A converter. Any alias components of the reconstructed signal are

filtered. The signal is then mixed with a DDS based oscillator to apply the necessary frequency

and phase offsets as the signal is being up converted back to its original frequency. The output

signal is filtered to remove spurious signals. The last stage applies the attenuation and is used to

emulate the fading effect.

When the SLE700 is connected to a PC it can take advantage of the GUI-based software

interface. The software GUI allows the user to program orbit and ground station coordinates,

Figure 4.1: dBm S LE700 Satellite Link Emulator Block Diagram [23]. This diagram demonstrates dBm’s

hardware implementation for emulating the communication channel.

LPF

Frequency

Synthesizer

Channel

Input

Digital

Delay Line Frequency

Synthesizer

Path Loss

Attn.

Flat

Fading

Channel

Output

Ethernet
Interface

Micro
Controller

User

Computer

Optional RF

Connectors

Digital

Control Bus

A/D

D/A

Figure 4.2: dBm SLE700 Satellite Link Emulator Block Diagram [2].

SLE700 emulator where they are executed to produce the desired communication

path.

Despite the fact that the SLE700 and the RF Channel Emulator are similar

systems, some notable differences are present. Many differences are in the way

certain channel characteristics are emulated. While all the channel characteristics

are implemented in the RF channel emulator in the digital path, it is only the

delay that the SLE700 uses the the digital path for. The order in which the major

channel effects are implemented remains the same.

The reliance of a simplified data path in the SLE700 force it to use analog

components for many of the channel effects. This includes the introduction of

noise. While the RF Channel Emulator has a built in Gaussian white noise

generator and a dedicated input channel for an external noise generator, the

SLE700 is only capable of introducing noise through an external noise generator.

This means no noise is available without a separate piece of hardware to generate

it.

47

Specifications RF Channel Emulator SLE700
Center Frequency 70 MHz 70 MHz
3 dB RF Bandwidth 24 MHz 45 MHz
Number of Channels 1 1, 2, or 4
Input Power -7 dBm max. -10 dBm max.
Output Power -12 dBm max. -10 dBm max.
Delay 10 µs to 2 s 100 µs to 700 ms
Delay Resolution 1 ps 1 ns
Doppler Shift ±3.5 KHz ±1.0 MHz
Doppler Resolution 0.1 Hz 0.1 Hz
True Doppler Shift Yes No
Attenuation 0 dB to 50 dB 0 dB to 40 dB
Noise AWGN None
Control Software GUI Front Panel, Software GUI
Interface Ethernet Ethernet

Table 4.1: Specification Comparison between the RF Channel Emula-
tor and the SLE700.

The construction of the two emulators is not the only difference; the intended

use of the two systems are slightly different as well. While the SLE700 emulator is

intended for communication between earth and orbiting satellites, the RF channel

emulator is intended for communication between the earth and spacecraft as far

as the moon or between two spacecrafts. Therefore, the specifications of each

system differ slightly. These differences are summarized in table 4.1.

48

Chapter 5

Component Design and
Evaluation

During the design and integration of the RF Channel Emulator, each com-

ponent, whether implemented in physical hardware, programmable logic, or soft-

ware, was evaluated and tested. The individual analysis of a component produced

data which is used to determine or predict the overall performance of the system.

This chapter is devoted to the methods and results of the individual component

testing including the main boards used in the final design and the internal logic

modules in the DSP path.

5.1 Component Selection

Many of the key components used in the final assembly of the RF Chan-

nel Emulator were selected for distinct properties which set them apart from

other possible candidates. This section discusses design requirements and the

the relevant properties of each of the major components which demonstrate their

usefulness in meeting the specifications and requirements of the final design.

49

5.1.1 FPGA Development Board

The Digilent XUP-V2P board has the features and characteristics needed

to implement the digital portions of the design of the RF Channel Emulator.

These include the available I/O for communicating to other boards such as the

A/D, D/A, and DDS; the powerful FPGA for implementing the required digital

logic; the integrated DIMM slot for external RAM; the various I/O ports for

Ethernet and RS-232 communication; and the general availability for use in this

project. The multiple 40-pin header slots allow for the interfacing of the off

board components. An external PC can communicate through the integrated

Ethernet board as desired in the project specifications while the RS-232 port

allows for ease in debugging with an external PC. The on-board FPGA is a Virtex-

2 Pro XC2VP30 FPGA with 30,816 logic cells, 136 18-bit multipliers, 2,448 Kb of

BRAM, and 2 PowerPC processors. The integrated DIMM slot allows for up to

2 Gb of RAM which exceeds the required storage capacity needed to implement

the specified delay.

The XUP-V2P performs two main functions; it is the link between the other

components both internal and external to the RF Channel Emulator, and per-

forms the necessary digital signal processing. It is the former that is to be dis-

cussed in this section. The latter function is shown in a simplified block diagram

in figure 3.9.

Much of the communication to control the RF Channel Emulator is centered

around a soft-core processor located within the integrated FPGA. The processor

chosen for this design was the Microblaze. It is the Fast Simplex Link (FSL)

of this processor that makes it appealing. This link, or bus, allows for very

quick communication between the processor and outside peripherals, but more

importantly due to its simple communication scheme, it allows for the very easy

design of peripherals to be connected to this bus. These user defined peripherals

are the heart of controlling the various DSP elements in the design.

50

Figure 5.1: Digilent XUP-V2P Development Board.

Figure 5.2: Block Diagram of MicoBlaze and Peripheral Connections.

Aside from the use of the FSL, the On-chip Peripheral Bus (OPB) was used

to connect pre-made, drop-in peripherals to the processor. These included the

Ethernet PHY, the UART for RS-232 communication, General Purpose I/Os

(GPIO) for communicating to external components, and an internal timer. Fig-

ure 5.2 shows the basic connection of these peripherals to the internal processor.

Connecting the D/A board and the A/D board made use of the 40-pin header

slots mentioned earlier, but since the data was not run through the internal

processor but rather through the DSP path, GPIOs were not used for these.

Instead, the Virtex series, along with many other FPGAs offered by Xilinx, have

primitive hardware structures at the pins themselves called I/O Blocks (IOBs).

These IOBs contain flip-flops for both incoming and outgoing data to and from the

51

Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description
R

DS083 (v4.7) November 5, 2007 www.xilinx.com Module 2 of 4
Product Specification 25

Logic Resources
IOB blocks include six storage elements, as shown in
Figure 19.

Each storage element can be configured either as an
edge-triggered D-type flip-flop or as a level-sensitive latch.
On the input, output, and 3-state path, one or two DDR reg-
isters can be used.

Double data rate is directly accomplished by the two regis-
ters on each path, clocked by the rising edges (or falling
edges) from two different clock nets. The two clock signals
are generated by the DCM and must be 180 degrees out of
phase, as shown in Figure 20. There are two input, output,
and 3-state data signals, each being alternately clocked out.

Table 9: Supported Differential Signal I/O Standards

I/O Standard
Output
VCCO

Input
VCCO

Input
VREF

 Output
VOD

LDT_25 2.5 N/R N/R 0.500 – 0.740

LVDS_25 2.5 N/R N/R 0.247 – 0.454

LVDSEXT_25 2.5 N/R N/R 0.440 – 0.820

BLVDS_25 2.5 N/R N/R 0.250 – 0.450

ULVDS_25 2.5 N/R N/R 0.500 – 0.740

LVPECL_25 2.5 N/R N/R 0.345 – 1.185

LDT_25_DT(1) 2.5 2.5 N/R 0.500 – 0.740

LVDS_25_DT(1) 2.5 2.5 N/R 0.247 – 0.454

LVDSEXT_25_DT(1) 2.5 2.5 N/R 0.330 – 0.700

ULVDS_25_DT(1) 2.5 2.5 N/R 0.500 – 0.740

Notes:
1. These standards support on-chip 100Ω termination.
2. N/R = no requirement.

Table 10: Supported DCI I/O Standards

I/O Standard
Output
VCCO

Input
VCCO

Input
VREF

Termination
Type

LVDCI_33(1) 3.3 3.3 N/R Series

LVDCI_25 2.5 2.5 N/R Series

LVDCI_DV2_25 2.5 2.5 N/R Series

LVDCI_18 1.8 1.8 N/R Series

LVDCI_DV2_18 1.8 1.8 N/R Series

LVDCI_15 1.5 1.5 N/R Series

LVDCI_DV2_15 1.5 1.5 N/R Series

GTL_DCI 1.2 1.2 0.8 Single

GTLP_DCI 1.5 1.5 1.0 Single

HSTL_I_DCI 1.5 1.5 0.75 Split

HSTL_II_DCI 1.5 1.5 0.75 Split

HSTL_III_DCI 1.5 1.5 0.9 Single

HSTL_IV_DCI 1.5 1.5 0.9 Single

HSTL_I_DCI_18 1.8 1.8 0.9 Split

HSTL_II_DCI_18 1.8 1.8 0.9 Split

HSTL_III_DCI_18 1.8 1.8 1.1 Single

HSTL_IV_DCI_18 1.8 1.8 1.1 Single

SSTL2_I_DCI(2) 2.5 2.5 1.25 Split

SSTL2_II_DCI(2) 2.5 2.5 1.25 Split

SSTL18_I_DCI (3) 1.8 1.8 0.9 Split

SSTL18_II_DCI 1.8 1.8 0.9 Split

LVDS_25_DCI 2.5 2.5 N/R Split

LVDSEXT_25_DCI 2.5 2.5 N/R Split

Notes:
1. LVDCI_XX is LVCMOS output controlled impedance buffers,

matching all or half of the reference resistors.
2. These are SSTL compatible.
3. SSTL18_I is not a JEDEC-supported standard.
4. N/R = no requirement.

Figure 19: Virtex-II Pro IOB Block

Table 10: Supported DCI I/O Standards (Continued)

I/O Standard
Output
VCCO

Input
VCCO

Input
VREF

Termination
Type

Reg

OCK1

Reg

OCK2

Reg

ICK1

Reg

ICK2

DDR mux
Input

PAD

3-State

Reg

OCK1

Reg

OCK2

DDR mux

Output

IOB

DS031_29_100900

Figure 5.3: Using Input/Output Blocks to Minimize Latency
Discrepancies[5]. When flip-flops in IOBs are used discrepancies be-
tween latencies are minimized. When they are not used, latencies from
pin to pin are uncertain from build to build.

FPGA package pins. This minimizes any internal routing latency discrepancies

between data pins which is essential to assure data is clocked out synchronously

and in synchronously between corresponding data pins. IOBs are also used for

the same reason with the connections to the external DIMM module. Figure 5.3

shows the basics of using the IOBs to ensure minimal latency discrepancies.

5.1.2 Analog to Digital Converter (A/D)

The analog to digital converter chosen for this design was the AD6645. This

device is capable of sampling at rates as high as 80 MSPS. As mentioned pre-

viously, the bandwidth of the incoming signal is 24 MHz which, according to

Nyquist rate derived from basic sampling theory [6], needs to be sampled at least

48 MSPS for proper reconstruction. Our chosen sample rate is 56 MSPS which

allows for both proper reconstruction and proper down-converting of the input

52

Figure 5.4: Analog Devices AD6645 Evaluation Board.

signal. The AD6645 allows this sampling rate to be achieved. Due to time con-

straints and the desire for simplicity and modularity, the evaluation board for

this chip was purchased to eliminate the need to layout a custom printed circuit

board (PCB).

The AD6645 had a listed spurious free dynamic range (SFDR) 100 dBFS and

a typical signal-to-noise ratio (SNR) of 75 dB. While the 14-bit resolution of the

AD6645 gives it a theoretical dynamic range of 84 dB, the SFDR value shows that

quantization noise is spread among the harmonics of the input signal allowing

for a lower spurious free range while the SNR shows that the chip introduces

other noise aside from harmonic noise as is to be expected with any non-ideal

component. The 100 dBFS SFDR is adequate to meet the requirement of 78 dBc

spurious free noise. As mentioned in section 3.6, to achieve these values, it is

important to have a “clean” clock source. A clock with an unacceptable amount

of jitter can dramatically reduce the SNR.

The evaluation board receives its input clock signal through an SMA con-

nector. Data is sent in parallel through shielded ribbon cable to the XUP-V2P.

53

The clock sent to the AD6645 is split and sent to the Virtex-II chip as well also

through an SMA connector to a dedicated clock pin on the FPGA which allows

for direct connection to the internal global clock network. This minimizes the

internal latency of the clock and data to be in correct phase for proper data

capture. Although the 40-pin connector on the evaluation board provided a syn-

chronous clock signal, this was not used due to the lack of drive strength of the

on-board buffer to drive a dedicated clock pin on the FPGA, not to mention the

40-pin header on the XUP-V2P board did not tie directly to a global clock input

pin. The schematic for the evaluation board was reviewed and showed this syn-

chronous clock pin was, in fact, the input clock signal passed through a buffer.

This allowed for the use of external circuitry as described in section 6.1.1.

It should also be noted that the AD6645 produces data in 2’s compliment

form. This allows for ease of use when processing this data through the DSP

path.

5.1.3 Digital to Analog Converter (D/A)

Although the data path inside the FPGA has a center frequency of 14 MHz

and a bandwidth of 24 MHz, the data output to the D/A is upconverted to have

a center frequency of 42 MHz keeping the same bandwidth but having a sample

rate of 112 MSPS. To accurately reconstruct this signal, the AD9772A chip was

chosen. It maintains the 14-bit resolution of the AD6645 but can handle sample

rates of up to 160 MSPS. For the same reasons that the evaluation board was

chosen for the A/D component, the D/A component was also purchased on an

evaluation board.

The AD9772A is rated as having a spurious free dynamic range of 74 dB. This

value is close to the desired 78 dB spurious free range. As mentioned in section 3.5,

care has been taken to reduce this value even further in most operational cases.

The AD9772A has an internal 2x interpolator which simply doubles the output

54

Figure 5.5: Analog Devices AD9772A Evaluation Board.

data rate of the incoming data, inserts zeros between the samples, and passes the

data through a lowpass filter. With an simple jumper setting on the evaluation

board, a highpass filter can be selected instead of the lowpass. This allows the

final upconversion from a center frequency of 42 MHz to the desired value of 56

MHz without the addition of an external circuit. This not only reduces spurious

noise as mentioned in section 3.5 but also reduces the energy in the spectral

images. Figure 3.17 shows this process.

As with the A/D evaluation board, the AD9772A is connected to the XUP-

V2P via a shielded ribbon cable. Also in the same vein as the AD6645, the

SNR of the AD9772A can be dramatically decreased using a clock signal with an

unacceptable amount of jitter. Section 3.6 describes this in more detail, and the

oscillator section shows experimental evidence supporting this issue.

5.1.4 Oscillator

As previously mentioned, the DDS is used to create the sampling clock of 56

MHz. The DDS requires a reference oscillator to produce the desired frequency

55

Figure 5.6: Test Setup for Measuring the Spectral Plots and Phase
Noise of the Reference Oscillators.

output. Any jitter on the reference clock is transposed to the produced sinusoid,

thus a very “clean” reference clock is desired. A “clean” clock has low jitter, or in

other terms, low phase noise as well as has low deterministic, or spurious, jitter

or phase noise as well.

Initially, the primary reference oscillator selected for the DDS was the Crystek

CPR033-100. This clock is rated as having a typical jitter of around 0.5 ps, a

maximum RMS jitter of 1 ps, and a maximum frequency stability of ±25 ppm

from 0◦C to +70◦C. The output power of this oscillator is around 13 dBm. To

measure the output spectral plot, a 13 dB attenuator was applied to the spectrum

analyzer input. Figure 5.6 shows this test setup. Figure 5.7 shows the spectral

plot of the CPR033-100.

Phase noise was measured using the Agilent E4445A Spectrum Analyzer as

was the spectral plot. This instrumentation is capable of measuring phase noise

directly without going through a lengthy process of measuring each frequency

offset point with a resolution bandwidth of 1 Hz. Phase noise itself is relative

energy per Hz of a particular offset frequency in comparison to a center frequency.

Figure 5.8 shows the measured phase noise of the CPR033-100 oscillator la-

beled the 100 MHz clock. Through a simple conversion [15] the phase noise can

be converted to jitter. This too is shown in figure 5.8. As one can see, the value

measured, 291.13 ps, is much higher than the listed typical value of 0.5 ps. The

limit of what the instrumentation is able to measure has been reached. Also, it

56

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

-15 -10 -5 0 5 10 15

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

24 MHz

Spectrum Analyzer Settings:
Span: 30 MHz
RBW: 100 Hz
VBW: 100 Hz

-88 dBm

100 MHz Clock
400 MHz Clock

Figure 5.7: Spectral Plots for Oscillators.

-170

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

10 100 1000 10k 100k 1M 10M

P
ha

se
 N

oi
se

 [d
B

c/
H

z]

Frequency Offset [Hz]

Total RMS Jitter:

100 MHz Clock: 291.13ps
400 MHz Clock: 148.12ps

100 MHz Clock
400 MHz Clock
400 MHz Clock Datasheet

Figure 5.8: Phase Noise Plots for Oscillators.

57

should be noted that more than just phase noise is being measured here. These

topics are further discussed in section 7.1.1.

The spectral plot of the 100 MHz oscillator along with the fact that the noisy

internal PLL of the DDS was needed to multiply an internal frequency to 400

MHz made it clear that a “cleaner” oscillator was needed. For this, the Wenzel

Sprinter series was chosen with a frequency of 400 MHz such that the PPL of the

DDS could be avoided. This has a rated jitter of less than 0.18 ps–significantly

less than that of the original oscillator. Figures 5.7 and 5.8 show the results of

the Wenzel part. The improved spectral plot is dramatic while the phase noise

plot shows some improvement although still limited by the instrumentation. The

Wenzel part shows an improved measured jitter of 148.12 ps; this still falls far

short of the the specifications. The Wenzel part does have some specifications

on what the expected phase noise should be. As one can see in figure 5.8 these

results are unobtainable with the Agilent instrumentation used.

5.1.5 Direct Digital Synthesis

This section focuses on the component and configuration choices in determin-

ing the final configuration of the DDS as the clock source. Already mentioned

were the requirements for a clock with very low stochastic and deterministic jitter

as the source of the reference clock for the DDS. The effect of the two oscillators

on the final performance of the A/D and the D/A as well as in a pass through

configuration (sinusoidal injection test) are discussed.

Clock Synthesis with the CPR033-100

Initially, the 100 MHz oscillator (CPR033-100) was used to drive the DDS

with an internal clock multiplier of 4x to achieve the 400 MHz clock from which

the 56 MHz clock was generated. The spectral plot and phase noise plots can be

seen in figure 5.9 and figure 5.10 respectively. As one can see, the spectral image

58

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 41 46 51 56 61 66 71

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

24 MHz

Spectrum Analyzer Settings:
Span: 30 MHz
RBW: 100 Hz
VBW: 100 Hz

Without Clock BPF:

-88 dBm

Spur of Interest
(44 MHz)

f0

f5f7

56 MHz using 100 MHz Clock
56 MHz using 400 MHz Clock

Figure 5.9: Spectral Plot for 56 MHz Clock Generated with the DDS.

of the input clock has been convolved with the output sinusoid at 56 MHz. Aside

from that, additional spurs have been introduced. At first glance, these spurs,

given their fairly periodic nature, seem to fall on the harmonics that would be

generated due to quantization noise of the 14-bit internal D/A converter inside

the DDS. These spurs are clearer on the 400 MHz oscillator discussed below.

Clock Synthesis with the 400 MHz Oscillator

Using the 400 MHz, Wenzel oscillator as a reference dramatically reduces all

noise in general out of the DDS. For the most part, the spurious noise intro-

duced has the same magnitudes and frequencies as those introduced using the

100 MHz reference oscillator. This indicates that they are a construct of the

DDS. Again, their frequencies appear to be quantization harmonics due to their

relative frequencies, but when analyzed, only two fall on actual harmonics. The

fundamental frequency is labeled f0 while the two harmonics are designated by

59

-170

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

10 100 1000 10k 100k 1M 10M

P
ha

se
 N

oi
se

 [d
B

c/
H

z]

Frequency Offset [Hz]

Without Clock BPF:

100 MHz Clock for Reference
400 MHz Clock for Reference
56MHz using 100 MHz Clock
56MHz using 400 MHz Clock

Figure 5.10: Phase Noise Plot for 56 MHz Clock Generated with the
DDS. The noise floor of the spectrum analyzer dominates much of the
phase noise for much of the frequency range in each measurement.

60

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 45 50 55 60 65 70

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

24 MHz

Spectrum Analyzer Settings:
Span: 30 MHz
RBW: 100 Hz
VBW: 100 Hz

With Clock BPF:

-88 dBm

56 MHz using 100 MHz Clock
56 MHz using 400 MHz Clock
BPF Response

Figure 5.11: Spectral Plot for 56 MHz Clock Generated with BPFs on
Clocks.

their harmonic number, namely f5 and f7. The source of the other anomalous

peaks is unknown aside from the fact that they are artifacts of the DDS itself.

This is discussed in greater detail in section 7.1.2.

One spur of interest, labeled so in figure 5.9, is around 44 MHz. This peak

has a magnitude high enough that it introduces unwanted spurious peaks in any

sampled data. This can be seen in subsequent sections. For this reason, an off

the shelf bandpass filter is used that attenuates this particular spur.

Figure 5.11 shows the spectral plot of the clock signal with the introduction

of the bandpass filter along with the response of the bandpass filter. As would be

expected, the unwanted spur is attenuated. Section 7.1.3 demonstrates the effect

of sampling with and without this spur. For comparison, figure 5.12 shows the

phase noise plot of the filtered clock.

61

-170

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

10 100 1000 10k 100k 1M 10M

P
ha

se
 N

oi
se

 [d
B

c/
H

z]

Frequency Offset [Hz]

With Clock BPF:

100 MHz Clock for Reference
400 MHz Clock for Reference
56MHz using 100 MHz Clock
56MHz using 400 MHz Clock

Figure 5.12: Phase Noise Plot for 56 MHz Clock Generated with BPFs
on Clocks.

A/D Performance with Various Clock Configurations

To demonstrate the performance of the analog to digital converter with the

various clock configurations, a sinusoid is injected into the system at -10 dBm

(the specified input power level for the system), digitized by the A/D, and ran

through a fast Fourier transform (FFT) to show the spectral result. In order to

achieve a decent resolution, 8192 samples are taken for the FFT. A Blackman

window is used to reduce spectral leakage with the side effect of also reducing

spectral resolution. It should be noted that for all the data taken in this section,

the filtered clock is used as it is in the final design as is shown in figure 5.13.

Figure 5.14 shows an injection frequency of 65.33 MHz. Aside from out of the

band of interest noise, the only peak above the desired noise threshold aside from

the fundamental is the first harmonic which sits at approximately -60 dBc. This

is definitely lower than what is specified in the data sheet; one must consider

62

Figure 5.13: Setup for Measuring A/D Performance Given Different
Reference Oscillators.

that the -100 dBFS was, by definition, at full scale. Here, some head way is left

to assure that we do not overload the A/D. Another discrepancy of note is that

this setup includes the analog front end to accurately gauge the performance of

the system up to the A/D. The inclusion of any other components will definitely

reduce the overall performance.

The spurious free dynamic range of the system using the 100 MHz clock

sits at the same value of -60 dB, although it is definitely apparent that there is

dramatically more in-band spurious noise.

Figure 5.15 shows an injection at 70 MHz. This should produce the “cleanest”

results given that all harmonics should fall at the injection frequency or out of

the band of interest. This appears to hold true for the most part with the 400

MHz clock. A single spur can be seen to breach the noise threshold; given its

location at approximately 63 MHz, it could be attributed to induced noise. The

signal sampled with the 100 MHz clock has noticeably more spurious noise above

the noise threshold.

63

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 60 65 70 75 80 85

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

24 MHz

FFT of Sinusoidal Input:
Input: 65.333333 MHz
Samples: 8192
Window: Blackman

-88 dBm

Using 100 MHz Clock
Using 400 MHz Clock

Figure 5.14: FFT of A/D with a 7
6
fs (65.33 MHz) Input.

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 60 65 70 75 80 85

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

24 MHz

FFT of Sinusoidal Input:
Input 70.000000 MHz
Samples: 8192
Window: Blackman

-88 dBm

Using 100 MHz Clock
Using 400 MHz Clock

Figure 5.15: FFT of A/D with a 5
4
fs (70.0 MHz) Input.

64

D/A Performance with Various Clock Configurations

To demonstrate the performance of the digital to analog converter given var-

ious reference oscillators driving the DDS, the setup in figure 5.16 was used. An

external PC was used to send commands to the embedded Microblaze processor

which set the desired output frequency of the sinusoid generator. The output

of the sinusoid generator was sent directly to the D/A. The sinusoid generator

functions from the same 56 MHz source clock that is used to clock in the A/D

data. The clock used to drive the output data to the D/A is taken from the D/A

itself to ensure synchronization. The internal clock of the D/A is driven at 224

MHz, thus, given that there is an internal x2 interpolator, the D/A clocks in data

at 112 MHz. The 112 MHz clock from the D/A to the FPGA is passed through

a digital clock manager (DCM) upon entry; from this DCM, a 56 MHz clock is

extracted to function with the clock used to clock in the A/D data. Having the

two clocks at the same frequency allows for simple logic to be used along the

DSP path to account for any phase difference between them. In order to increase

the data rate back to 112 MHz, a double data rate (DDR) input/output block

(IOB) is used along with an upconverter. This is discussed in more detail in

section 5.2.5.

Figure 5.17 shows the spectral plot of the output with a generated output

sinusoid at 65.33 MHz with a power level of -10 dBm to best demonstrate the

performance of the D/A under normal operating conditions. It can be seen that

using the 400 MHz clock, the only spur above the noise threshold is the first

harmonic, upconverted, of the output frequency. This makes the spurious free

dynamic range of the D/A to be about 68 dB. Although this is closer to the value

listed in the data sheet than was the A/D, performance is still slightly lower than

expected. This could be due, in part, to the quantization error of the sinusoidal

generator. This error is discussed in more detail in section 5.2.3. The use of the

100 MHz reference clock, while showing a significantly worse SNR, has a SFDR

of roughly the same as the 400 MHz reference clock.

65

Figure 5.16: Setup for Measuring D/A Performance Given Different
Reference Oscillators

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 60 65 70 75 80 85

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

24 MHz

Sinusoidal Output:
Output: 65.333333 MHz
RBW: 100 Hz
VBW: 100 Hz

-88 dBm

FFT of Ouput Data
Using 100 MHz Clock
Using 400 MHz Clock

Figure 5.17: Spectral Plot of D/A with a 7
6
fs (65.33 MHz) Input.

66

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 60 65 70 75 80 85

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

24 MHz

Sinusoidal Output:
Output: 70.000000 MHz
RBW: 100 Hz
VBW: 100 Hz

-88 dBm

FFT of Ouput Data
Using 100 MHz Clock
Using 400 MHz Clock

Figure 5.18: FFT of D/A with a 5
4
fs (70.0 MHz) Input.

Figure 5.18 shows the spectral plot of the output with a generated output

sinusoid at 70 MHz again with a -10 dBm power level. This frequency should

show the best case scenario given that all harmonics fall either out of the band of

interest or on the center frequency. Using the 400 MHz reference clock, the spurs

show a pattern similar to the output of the 56 MHz sampling clock generated by

the DDS. The SFDR here can be seen to be 78 dB for in-band spurs. The 100

MHz reference clock, still maintains a worse SNR without a significant change in

the SFDR which stayed at about 65 dB.

Sinusoidal Injection Performance

To demonstrate the performance of the system including both the analog to

digital converter and the digital to analog converter, the setup in figure 5.19 was

used. Here, an input signal generated by a function generator was used to input a

signal at the desired nominal input value of -10 dBm. This signal was conditioned

67

Figure 5.19: Setup for Measuring System Performance Given Different
Reference Oscillators.

through the analog input stage, digitized by the A/D, passed directly to through

the FPGA to the D/A, and then analyzed on a spectrum analyzer. Again, both

the 100 MHz and the 400 MHz reference oscillators were used as a comparison.

Figure 5.20 shows the output of this setup with an input signal at 65.33 MHz

and -10 dBm. The results of this figure are fairly similar to those obtained by

the A/D and the D/A test. The 400 MHz and 100 MHz reference clocks had

spurious free dynamic ranges of roughly 65 dBc, while the signal to noise ratio of

the 100 MHz reference clock was worse than that of the 400 MHz clock.

Figure 5.21 shows the results of a 70 MHz, -10 dBm input signal. Again, this

setup shows the best case scenario with harmonics falling outside the band of

interest or at the center frequency. Here, the effects of the spurs in the sample

clock generated by the DDS become more apparent as with the D/A testing. The

in-band SFDR of the 400 MHz is approximately 77 dB–very close to the desired

value of 78 dB. The 100 MHz signal SFDR stayed at 65 dB. The SNR for the 100

MHz reference clock was significantly worse than the 400 MHz reference clock

with the continued persistence of the side lobes introduced by the reference clock

68

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 60 65 70 75 80 85

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

24 MHz

Sinusoidal Injection:
Input: 65.333333 MHz, -10 dBm
RBW: 100 Hz
VBW: 100 Hz

-88 dBm

Using 100 MHz Clock
Using 400 MHz Clock

Figure 5.20: Spectral Plot with a 7
6
fs (65.33 MHz) Input.

itself.

For strictly comparison purposes, the phase noise measurements are included

in figure 5.22. As mentioned previously, these measurements not only include

noise aside from phase noise, but also are limited by the instrumentation from

which they were produced.

The injection test on the initial design performed by Woolrich [22] used a 70

MHz input signal at -10 dBm. The initial design had the following configura-

tion: the 100 MHz reference clock was used; the internal PLL of the A/D was

used for clock multiplication; the internal PLL of the D/A was used for clock

multiplication; and the analog output stage used a mixer introducing another

stage of phase noise into the signal. The analog input stage stayed untouched.

Figure 5.23 shows a comparison of the initial design along with the final design

with and without the bandpass filters on the clocks.

The results, given the different resolution windows used in the measurements,

69

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 60 65 70 75 80 85

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

24 MHz

Sinusoidal Injection:
Input: 70.000000 MHz, -10 dBm
RBW: 100 Hz
VBW: 100 Hz

-88 dBm

Using 100 MHz Clock
Using 400 MHz Clock

Figure 5.21: Spectral Plot with a 5
4
fs (70.0 MHz) Input.

-170

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

10 100 1000 10k 100k 1M 10M

P
ha

se
 N

oi
se

 [d
B

c/
H

z]

Frequency Offset [Hz]

Sinusoidal Injection:

400 MHz Clock for Reference
70 MHz Input Signal
70 MHz using 100 MHz Clock
70 MHz using 400 MHz Clock

Figure 5.22: Phase Noise for Injection Test.

70

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 60 65 70 75 80 85

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

24 MHz

Sinusoidal Injection:
Input: 70.000000 MHz, -10 dBm
RBW: 3kHz (100 Hz for Final)
VBW: 1kHz (100 Hz for Final)

-88 dBm

Original Trial
Before Clock Filters
Final Design

Figure 5.23: Spectral Plot of Various Designs with 70 MHz Injection.

can only accurately show the spurious free dynamic ranges of each design. The

initial design shows a SFDR of roughly 45 dB, while the design without bandpass

filters on the sampling clocks shows a SFDR of roughly 68 dB. The final design

maintains its SFDR of 77 dB, a significant improvement over the other designs.

5.2 Digital Components

This section focuses on the design and implementation of the components

which reside in the logic of the FPGA. The first of these is the memory controller

which is used to handle the coarser digital delay functionality through the use

of an external DDR SDRAM DIMM. The next is the dynamic interpolation

component which is used to handle both the fine delay settings and fine, dynamic

delay changes used in the implementation of the Doppler Effect. The next is the

single side band modulation component also used in the implementation of the

71

Doppler Effect. After this follows the attenuation and additive white Gaussian

noise components. The last digital component in the DSP path is the output

filter and upsampler which correct for any analog component deviations from a

flat response in the band of interest and upconvert the signal to allow the D/A

to be used for the final up conversion respectively. There is a final component

that is used in multiple places along the DSP path to monitor the power levels.

5.2.1 The Memory Controller

The memory controller acts as a large FIFO as described in section 3.4.1. By

having the ability to set the spacing between the address at which the

incoming data is written to and the address at which the outgoing data is read

from, the delay can be dynamically changed. The delay component is placed first

in the DSP path since any other changes to the system parameters are expected

to be as near instantaneous as possible. The design presented in this section

allows for this spacing to be set to a granularity of one sample. Any finer delay

settings are handled with the interpolator described in more detail in the next

section.

The basic function of the memory controller is shown in a very simplified state

diagram in figure 5.24. At power up, the external DIMM must be initialized

according to the specifications in the data sheet. This is the task of the first

state. Internal to this state, the controller runs through a list of initialization

commands which it sends to the memory module.

Once the initialization is complete, the memory controller moves into an idle

state where it waits for a signal from the read or write stages. These two stages are

shown in figure 5.25 and figure 5.26. When a need to read or need to write signal

is triggered, the controller performs the appropriate task (writes have priority if

both are triggered within the same clock cycle). Both the read and the write

states take 32 clock cycles to complete before returning back to the idle state.

72

Figure 5.24: Memory Controller Simple State Diagram.

16 of these clock cycles are to initialize the appropriate location in the external

memory module for the desired transaction. Then, a 16 cycle read or write burst

is executed.

Calculating the throughput of the memory controller requires a basic under-

standing of the external memory module as well as some caveats of the controller

itself. The DIMM has a 64-bit data bus allowing for four 16-bit samples to be

accessed simultaneously. Due to the dual data rate nature of the memory, two

sets of four samples are accessed with each clock cycle. With a burst of 16 clock

cycles, 128 samples can be accessed per burst. A read transaction has a delay

of three additional clock cycles due to the read latency inherent in the SDRAM.

Since throughput requires both a read and a write as well as an extra clock cycle

for a transition between them, it can be said that 128 samples are read and writ-

ten in 68 clock cycles (32 for writing, 35 for reading, and one for transition). The

memory controller runs at the internal clock frequency of 100 MHz; this means

that the final throughput is 128Samples × 100MHz/68clocks ≈ 188MSPS. This

greatly exceeds the system requirement of 56MSPS.

There are quite a few different ways in which the throughput could be in-

73

Figure 5.25: Memory Controller Write Logic.

creased. For one, the 16 cycles used to initialize the appropriate location in the

external memory module are not always required. This represents what is needed

in the worst case assuming that the banks need to change and all addresses are

precharged since the last burst transaction. Always assuming the worst case

allows for a simpler implementation which translates to less logic used with the

trade off of a design with slightly less throughput. Also, the burst size can change

the throughput with similar trade-offs. The burst size, according to the DDR

SDRAM data sheet, allows for up to 128 clock cycles or 256 64-bit transactions.

This would mean less proportional time spent preparing for the transaction than

executing the transaction. Changing the burst size would not only increase the

needed internal memory caches (increase in logic in the FPGA), but would also

mean an increase in the minimum delay since a burst write is required before a

burst read if all data fed to the DSP path comes from the external memory. Such

a topology is beneficial for a simplified design given that additional logic would

be needed to bypass the external memory for shorter delays.

The logic that handles the writes to the memory controller is shown in a

simplified block diagram in figure 5.25. The core of this logic is comprised of

FIFOs that hold 16 samples. This size was chosen to easily fit the Xilinx primitive

for asynchronous two port FIFOs that allow for reading and writing from two

different locations at two different clock frequencies. This allows data to be

74

clocked in at 56 MHz while clocked out at 100 MHz. These primitives are what

Xilinx refers to as distributed RAM (DRAM). This is in contrast to the much

larger block RAM (BRAM) primitives in the Virtex and other Xilinx FPGA

families. Using the DRAMs allows the size of the end FIFOs to be user selectable

without wasting logic as opposed to using BRAMs which are a fixed size. They

also make meeting the internal timing requirements, such as setup and hold times,

easier to meet since the DRAMs can be placed in an available slice.

The DRAM primitive inside the Xilinx FPGAs takes in a four bit address

while storing a single bit in each location. This allows the data width of the final

FIFO to be size selectable by the number of DRAMs used. In this design, a total

of eight of these DRAMs were used for addressing the 16-bit wide input data.

This makes a total of 128 samples that can be stored: the amount needed for a

single burst write operation as described above.

Two of these 128 sample buffers are used in the design. This makes a total

of 256 samples that can be stored at one addressed as shown in figure 5.25 as

AddrIN[7 : 0]. Bit AddrIN[7] selects between the two 128 sample buffers. When

this bit changes value, this signals that the last buffer has been filled and is

ready to be written to the external ram. Thus, the ‘Need to Write’ flag is set.

Given that the theoretical throughput is over double the necessary throughput,

the second 128 sample should never fill without the first being written out to

external memory eliminating the possibility of buffer overrun.

As mentioned before, the DRAMs, being comprised of single bit buffers, allows

the data bus input and output width to be defined as needed. Here, the input

data width is comprised of eight 16-bit data samples. To accommodate the 64-bit

data bus of the external DDR memory, the output width is designated as two

64-bit data blocks: one to be clocked out on the rising edge and one to be clocked

out on the falling edge. To accomplish the same thing using BRAM, at least eight

BRAMs would be needed which would make the FIFO much larger than needed

even for the maximum bust length that the external memory can handle.

75

Figure 5.26: Memory Controller Read Logic.

The logic to handle reading from the external memory is shown in the sim-

plified block diagram in figure 5.26. This logic and design is almost identical to

the write logic except with reverse flow. As data is read from the two 128 sample

FIFOs and AddrOUT[7] changes, the memory controller is flagged by the ‘Need

to Read’ signal which then fills the 128 sample buffer that currently isn’t being

addressed with the next block of data. This means that there is always data

ready in the FIFO. This meets the one specification in section 3.4.1 that requires

that the next data sample be always available for the interpolator.

With the size of the FIFOs as they are, the minimum delay can be empirically

calculated. This will be the time it takes to receive enough data to have it written

to the external memory, have that portion of memory read back, and then the

portion of the internal FIFO be reached by the read logic. That comes to a total

of 256 samples or roughly 4.57µsec. This is significantly less than the 1 ms design

goal.

5.2.2 Interpolation Finite Impulse Response (FIR) Filter

The design guidelines of the interpolation filter are discussed at length in

section 3.4.2. A sinc interpolation scheme has been implemented here which

requires the real-time calculation of many points along a sinc curve. Using a

76

table look-up for these points along with a linear interpolation allows for a fairly

high degree of resolution that can be attained while maintaining a high level of

accuracy. As previously mentioned, the linear approximation, although requiring

more logic, reduces the size of the tables fairly significantly. This allows the use

of the block RAM (BRAM) of the Virtex series to be utilized as look-up tables.

Taking advantage of the even nature of the sinc function along with the dual-port

nature of the BRAM, the table size is cut in half. This approach is discussed in

detail in the following sections.

Coefficient Generation

Generating the coefficients for the finite impulse response filter used to inter-

polate between samples is designed around the sinc interpolator approach. The

equation for the continuous time signal reconstructed from the individual sam-

ples, shown in figure 3.6, can be rewritten in terms of a sample, n, and a deviation

from that sample, ∆n.

xc(t) =
∞∑

k=−∞

xs[k]sinc[(t− k

fs
)fs]

xc(n+ ∆n) =
∞∑

k=−∞

xs[k]sinc[(n+ ∆n− k

fs
)fs] (5.1)

The interpolator never needs to be outside of the range ±1
2

sample. This is due

to the fact that any whole integer interpolations can be implemented through

simple flip-flops. It is only the fractions of a sample that are of concern. Thus,

n in the above equation is always 0 making the coefficients of the interpolation

filter:

h(k) = sinc(fs∆n+ k) (5.2)

The coefficients in equation 5.2 can easily be stored in a lookup table for

each value of k. This means that the number of lookup tables will equal the

77

Figure 5.27: Interpolator FIR Coefficients from Sinc Function. The
even nature of the sinc function allows for the use of half of the LUTs
needed given that two values can be calculated from one LUT.

number of taps in the FIR. Using a lookup table for each coefficient also allows

the use of windowing since each table can have values pre-multiplied by the

windowing function. This simplifies the end logic. Figure 5.27 shows how each

table, designated by hn, would be arranged. The even nature of the sinc function

allows a single table for h±n with the index for the positive n coefficients being

based off ∆n and the negative n coefficients being based off −∆n. Using the

dual-ported Xilinx BRAM primitive, both values can be accessed simultaneously

reducing the number of lookup tables, or BRAMs, by almost half.

As stated in section 3.4.2, at least 70 million values (≈ 226) are needed for

each coefficient. The size of a single BRAM holds 1024 (210) different values.

Linear interpolation can be used to approximate enough values in between those

stored in the tables by using a second set of tables to store the slope at each point.

Figure 5.28 shows how the slope can be used to calculate both ±∆n. The error is

unique depending on which direction is being interpolated. There are techniques

to reduce this error by adjusting both the stored value and slope to minimize the

78

Figure 5.28: Interpolation FIR Coefficients Increasing Resolution using
Linear Interpolator. Linear interpolation allows for both positive and
negative values of ∆x using a signed multiplier.

maximum error [6]. However, these techniques don’t take into account this dual

value approach, although adapting them could be quite simple. The resulting

error, it turns out, is sufficiently small without any adjustments for the precision

needed in this implementation.

The implementation is quite simple using the BRAMs. Figure 5.29 shows

the design using very few primitives and minimal logic. The multipliers required

are implemented with the 18-bit signed hardware multipliers inside the Virtex-II.

An 18-bit signed number allows for 17-bits of precision in the positive direction.

Used in conjunction with the 10-bits in the address of the BRAMs, this comes to

210+17 = 227 positions between samples that can be interpolated which exceeds

the required 70 million positions. This simple design allows for a theoretical

delay granularity of 1
227×56MHz

≈ 1.33 × 10−16 seconds along with the ability

to dynamically change the coefficients of the filter with each clock cycle, thus

changing the delay.

79

Figure 5.29: Block Diagram of Interpolator Coefficients Calculation
using LUTs and Linear Interpolation.

Filter Design

With the coefficients calculated, the design of a finite impulse response (FIR)

filter is needed. The basic design is based of a simple FIR digital filter as shown

in figure 5.30. The number of taps, and subsequently the number of coefficients

needed, is decided be finding the minimum number of taps needed to meet the

accuracy required for a given frequency range. For simplicity, only a 3-tap filter

is shown in figure 5.30.

The unique aspect of the entire interpolator FIR filter design is its ability to

change dynamically. As mentioned, this is used to essentially speed up or slow

down the playback of the signal stored in the digital delay to best mimic the

Doppler Effect. In doing so, the interpolator progresses slightly faster or slower

through the data. Since the interpolator only has a range of ±1/2 a sample, it

will occasionally need to wrap around its range while simultaneously skipping

or holding the next sample. This is the function of the throttle logic shown in

figure 5.30. As can be seen, this logic can control the whole sample increments

80

Figure 5.30: Interpolation FIR Block Diagram. Modified from a basic
FIR design, this FIR has the ability to progress by 0, 1, or 2 samples
per clock determined by the throttle logic component.

or decrements that are required for this particular FIR. It is this logic, too,

that communicates with the attached memory controller to ensure continuity

throughout operation.

Once the correct samples are multiplied with the correct coefficients, the

result of each must be summed together. The design of this final adder takes

some consideration when implementing it in hardware. A simple approach would

be to simply create an adder for each tap essentially summing them serially.

This implementation would result in a very slow final adder. Without increasing

hardware, some of the additions could be done simultaneously. The most efficient

use of parallel adders would pair the terms and add each pair simultaneously, then

pair the results and add simultaneously, and continue until a single result was

found. Although this reduces the computation time significantly, there are more

efficient implementations.

Summing the terms of each tap in an FIR is similar to the summing of the

partial product terms in a multiplier. There are many techniques that use a form

of compressor, or commonly called a counter, to quickly and efficiently reduce

81

Figure 5.31: Basic Implementation of a 4:2 Counter using 3:2 Counters.
The propagation of such a setup will be that of two 3:2 counters at most
since the carry logic only propagates as far as the adjacent bit.

the total terms down to two which can be handled with a simple adder [7]. The

most basic counter is a 3:2 counter which, logically, is identical to a single-bit full

adder cell. This essentially adds the three input bits of equal order of magnitude

and produces a two bit result.

Another common counter is the 4:2 shown in figure 5.31. This is designed

with two 3:2 counters. The design has 5-bits being added together (the four

inputs along with a single carry in bit) to produce a 3-bit result, one of which

is a carry out. The carry bits are tied to the adjacent counters. The use of the

4:2 counter allows the number of resulting terms to be half that of the input

terms while keeping the delay constant regardless of the width of the terms being

added. This means that 16 terms can be reduced to two terms in three stages as

shown in figure 5.32.

Given the use of counters and the variety of adder topologies, there are many

different ways to implement the final adder needed for the FIR. A summary of

82

Figure 5.32: Design for a Parallel 16 Value Adder Using 4:2 Counters.
The propagation delay will be the same through each stage, thus the
total delay will be determined by the number of stages: log2M − 1
where M = 16 in this instance.

83

these are shown in table 5.1. The size and speed listed are in reference to the

number of FPGA primitives needed to implement the different designs. The

primitive in the Xilinx FGPAs is a section of the internal slices used for the

combinational logic called a lookup table (LUT). Both a single bit full-adder cell

and most parallel prefix operators can be implemented in a single LUT. This

defines the total number of LUTs in the design while the speed is estimated by

the largest number of LUTs that any single input must go through before reaching

an output.

There are a few assumptions that should be clarified when looking at the

listed delay times in table 5.1. First, the delay time does not take into account

the routing or fanout that will be required for each design. Although these

have significant additions to the total delay, in most cases, they should be fairly

proportional to the number of LUTs themselves. The next assumption is that

the LUT is used exclusively in the full-adder cell. This is actually not the case

for the Xilinx slices. Much of the carry logic can be implemented in a faster carry

chain logic that bypasses the LUT. This greatly reduces the time for the ripple

carry topologies and should be considered when reviewing the results listed.

Table 5.1 shows that the fastest approach would be to use the 4:2 counter re-

duction with a Kogge-Stone adder for the final two-term addition. The best use

of space is with the 4:2 counter reduction with a simple ripple carry adder. There

are two criteria used to determine the final adder design: to take as little space as

possible and to meet the timing requirements. In other words, it must be able to

operate at 56 MHz while minimizing the FPGA resources. Through experimen-

tation, it was determined that the 4:2 counter reduction with the ripple carry

adder could be implemented while not violating any of the timing constraints

with the help of the fast carry-chain logic.

84

A
d
d
er

N
u
m

b
er

of
L

U
T

s
D

el
ay

in
L

U
T

s
C

on
fi
gu

ra
ti

on
N

=
32

M
=

16
N

=
32

M
=

16
R

ip
p
le

C
ar

ry
(M
−

1)
N

48
0

(M
−

1)
N

48
0

(A
d
d
er

s
in

S
er

ie
s)

R
ip

p
le

C
ar

ry
(M
−

1)
N

48
0

N
lo

g
2
M

16
0

(P
ar

al
le

l
A

d
d
er

s)

P
ar

al
le

l
P

re
fi
x

(M
−

1)
(N

lo
g
2
N

+
1)

23
72

(l
og

2
N

+
2)

lo
g
2
M

26
K

og
ge

-S
to

n
e

in
P

ar
al

le
l

4:
2

C
ou

n
te

r
w

it
h

N
(l

og
2
M
−

1)
+
N

16
0

2(
lo

g
2
M

+
1)

+
N

40
R

ip
p
le

C
ar

ry

4:
2

C
ou

n
te

r
w

it
h

N
(l

og
2
M
−

1)
+

(N
lo

g
2
N

+
1)

31
6

2(
lo

g
2
M

+
1)

+
lo

g
2
N

+
2

14
K

og
ge

-S
to

n
e

T
a
b

le
5
.1

:
M

u
lt

ip
le

A
d
d
e
r

C
o
n

fi
g
u
ra

ti
o
n

C
o
m

p
a
ri

so
n
.

T
h
e

n
u
m

e
ri

c
v
a
lu

e
s

g
iv

e
n

a
re

w
it

h
a
n

e
x
a
m

p
le

o
f

a
d

d
in

g
1
6

3
2
-b

it
n
u
m

b
e
rs

to
g
e
th

e
r.

85

Performance

The spectral response of a perfect interpolator should be flat–a simple all-pass

filter with a linear phase response. As with all digital filters, an ideal response

can never be achieved with a finite impulse response. With an interpolor, the

limitations of an FIR implementation can best be seen in the worst case response

of interpolating half way between two sample points (∆n = 0.5). This can be seen

in the spectral response shown in figure 5.33. Responses are shown for ∆n =0.1,

0.25, and 0.50. As ∆n approaches 0.5, the worst-case response is shown.

The final implementation was with a 31-tap FIR. The coefficients of the filter

are multiplied by Kaiser window [13] with α = 7.0. Windowing helped achieve a

flatter response in band while sacrificing more of the out of band performance in

the higher frequencies.

Aside from having a flat response, the ideal interpolator will also have a

perfectly linear phase response where the slope is proportional to the effective

fractional delay. The phase error can thus be another means of evaluating the

performance of the final implementation. This, too, is shown in figure 5.33. As

with the magnitude response, the worst-case can be found when the fractional

delay, ∆n, is higher.

As can be expected with an interpolator, the performance at the lower fre-

quencies is near ideal and progressively worsens as the frequency increases. This

phenomenon can be explained with a simple intuitive understanding as to what

happens at the two frequency extremes. At the lowest frequency, the individ-

ual sample values are of all the same value making any interpolation between

them easily understood to be that same value. At the highest digital frequency,

F = 0.5, every sample is the negative value of that preceding and following. Thus,

any interpolation halfway between will always have a magnitude of zero. This

pattern of performance degradation with frequency is seen in both the magnitude

and phase performance.

86

-3

-2
.5-2

-1
.5-1

-0
.5 0

 0
.5 1

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5

Gain [dB]

F
re

qu
en

cy
 [M

H
z]

In
te

rp
o

la
ti

o
n

 F
IR

 R
e

s
p

o
n

s
e

:

In
te

rp
ol

at
io

n
0.

10
In

te
rp

ol
at

io
n

0.
25

In
te

rp
ol

at
io

n
0.

50

-1
30

-1
20

-1
10

-1
00-9

0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 0 1
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5

Phase Error [dB radians]

F
re

qu
en

cy
 [M

H
z]

P
h

a
s

e
 E

rr
o

r:

In
te

rp
ol

at
io

n
0.

10
In

te
rp

ol
at

io
n

0.
25

In
te

rp
ol

at
io

n
0.

50

-1
30

-1
20

-1
10

-1
00-9

0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 0 1
0

0π
1π

2π
3π

4π
5π

6π
7π

8π
9π

10
π

11
π

12
π

13
π

14
π

15
π

Error [dBFS]

S
in

c
P

ha
se

1
6

-B
it

 S
in

c
 E

rr
o

r:

E
rr

or
 a

ga
in

st
 1

6-
bi

t p
re

ci
si

on
 S

in
c

E
rr

or
 a

ga
in

st
 5

3-
bi

t p
re

ci
si

on
 S

in
c

-1
30

-1
20

-1
10

-1
00-9

0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 0 1
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5

Power Level [dBm]

F
re

qu
en

cy
 [M

H
z]

In
te

rp
o

la
ti

o
n

 o
f

0
.5

 S
a

m
p

le
s

 (
F

F
T

):
In

pu
t:

76
.0

 M
H

z,
 -

12
 d

B
m

S
am

pl
es

: 8
19

2
W

in
do

w
: B

al
ck

m
an

S
ig

na
l I

np
ut

S
in

ga
l O

ut
pu

t

F
ig

u
re

5
.3

3
:

P
e
rf

o
rm

a
n
ce

R
e
su

lt
s

o
f

S
in

c
F
u
n
ct

io
n

G
e
n
e
ra

to
r.

87

The final performance of the overall filter is driven by the accuracy of the

filter’s coefficients. This is also shown in figure 5.33. An exhaustive search was

performed on all possible calculations of the coefficients including the interpolated

values. There are two main ways the error can be calculated: by comparing the

output value with the actual desired value (in this case estimated by doing a

double floating point calculation which has 53-bits of precision), or by comparing

the output to the desired value rounded to the precision of the output value.

Both are shown in the figure. One would expect the error of the first to be within

±0.5 LSB of the desired value while the second to have an error of zero. Given

the imperfect nature of linear interpolation, error is shown to have ±1.5 LSB.

When compared to the equivalent of a value of 1.0, the full-scale value, these

errors only come to a maximum of roughly -90dB.

The overall performance of the interpolation filter can be shown using si-

nusoidal injection testing where the magnitude response can be seen as well as

exposing any introduced noise. Using an analog input signal, an FFT was used

to show the frequency response in figure 5.33. Given the other performance mea-

sures, it can be expected that there would be very little noise introduced even at

the worst-case interpolation of ∆n = 0.5. This is what is shown in the results of

the FFT as well: negligible introduced noise due to the interpolation. It can be

easily seen that at the higher frequencies the response tapers off as it does in the

predicted response.

Aside from using the interpolator to add a fraction of a sample delay, the

design allows for a dynamic change in the delay essentially enabling a scaling of

the data rate. Given a granularity of 227 between samples that the interpolator

allows, a scaling factor of down to 1 ± 2−27. As mentioned in section 3.4.3, this

scaling factor is applied in the frequency domain as if the signal were down-

converted to a center frequency of 14 MHz.

The performance of the scaling, in theory, should be better than that of the in-

terpolated signal held at a static value of ∆n = 0.5, the worst case response for the

88

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 60 70 80

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency Offset[Hz]

-88 dBm

Spectrum Analyzer Settings:

Span: 30 MHz
RBW: 100 Hz
VBW: 100 Hz

Input: 70.0 MHz, -10 dBm
Output: Scaling = 1-128/227

Figure 5.34: Spectrum Analyzer Output for Dynamic Interpolation.

interpolator. During dynamic, incremental changes to the interpolation location

in order to achieve time and frequency scaling, the response moves predictably

through the range of response performances. This slight periodic variation in per-

formance could possibly add unwanted noise by itself. By injecting a sinusoidal

signal and using a spectrum analyzer to record the output (the previous FFT’s

used do not have the resolution to confirm the accurate performance of dynamic

interpolation), added noise can be measured along with the accuracy of the func-

tionality. Figure 5.34 shows that no discernible noise is introduced due to the

dynamic interpolation. Figure 5.35 shows the accuracy of the functionality. With

an input of 70 MHz, the change in frequency should be ∆f = f −α(f − 56MHz)

where α is the scaling factor. The two instances shown in figure 5.35 should

produce ∆f ≈ −1.04 Hz and ∆f ≈ −13.35 Hz. These are the values measured

on the spectrum analyzer’s output.

89

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency Offset[Hz]

Spectrum Analyzer Settings:

Span: 100 Hz
RBW: 1.0 Hz
VBW: 1.0 Hz

Input: 70.0 MHz, -10 dBm
Output: Scaling = 1-10/227

Output: Scaling = 1-128/227

Figure 5.35: Detailed Spectrum Analyzer Output for Dynamic Inter-
polation.

90

5.2.3 Digital Single Side Band Modulation

Single side band modulation is necessary to complete the emulation of the

Doppler effect as discussed in section 3.4.3. This static shift was shown to have

to be able to do shifts down to 1.0 Hz in order to meet design requirements. With

every modulation method presented, the resolution comes down to the granularity

at which the sine and cosine function generators’ frequency can be set.

Methods for Digital SSB Modulation

Presented in section 3.4.3 were three approaches to producing digital SSB

modulation, the Hartley method, the balanced or matched Hartley method, and

the Weaver method. It was determined that the balanced Hartley method has

benefits over the standard Hartley Method. While the Weaver method should

perform better than the Hartley method with an FIR implementation, its added

complexity makes it less attractive. As a proof of concept, the Hartley method

was originally choosen, while the balanced Harley method was implemented to

verifiy any improved performance.

Both the standard and balanced Hartley methods can be implemented using

virtually the same logic. Figure 5.36 shows the simplicity of the two implemen-

tations with simple substitutions regarding the two approaches. In order to show

the validity of the proposed design, it would be best to first understand the digital

Hilert transform.

An ideal Hilbert transform has the following impulse response and thus filter

coefficients [6]:

h(n) =
1− cosπn

πn
(5.3)

This will produce, as defined, a −sgn(f)90◦ phase shift. In order to produce an

91

Figure 5.36: Block Diagram of Standard and Matched Hartley Meth-
ods using a Hilbert FIR Transformer. This block diagram shows how
the same Hilbet FIR transformer can be used for both the standard
and matched versions of the Hartley method for SSB. This example
shows a 7-tap FIR for simplicity. The odd nature of the filter coeffi-
cients and the fact that all even coefficients are zero help to simplify
the logic.

arbitrary phase shift, the following coefficients can be used [6]:

h(n) =

cos θ, n = 0

− sin θ
1− cosπn

πn
, |n| > 0

(5.4)

Here, θ is the desired phase shift in the form of sgn(f)Θ

The characteristics of these coefficients allow for many design optimizations.

The most prominent is their odd nature. This allows for the use of simple sub-

tracters, in the form of modified adders, to reduce the number of multipliers

used as shown in figure 5.36. Aside from the center coefficient, h(0), in the arbi-

trary Hilbert transform, every even coefficient has the value of zero. This allows

for the implementation of a 109-tap FIR implementation using only 27 different

coefficient magnitudes, greatly reducing the logic required.

Implementing both the standard and balanced or matched Hartley method

for SSB can be selectable given the nature of the standard Hilbert transform

92

and the partial Hilbert transform evaluated at ±45◦. The output of the matched

delay and the output of the standard Hilbert transform utilized in the standard

Hartley method for SSB shown in figure 3.13 can be scaled and summed according

to equation 5.4 to produce the needed paths for the balanced method shown in

figure 3.15.

The performance of the implemented Hilbert transform, with 109-taps and

using a Kaiser window [13] with α = 8.0, is excellent in the frequency range

of interest. This can be seen in figure 5.37. A Hilbert transform should be as

flat as possible in the band of interest. This implementation is shown to have

ripple contained within 0.0015 dB. The phase result of the implementation is

shown to be almost without error within the accuracy of a double floating point

number. This can be seen in the Phase Error measurements which show errors

below -300 dB radians for the entire band of interest.

93

-1
30

-1
20

-1
10

-1
00-9

0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 0 1
0

-2
8

-2
1

-1
4

-7
 0

 7
 1

4
 2

1
 2

8

Gain [dB]

F
re

qu
en

cy
 [M

H
z]

H
il

b
e

rt
 T

ra
n

s
fo

rm
 R

e
s

p
o

n
s

e
:

D
F

T
 o

f 1
09

-t
ap

 D
ig

ita
l H

ilb
er

t T
ra

ns
fo

rm

F
re

qu
en

cy
 R

es
po

ns
e

-0
.0

1

-0
.0

08

-0
.0

06

-0
.0

04

-0
.0

02 0

 0
.0

02

 0
.0

04

 0
.0

06

 0
.0

08

 0
.0

1

-2
8

-2
1

-1
4

-7
 0

 7
 1

4
 2

1
 2

8

Gain [dB]

F
re

qu
en

cy
 [M

H
z]

H
il

b
e

rt
 T

ra
n

s
fo

rm
 R

e
s

p
o

n
s

e
:

D
F

T
 o

f 1
09

-t
ap

 D
ig

ita
l H

ilb
er

t T
ra

ns
fo

rm

F
re

qu
en

cy
 R

es
po

ns
e

-0
.7

5π

-0
.6

3π

-0
.5

0π

-0
.3

8π

-0
.2

5π

-0
.1

3π

0.
00

π

0.
13

π

0.
25

π

0.
38

π

0.
50

π

0.
63

π

0.
75

π -2
8

-2
1

-1
4

-7
 0

 7
 1

4
 2

1
 2

8

Phase [rad]

F
re

qu
en

cy
 [M

H
z]

H
il

b
e

rt
 T

ra
n

s
fo

rm
 P

h
a

s
e

 R
e

s
p

o
n

s
e

:

D
F

T
 o

f 1
09

-t
ap

 D
ig

ita
l H

ilb
er

t T
ra

ns
fo

rm

P
ha

se
 R

es
po

ns
e

-4
00

-3
50

-3
00

-2
50

-2
00

-1
50

-1
00

-2
8

-2
1

-1
4

-7
 0

 7
 1

4
 2

1
 2

8

Phase Error [dB rad]

F
re

qu
en

cy
 [M

H
z]

H
il

b
e

rt
 T

ra
n

s
fo

rm
 P

h
a

s
e

 E
rr

o
r:

D
F

T
 o

f 1
09

-t
ap

 D
ig

ita
l H

ilb
er

t T
ra

ns
fo

rm

P
ha

se
 E

rr
or

F
ig

u
re

5
.3

7
:

P
e
rf

o
rm

a
n
ce

R
e
su

lt
s

o
f

H
il

b
e
rt

T
ra

n
sf

o
rm

F
IR

.

94

Sine and Cosine Generation

As mentioned previously, the sine and cosine function generator needs to have

the ability to set the frequency to within one Hertz. This creates a particular

challenge when designing a system that can operate at 56 MHz. As with the

sinc generator used in the interpolator, the sine and cosine functions can be

implemented with a lookup table; however, this approach by itself would require

56 million entries to achieve the one Hertz granularity.

A decent approximation can be obtained using some sort of lookup table

coupled with a form of interpolation. Simple interpolation could be done with

the knowledge that sin(α+β) = sinα cos β+ cos β sinα. If β is a relatively small

value, cos β can be approximated by 1 and sin β can be approximated by β. To

determine what β is, the number of final values in the sine generator needs to be

known. The sine and cosine functions can be approximated in terms of α and β

as:

sin(α + β) ≈ sinα + β cosα (5.5)

cos(α + β) ≈ cosα− β sinα (5.6)

For simplicity, much of the design is based on the available hardware within

the Xilinx FPGA. 210 entries can be stored in the dual ported BRAM. With a

hardware multiplier for interpolation, a positive value of up to 217 can be used.

And, if the quarter symmetry of the sine function is taken advantage of, that is

to say only a quarter of the sine wave needs to be calculated in order to produce

a full sine wave, an additional 22 values can be used. This comes to a total of 229

distinct points that can be calculated along the full sine period thus producing:

sin 2πn2−29 or sin 2−28πn where n is between 0 and 229 − 1. With a sample rate

of 56 MHz, this comes to a resolution of 56 × 106/229 ≈ 0.1043 Hz, well within

the requirements.

95

Figure 5.38: Block Diagram of Sine and Cosine Generator.

Looking at equations 5.5 and 5.6, both the sine and cosine of α are required

to calculate either of the two functions. Thus, if both are obtained, it is relatively

easy to simultaneously calculate both functions. In this instance, sinα and cosα

represent the rough estimate stored in the BRAM. Given the dual-ported nature

of the BRAM, both can be obtained simultaneously. Since only the first quadrant

of the sine function is stored, the corresponding cosine value is simply equivalent

to addressing from the end of the lookup table stored in the BRAM and moving

towards the front. This is shown in figure 5.38. The value for β as described

above is simply 2−28πn where n is a value between 0 and 217− 1 representing the

distance of interpolation between two points in the lookup table. Both β sinα

and β cosα are implemented in the block diagram in figure 5.38 using a hardware

multiplier along with a bit shift and hardwired π multiplier.

The hardwired π multiplier is accomplished using Booth encoding[8]. Booth

encoding makes use of both adders and subtracters during the summation of the

final product terms in a multiplier thus reducing the overall logic necessary. Used

along with 4:2 and 3:2 counters, very low latency and space efficient multipliers

can be designed. When multiplying by a constant, the encoding can be done

before hand with a simple VHDL routine or by hand. Much of the FIR constants

were implemented this way throughout the design to free up the built in hardware

multipliers in the FPGA for cases when both the multiplier and multiplicand are

96

Figure 5.39: Implementation of a π Multiplier using 3:2 and 4:2 Coun-
ters and Booth Encoding.

variable. Figure 5.39 shows how the π multiplier was implemented in hardware.

Subtractions were handled by simply inverting the bits and adding a ‘1’. With

this implementation, the maximum delay is 3 LUTs before the final adder at the

bottom making for a very fast multiplier.

Performance

The final performance of the two digital single side band modulation tech-

niques implemented in the design are both influenced by the performance of the

Hilbert transform and the performance of the sine and cosine components. The

Hilbert transform performance is summed up in figure 5.37.

The sine and cosine generator is evaluated much in the same way as the sinc

generator: by comparing the output values with the expected values. Figure 5.40

shows the maximum error along the entire period of the sine and cosine functions

after an exhaustive search was done through every interpolated point. The error

is determined against the double floating point precision (53-bit) calculated value.

It is displayed in dBFS which is the ratio of the the error to the full-scale value,

the equivalent of 1.0 from the sine and cosine generator. As can be seen in the

97

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

0.00π 0.20π 0.40π 0.60π 0.80π 1.00π 1.20π 1.40π 1.60π 1.80π 2.00π

E
rr

or
 [d

B
F

S
]

x

17-Bit Sin/Cos Error:

Error Against 53-Bit Sin(x)
Error Against 53-Bit Cos(x)

Figure 5.40: Sine and Cosine Error Analysis. The result of the sin/cos
generator is an 18-bit signed number (17-bits of absolute value pre-
cision). An exhaustive search algorithm is used that searches for the
worst error of the final output compared to a double precision float
value (53-bits of absolute value precision).

figure, the error never exceeds -100 dBFS.

To determine what improvement the balanced Hartley method had over the

standard Hartley method, both were used with the same sinusoidal input and

desired frequency shift. The results are shown in figure 5.41. Here two input

frequencies were chosen: one near the center and one near the edge of the band

of interest. The incredibly flat response of the 109-tap FIR Hilbert transform

resulted in next to no noticeable improvement using the balanced method. Both

had near identical performance results with practically no measurable noise in-

troduced due to the use of the SSB modulator.

The final output was measured again using a spectrum analyzer on the output

as opposed to the FFT as was used in figure 5.41. Figure 5.42 shows the result

98

-1
30

-1
20

-1
10

-1
00-9

0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 0 1
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5

Power Level [dBm]

F
re

qu
en

cy
 [M

H
z]

H
a

rt
le

y
 S

S
B

 M
o

d
u

la
ti

o
n

:

F
F

T
: 8

19
2

S
am

pl
es

W
in

do
w

: B
la

ck
m

an

In
pu

t:
68

 M
H

z,
 -

12
dB

m
S

hi
ft

=
 2

00
 0

00
0 1

6
=

 3
.5

 M
H

z

-1
30

-1
20

-1
10

-1
00-9

0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 0 1
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5

Power Level [dBm]

F
re

qu
en

cy
 [M

H
z]

H
a

rt
le

y
 S

S
B

 M
o

d
u

la
ti

o
n

:

F
F

T
: 8

19
2

S
am

pl
es

W
in

do
w

: B
la

ck
m

an

In
pu

t:
60

.4
 M

H
z,

 -
12

dB
m

S
hi

ft
=

 2
00

 0
00

0 1
6

=
 3

.5
 M

H
z

-1
30

-1
20

-1
10

-1
00-9

0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 0 1
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5

Power Level [dBm]

F
re

qu
en

cy
 [M

H
z]

B
a

la
n

c
e

d
 H

a
rt

le
y

 S
S

B
 M

o
d

u
la

ti
o

n
:

F
F

T
: 8

19
2

S
am

pl
es

W
in

do
w

: B
la

ck
m

an

In
pu

t:
68

 M
H

z,
 -

12
dB

m
S

hi
ft

=
 2

00
 0

00
0 1

6
=

 3
.5

 M
H

z

-1
30

-1
20

-1
10

-1
00-9

0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 0 1
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5

Power Level [dBm]

F
re

qu
en

cy
 [M

H
z]

B
a

la
n

c
e

d
 H

a
rt

le
y

 S
S

B
 M

o
d

u
la

ti
o

n
:

F
F

T
: 8

19
2

S
am

pl
es

W
in

do
w

: B
la

ck
m

an

In
pu

t:
60

.4
 M

H
z,

 -
12

dB
m

S
hi

ft
=

 2
00

 0
00

0 1
6

=
 3

.5
 M

H
z

F
ig

u
re

5
.4

1
:

P
e
rf

o
rm

a
n
ce

R
e
su

lt
s

o
f

S
in

c
F
u
n
ct

io
n

G
e
n
e
ra

to
r.

99

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 60 65 70 75 80 85

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency Offset[Hz]

-88 dBm

Spectrum Analyzer Settings:

Span: 30 MHz
RBW: 100 Hz
VBW: 100 Hz
∆f = Shift/229 x 56 MHz

Input: 70.0 MHz, -10 dBm
Shift = 200 000016 = 3.5 MHz
Shift = 100 000016 = 1.75 MHz
Shift = 10016 = 26.7 Hz

Figure 5.42: Spectral Plot of SSB Modulation.

of this test. Here, the noise floor is slightly raised with the increase in ∆f . It

should be noted however, that no noticeable increase in noise can be seen for

small shifts below 1.0 MHz which is were the system will be operating for all

foreseeable scenarios.

As to the precision in which the system can shift the frequencies, the input

was compared to the output on an oscilloscope with a shift of 0.104 Hz. When

triggered on the rising slope of the input signal, the scope showed a slowly moving

output signal that would line up with the input signal once every 9.6 seconds

confirming the small shift. To show a small shift statically, a spectrum analyzer

was used as shown in figure 5.43. Here, a shift of 26.7 Hz can be seen. It should

be noted that there is definite spurious noise introduced here which is not seen

in figure 5.42. This most likely means that this noise lies close to the input

frequency. Given the spurs relatively low power level and relatively small band

in which they are introduced, they are most likely not significantly detrimental

100

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

-50 -40 -30 -20 -10 0 10 20 30 40 50

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency Offset[Hz]

Spectrum Analyzer Settings:

Span: 100 MHz
RBW: 1.0 Hz
VBW: 1.0 Hz
∆f = Shift/229 x 56 MHz

Input: 70.0 MHz, -10 dBm
Shift = 10016 = 26.7 Hz

Figure 5.43: Detailed Spectral Plot of SSB Modulation.

to the overall performance of the SSB modulator.

5.2.4 White Gaussian Noise Generator

The Additive White Gaussian Noise (AWGN) component was implemented

using a drop-in module from Xilinx. The module’s probability density function

(PDF) is rated as 0.2 percent Gaussian for |x| < 4.8σ with a flat response. The

algorithm used for generating the noise is based on the Box-Muller algorithm and

the central limit theorem [9] [1]. The periodicity of the generated noise is reported

to be 2190 samples. At a sample rate of 56 MHz, this comes to 2.8×1049 seconds.

Given the current age of the universe at approximately 4.3×1017 seconds, one

can safely assume this will never repeat without resetting the system. Based on

the design discussed in [9], a periodicity of only 260 is obtained. Still, this comes

to approximately 653 years before the sequence repeats.

101

Desired Best Fit Values
σ A σ A ∆x

∑
Error2

1024.0 0.000390 1020.93 0.000391 -2.229 0.003885
512.0 0.000779 510.00 0.000782 -5.806 0.007773
256.0 0.001558 255.63 0.001561 -7.055 0.015530
128.0 0.003117 127.82 0.003122 -7.559 0.031054
64.0 0.006233 64.12 0.006222 -7.743 0.061906

Table 5.2: Best Fit Gaussian Functions for AWGN Data.

To verify the performance of the AWGN generator, the PDF and the FFT of

various settings were recorded and analyzed. The measured PDFs are shown in

figure 5.44. Each function was fit to a Gaussian curve as shown figure 5.45. A

PDF with a Gaussian distribution should fit the expression:

PDF(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(5.7)

For the purposes of this discussion, 1/
√

2πσ2 is substituted with A.

The AWGN generator’s performance is evaluated by how close the desired

standard deviation, σ, fits the measured value. Also, how well the PDF fits a

Gaussian distribution is shown in the total error squared of the measured function

compared to the fitted curve. The results are shown in table 5.2. There is less than

a 0.35 percent error in the desired and standard deviation and very small total

error. There is some anomalous shift in the curve as the standard deviation is

lowered. This by itself is no cause for alarm since a shift will result in essentially

a small DC offset added to the signal which will be eliminated in the analog

output.

Aside from being Gaussian, the output needs to be white as well. This can

be evaluated by the flatness of the frequency response. For this measurement,

the FFT was taken directly from the output of the AWGN generator. Averaging

was performed (100 x) to reduce the variance in the spectral plot. The results,

shown in figure 5.46, depict very flat responses for the various noise “intensities”

102

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

-4096 -3072 -2048 -1024 0 1024 2048 3072 4096

P
D

F
(X

)

X

Measured Values:

σ = 1024.0
σ = 512.0
σ = 256.0
σ = 128.0
σ = 64.0

Figure 5.44: Additive White Gaussian Noise Probability Distribution
Function Measurements.

 0

 5e-005

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

-4096 -3072 -2048 -1024 0 1024 2048 3072 4096

P
D

F
(X

)

X

Desired Values:

A = 0.000390
σ = 1024.0
∆x = 0.0

Best Fit Values:

A = 0.000391
σ = 1020.93
∆x = -2.229
ΣError2 = 0.0000002057

Measured
Best Fit

Figure 5.45: Fitted AWGN Probability Distribution Function.

103

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 60 65 70 75 80 85

P
ow

er
 L

ev
el

 [d
B

m
]

Frequency [MHz]

AWGN Power Level:

FFT: 8096 Samples
Average: 100x

σ = 1024.0
σ = 512.0
σ = 256.0
σ = 128.0
σ = 64.0

Figure 5.46: Additive White Gaussian Noise Spectral Plot.

measured. The maximum ripple being roughly ±2 dBm which can be attributed

to natural variance given the sample size despite the averaging.

5.2.5 Digital Output Filter and Upsampler

As discussed in section 3.4.6, the frequency response of the channel emulator

needs to be as flat as possible. The desired specifications for assuring flatness

are ±1.0 dB maximum ripple across the band of interest. Much of the deviation

from the flat response is due to the imperfections of the analog components. As

discussed, these imperfections can be compensated for by measuring the natural

frequency response of the system and designing a FIR filter with an inverted

response.

It is this approach that was used to design the output filter. Figure 5.47 shows

the natural response for the band of interest measured with a spectrum analyzer.

104

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 55 60 65 70 75 80 85

G
ai

n
[d

B
]

Frequency [MHz]

Output FIR Filter Response:

Filter Response
Natrual Response
Final Response

Figure 5.47: Theoretical Frequency Response of Output Filter.

The inverse of this response was processed through an inverse discrete Fourier

transform (IDFT) to determine the coefficients for the FIR filter. Initially, this

leads to an FIR filter with the same number of coefficients as the sample size of

the measured response. Clipping the number of coefficients to a practical size (47-

taps) effectively smooths the response of the filter allowing the higher frequency

variance of the response to pass. This variance is below the specification of ±1.0

dB. Figure 5.47 shows the response for the filter and the predicted output as well

as the natural response of the channel emulator.

The implementation of the filter proved to be fairly straight forward in design

with a final response that is fairly close to the theoretical prediction. The design,

as mentioned previously, is based of a 47-tap filter. The coefficients were pur-

posefully designed to be symmetrical to reduce the number of multipliers needed

by a half as well as produce a near linear phase response. The multipliers were

created using the constant coefficient multiplier design with Booth encoding as

105

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 55 60 65 70 75 80 85

G
ai

n
[d

B
]

Frequency [MHz]

Measured Output Response:

Natural Response
Final Response

Figure 5.48: Measured Frequency Response of Output Filter.

was used in the π multiplier in section 5.2.3. The final response of the system is

shown in figure 5.48. Here, the magnitude response in the band of interest holds

to the desired specification of ±1.0 dB. The out of band response is attenuated

due to the bandpass filters at both the analog front and back ends.

The final upsampling phase in the design was implemented using dual data

rate flip-flops at the output to double the sampling frequency. As mentioned,

zeros are inserted in between each sample then the entire stream is passed through

a high pass filter. The implementation of this can be seen in figure 5.49. Due to

the fact that every other sample in both the data stream and the filter coefficients

is zero, the logic is greatly reduced allowing for a much larger filter. The final

implementation used a 119-tap filter which had the frequency response shown in

figure 5.50.

106

Figure 5.49: Block Diagram of Upsampler with Highpass Filter. The
119-Tap FIR HPF can be implemented with 31 multiplications tak-
ing advantage of the even symmetry and the fact that every other
coefficient has a value of zero.

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 28 35 42 49 56 63 70 77 84

G
ai

n
[d

B
]

Frequency [MHz]

119-Tap FIR Filter:

Highpass Response

Figure 5.50: Frequency Response Highpass Filter.

107

Figure 5.51: Block Diagram of the Power Measurement Component.
Using simple 1st order filters allows for a simple implementation re-
quiring minimal logic.

5.2.6 Power Measurement

In order to accuratly produce the affects of the automatic gain control (AGC)

as discussed in section 3.4.5, both the power input and the power output of the

channel emulator need to be known. Per the design requirements, the total power

output should be held at a nominal -12 dBm. Since the signal to noise ratio (SNR)

is a user defined variable, the introduced power of the additive white Gaussian

noise (AWGN) generator is variable as well. Knowing the input power, or the

signal power, and the output power allows for on-the-fly calculations of the input

signal attenuation and the power level of the AWGN generator in order to meet

the desired nominal output power and the desired SNR.

The power measurements need to be averaged over a certain time period.

Instantaneous power cannot be held constant for any signal other than one of 0

Hz. The response time of the power measurements can be relatively slow given

that most input signal’s power will be fairly constant (≈-12 dBm) and SNR

settings change very slowly under normal operating conditions for most space

communications. The phase response of the power measurements can also be

ignored for the most part because of the slower required response time.

108

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0 250 500 750 1000 1250 1500 1750 2000 2250 2500

G
ai

n
[d

B
]

Frequency [Hz]

1-Pole IIR Filters:

Lowpass
Highpass

Figure 5.52: Power Measurement Component 1-Pole IIR Filter Re-
sponses.

Given these looser requirements and the desire to minimize internal FPGA

component utilization, simple first-order IIR filters can be used. The block dia-

gram for the design used is shown in figure 5.51. This diagram shows two major

parts: a highpass filter and a lowpass filter. The highpass filter is necessary

to eliminate any DC components that might be introduced through aliasing or

otherwise. The lowpass filter is used as the “average” function. High frequency

changes are attenuated from the output power.

There are two major metrics that can be used to characterize the performance

of the power measurement: the frequency response and the response time, which

are directly related. The frequency response of the highpass filter needs to be as

flat as possible in the band of interest, while the lowpass filter needs to generally

attenuate the higher frequencies. The results of the two can be seen in figure 5.52.

This figure only shows up to 2500 Hz in the digital domain which translates to

2500 Hz above 56 MHz. This is still outside the band of interest, and both

109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 In
pu

t

Time [sec]

Step Response for IIR LPF:

Input
Output

Figure 5.53: Step Response for the LPF of the Power Measurement
Component.

responses are meeting their respective criteria.

The response time of the lowpass filter is slower than that of the highpass

making it the time of interest. The only real criterion for this metric is that the

system must be fast enough to be “usable”. This means that anyone changing

parameters manually must see results fast enough to feel the unit is working

appropriately. This is a very general value that isn’t explicitly defined. For this

design the response curve is shown in figure 5.53. To reach 90% of the final

value from a step input, the response time is approximately 0.7 sec. This seems

adequate for usability.

The power measurement component was used to make power readings of the

additive white Gaussian noise generator. For comparison, the results of are shown

in figure 5.54 along with the results without the initial highpass filter, the results

of using a spectrum analyzer to measure the analog output of the channel emu-

110

-80

-70

-60

-50

-40

-30

-20

-10

 0

-30 -20 -10 0 10 20 30 40 50 60 70

P
ow

er
 [d

B
m

]

σ [dB]

Measurement Method:

Power Meter Measurement
Spectrum Analyzer Measurement
Digital Power Reading without HPF
Digital Power Reading with HPF

Figure 5.54: The Power Output of the AWGN Generator using Various
Methods.

lator, and the results of using a power meter for the same analog measurements.

When the standard deviation of the output of the white Gaussian noise genera-

tor, σ, is 30 dB and 50 dB, all measurements correspond relatively closely. Above

that, the analog signals soon reach the compression points of the amplifiers in

the analog output stage. Below 30 dB, the measurements asymptotically reach a

minimum power level. This level is different for each method for various reasons.

The power meter includes any out of band power that might be in the signal giv-

ing it the highest minimum power. Without the highpass filter, aliased DC noise

is included in the minimum power of the digital power measurement component.

The spectrum analyzer is limited by any analog noise inherent in the system.

Finally, the digital power measurement component is limited by the accuracy of

the AWGN generator along with any noise inherent in quantization.

111

Chapter 6

RF Channel Emulator System

In the previous chapter, each individual component was described and eval-

uated in detail. This chapter discusses the assembly of primarily the digital

components, although since there was much change to the clock network, this is

discussed as well. Finally, how the individual components communicate with the

user interface is discussed explaining the respective contributions to achieving the

overall goal of emulating a communication scenario.

6.1 System Assembly

As with much of this project, the system assembly is comprised of two com-

ponents: the analog system and the digital system. The analog portion contains

much of the physical hardware. This assembly is described in detail in the work

done by Woolrich [22]. Deviations from Woolrich’s work regarding the analog

portion are discussed here. In addition, the digital components are discussed.

6.1.1 Clock Network

The largest change from the original work is in the clock network. The primary

reason for the changes on a whole is to reduce jitter and spurious noise the clocks

112

Figure 6.1: Block Diagram of the Clock Network.

were introducing into the system. This is discussed in great detail in section 3.5,

section 3.6, section 5.1.4, and section 7.1.3.

The clock network was designed to ensure the proper frequencies were avail-

able for each hardware component along with the proper phase and voltage levels.

A block diagram of this is shown in figure 6.1. The 56 MHz sample clock is cre-

ated using the DDS run by the Wenzel 400 MHz oscillator. This is then split

and buffered to drive the A/D and the input clock for the incoming digital data.

These two paths were wired to have nearly identical path lengths to ensure proper

phase between the data and clock at the input of the FPGA.

The clock is split at the input of the A/D and routed through the network

for the D/A clock. First, the 56 MHz is doubled to 112 MHz. This is a lossy

process and requires an amplifier to increase the signal strength sufficiently for the

next doubler. A highpass filter is used to minimize spurious noise as discussed

in section 5.1.5. The frequency is doubled again to 224 MHz to operate the

D/A at 112 MHz input and 224 MHz output. Thus, the clock requirements of

section 5.1.5 and section 5.1.5 are met.

113

6.1.2 Digital Components

Assembling the digital components into an architecture that allows for control

of each individual component as well as provides feedback through various power

readings and spectral analysis all through a single connection to an external PC

is a complex task. Updating the parameters of each component needs to be done

quickly to ensure that during scenario executions they remain in sync with each

other and to ensure that the central control entity does not get bogged down with

updates in order to provide feedback to the user in a timely fashion. Also, the

feedback data must be gathered quickly to ensure that the central control entity

is available to receive user input in a timely fashion.

The use of a Microblaze processor along with its Fast Simplex Link (FSL)

allows for the high speed transfer of information to and from the various com-

ponents inside the FPGA. Each Microblaze processor allows for eight separate

FSLs each with an input and output port. These ports allow for up to 32-bit

data transfers. Many of the components along the data path are connected to

the FSL to ensure high speed transfers–especially between the capture compo-

nents which periodically grab 4096 samples for spectral analysis. The less timing

critical components are tied to a simple On-chip Peripheral Bus (OPB). These

connections can be seen in the block diagram in figure 6.2.

Many of the components in the system are discussed in great detail in chapter

3 and chapter 5. A few of the system components that haven’t been mentioned

include the internal UART, the Ethernet MAC, and the internal timer. The

UART is used for low level communication to an external PC mostly for diagnostic

purposes during development. The MAC is used to handle the communications

through an Ethernet link. The timer is included to allow for periodic and time

sensitive tasks to be performed, namely capturing data or updating the channel

parameters. All three of these components require the processor to take action

immediately. Thus, they are each tied to an interrupt controller which can be

114

Figure 6.2: Block Diagram of the Digital Components.

115

queried to determine which component needs handling.

The code and data for the Microblaze processor must fit within the 16 KB

block RAM (BRAM) used. While much of the code involved with executing a

communications scenario can be contained in the user interface program on the

PC, some rudimentary code must reside in the emulator to handle Ethernet com-

munication, channel parameter updates, and feedback data gathering. Channel

parameter updates require very little of either code or data, and the feedback

data gathering components have their own BRAMs and registers to hold data.

It is the Ethernet communication code that can be difficult to fit within the 16

KB allotment. Using the standard libraries for TCP/IP communication with the

Microblaze required over 20 KB of code space. It was therefore necessary to

write a very simple user datagram protocol (UDP) interface for the Microblaze.

Handling only this simpler protocol produced Ethernet code below 1 KB.

6.2 Communicating with the User Interface

This section deals with the communication between the user interface and the

various digital components in the emulator. The user interface must use standard

units when dealing with channel parameters. How each component deals with

the conversion from standard units to something meaningful to the hardware

differs. The following subsections contain a brief discussion of the conversions

implemented by the user interface for the main channel parameters.

6.2.1 Delay Settings

There are two main components used to implement the delay: the delay

and the interpolator. The delay handles the individual sample jumps, while the

interpolator allows for the fine tuning. The interpolator has two inputs: the

offest, which sets the static delay, and the incrementor, which sets the dynamic

116

delay. It is the offset that is of interest in this section.

The delay is set in the unit of seconds. To convert that to samples, it is simply

a matter of multiplying the desired delay by the sample rate. The integer portion

of this is sent to the delay parameter. The decimal point portion must first be

represented as a fraction of some value over 227, since there are 227 different

interpolation points between samples. This gives the following equations:

delay = int(desired delay - 0.5) (6.1)

interpolatorstatic = int[227decimal(desired delay− 0.5) + 0.5] (6.2)

6.2.2 Doppler Effect Settings

The Doppler effect, in the digital domain, requires correct settings to both the

interpolator and single side-band modulation (SSB) components. This is shown

in equation 3.14. The frequency dependent portion of this equation is handled

by the interpolator, while the static shift portion is handled by SSB modulation.

Defining the Doppler shift can be done in a number of ways. The most prevalent is

by defining the relative velocity, v, between the transmitter and the receiver or by

defining the center frequency shift. The latter of the two can be used to calculate

the relative velocity fairly simply then only one set of equations needs to be used.

It is important to remember that while the interpolator has 227 discrete points,

the sine and cosine function used to determine the SSB modulation frequency

has 229 discrete points.

interpolatordynamic = int
(

227 v

c
+ sgn(v)0.5

)
(6.3)

SSB = int
(

229 v

c
56MHz + sgn(v)0.5

)
(6.4)

117

6.2.3 Noise and Attenuation Settings

The key to determining the noise and the attenuation settings is first de-

termining the respective power levels desired for the two. These levels can be

determined quite easily if the SNR is known and the input and output power lev-

els are known. Section 3.4.5 discusses the relationship between the input value

of the AWGN generator and the output power level.

noise = int
(
212 10powernoise/10 + 0.5

)
(6.5)

attenuation = int
(
216 10(SNR−powerin+powernoise)/10 + 0.5

)
(6.6)

118

Chapter 7

Conclusion and Future Work

7.1 Future Work

This thesis shows that functional requirements of the RF Channel Emulator

have been met, yet there have been cases where measurements may not have

been sufficiently accurate to be taken due to testing equipment limitations and

where theory had difficulty explaining the measured results. This section focuses

on those areas in more detail.

7.1.1 Phase Noise Measurements

Throughout the thesis, phase noise measurements were shown that proved to

be much greater than the expected values. The test equipment used for this was

an Agilent E4445A Spectrum Analyzer. While measuring the phase noise, and

subsequently the jitter, of the various sampling clock sources in chapter 5, the

results came to many orders of magnitude off of the expected values listed in the

data sheets.

As discussed in section 3.6, phase noise is especially important to sampling

clock signals as this noise gets incorporated into any sampled signal. This is

due to the definition of phase noise itself: undesired fluctuations in the phase

119

Figure 7.1: Simplified Spectrum Analyzer Block Diagram.

of a signal. This is in contrast to amplitude noise which will have little or no

bearing on noise introduced into sampled signals due to clock noise since it is often

the zero crossings of a clock signal that determine when sampling occurs. This

illustrates the importance of being able to measure the phase noise exclusively as

opposed to the total noise which includes any amplitude noise.

The use of a spectrum analyzer to measure phase noise does not give exclu-

sively phase noise but rather measures the total noise. This is due to the fact that

a spectrum analyzer gives the results in the magnitude of the power at particular

frequencies with no means of determining the phase or amplitude of any other

frequency within the spectrum. A block diagram of a typical spectrum analyzer

is shown in figure 7.1. Here, it can also be seen that any noise measurements can

only be measured down to the noise that will be introduced by the local oscillator

of the analyzer itself. Many of the results given in this thesis are limited by this

factor.

For future work, isolating the phase noise and accurately measuring it without

being limited by the test equipment will give a much better understanding of the

contribution of the clock phase noise into the system. For this work, the listed

specifications for these measurements in the component data sheets show more

than adequate performance.

120

7.1.2 Spurious Noise in the Clock Signal

The clock generated by the DDS, as discussed in section 5.1.5, has determin-

istic noise, or spurs in its frequency response seen in figure 5.9. At first glance

these spurs appear to be what would be expected from quantization noise since

the DDS has an internal 14-bit DAC. Quantization noise will fall on the har-

monics of the fundamental frequency, 56 MHz. These harmonics will fold at

half the internal clock frequency of the DDS, 200 MHz, and then again at DC.

Determining the total number of possible harmonics is a fairly trivial task:

Number of distinct harmonics =
LCM(200MHz, 56MHz)

56MHz
(7.1)

=
1400

56
(7.2)

= 25 (7.3)

These 25 harmonics are listed in table 7.1. As it turns out, only three of

these harmonics fall in the frequency range of figure 5.9 where more than seven

spurs with magnitudes above -90 dBm can be seen. Although one of the spurs

is attenuated in the final design through a bandpass filter, it would benefit the

overall system to determine the source of the unaccounted for spurs in order to

better reduce their effect on the system.

7.1.3 Sampling with Deterministic Clock Jitter

As discussed in section 3.6 and section 5.1.5, the assessment was shown that

sampling a signal using a clock with phase noise will introduce noise into the

sampled signal. In the particular case of spurious, or deterministic, phase noise,

we are left without a specific representation of what the actual noise introduced

into the sampled signal will be and therefore are left without a quantifiable value

121

Harmonic Output Frequency
f0 56 MHz *
f1 112 MHz
f2 168 MHz
f3 176 MHz
f4 120 MHz
f5 64 MHz *
f6 8 MHz
f7 48 MHz *
f8 104 MHz
f9 160 MHz
f10 184 MHz
f11 128 MHz
f12 72 MHz
f13 16 MHz
f14 40 MHz
f15 96 MHz
f16 152 MHz
f17 192 MHz
f18 136 MHz
f19 80 MHz
f20 24 MHz
f21 32 MHz
f22 88 MHz
f23 144 MHz
f24 200 MHz

Table 7.1: Harmonic Frequencies due to Quantization of the 56 MHz
Sinusoid Generated by the DDS. ‘*’ denotes frequencies that fall in
figure 5.9.

122

for what the magnitude of deterministic phase noise can be to still meet noise

requirements.

Section 3.6 draws a vague analogy that since the signal is essentially being

multiplied by the clock signal in the time domain, it will be convoluted with the

signal in the frequency domain. While this in itself is true, coming up with a

frequency representation of impulse signals with periodic jitter can be somewhat

problematic. We know through our discussion of phase noise in the previous

sections of this chapter that the frequency representation of the clock signal by

itself cannot be used in this matter given that this representation will contain

both amplitude noise and phase noise. Once the phase noise is isolated, the initial

convolution representation should hold fairly well.

For a simple demonstration of this, we can look at the clock signal with the

spectral response shown in figure 5.9. Here, there are two main sinusoids of

interest: one at 56 MHz and one at 44 MHz approximately 55 dB below the first.

To generalize, we will approximate the clock signal as two sinusoids with different

amplitudes and different frequencies. The relative phase can be disregarded since

we are interested in the frequency response which covers all time, and there will

always be at least one time where the two start in phase.

fclock(t) = A1 sinω1t+ A2 sinω2t (7.4)

In order to separate the amplitude component, the following substitutions will

be made:

A3 =
A1 + A2

2
(7.5)

A4 =
A1 − A2

2
(7.6)

ω3 =
ω1 + ω2

2
(7.7)

ω4 =
ω1 − ω2

2
(7.8)

123

Thus,

fclock(t) = (A3 + A4) sin[(ω3 + ω4)t] + (A3 − A4) sin[(ω3 − ω4)t] (7.9)

With some trigonometric identities, this can be reduced to:

fclock(t) = 2A3 sinω3t cosω4t+ 2A4 cosω3t sinω4t (7.10)

Using the following relationship,

A sinα +B cosα =
√
A2 +B2 sin

[
α + arctan

(
A

B

)]
, (7.11)

equation 7.10 can be reduced to:

fclock(t) = 2
√
A2

3 cos2 ω4t+ A2
4 sin2 ω4t sin

(
ω3t+ arctan

A4 sinω4t

A3 cosω4t

)
(7.12)

We can now clearly see a distinction between the time dependent amplitude

of this function and the time dependent frequency or phase of this function. Since

our goal was to remove the amplitude portion of the clock function, we will do so

in the next step. It is also important to represent the phase in terms of ω1 given

that in our particular case, A1 is much greater than A2.

f ′clock(t) = sin

(
ω3t+ arctan

A4

A3

tanω4t

)
(7.13)

= sin

(
ω3t+ arctan

tanω4t+ x

1− x tanω4t

)
,

x = (
A4

A3

− 1)
tanω4t

1 + A4/A3 tan2 ω4t
(7.14)

= sin [ω3t+ arctan(tanω4t) + arctanx] (7.15)

= sin

[
(ω3 + ω4)t+ arctan(

A4

A3

− 1)
sinω4t cosω3t

cos2 ω4 + A4/A3 sin2 ω4t

]
(7.16)

= sin

(
ω1t− arctan

A2 sin(ω1 − ω2)t

A1 + A2 cos(ω1 − ω2)t

)
(7.17)

124

Equation 7.17 is in the form we were looking for. This form, by itself, doesn’t

lend itself well to the Fourier Transform. But, taking some approximations given

the assumption that A1 is much greater than A2 yeilds:

f ′clock(t) ≈ sin

(
ω1t−

A2

A1

sin(ω1 − ω2)t

)
(7.18)

This is much easier to transform into the frequency domain:

|F ′clock(ω)| ≈
∞∑

n=−∞

Jn(A2/A1)δ[ω − ω1 − n(ω1 − ω2)] (7.19)

Since we are really interested in a rule of thumb regarding the magnitude of the

additional spectral components in a signal sampled with a noisy clock, we can

approximate even further with the same assumption that A1 >> A2.

|F ′clock(ω)| ≈ δ(ω − ω1) +
A2

2A1

δ(ω − ω1 ∓∆ω), (7.20)

∆ω = ω1 − ω2

Equation 7.20 gives a very manageable representation of what can be expected

with given monochromatic, deterministic jitter on a clock signal. Although it is

difficult to calculate the accuracy of this approximation precisely, we can run a

simulation to show how it holds up to the data acquired. For this, we’ll use the

coefficients from our testing: A1 = 1.0, A2 = −55dBc, ω1 = 2π56MHz, and

ω2 = 2π44MHz. The results of this simulation can be seen in figure 7.2. This

shows the FFT of equation 7.17 along with the convolution of the FFT with a

digital 70 MHz sinusoid. For comparison, these plots are also shown with the

approximation in equation 7.20. As we can see, the approximation holds well for

the three most dominate frequencies while it overlooks all the rest.

For further comparison, the positive-slope, zero crossings of equation 7.10

were found using Newton’s method for finding roots. These points were used to

sample a 70 MHz sinusoid. Displayed in the figure is the FFT of these sampled

125

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0 10 20 30 40 50 60 70 80 90 100 110

M
a

g
n

it
u

d
e

 [
d

B
c
]

Frequency [MHz]

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 57.5 60 62.5 65 67.5 70 72.5 75 77.5 80 82.5 85

M
a

g
n

it
u

d
e

 [
d

B
c
]

Frequency [MHz]

a) FFT of Equation 7.17. b) Repeated FFT of Equation 7.17.

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0 10 20 30 40 50 60 70 80 90 100 110

M
a

g
n

it
u

d
e

 [
d

B
c
]

Frequency [MHz]

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 57.5 60 62.5 65 67.5 70 72.5 75 77.5 80 82.5 85

M
a

g
n

it
u

d
e

 [
d

B
c
]

Frequency [MHz]

c) FFT of Equation 7.20. d) Repeated FFT of Equation 7.20.

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 57.5 60 62.5 65 67.5 70 72.5 75 77.5 80 82.5 85

M
a

g
n

it
u

d
e

 [
d

B
c
]

Frequency [MHz]

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 55 57.5 60 62.5 65 67.5 70 72.5 75 77.5 80 82.5 85

M
a

g
n

it
u

d
e

 [
d

B
c
]

Frequency [MHz]

d) Measured data. e) Simulated data.

Figure 7.2: Simulation Results for Sampling using a Clock Signal with
Monochromatic Deterministic Phase Noise.

126

points to give a simulation of what, theoretically, the frequency response should

resemble. As we can see, both the previous methods that assumed the convo-

lution of the frequency response of the clock signal with only phase noise and

the frequency response of the input signal gave very good approximations for the

locations and magnitudes of all frequencies over -80 dBc. For a final comparison,

the experimental data is also shown. Keep in mind that our discussion only incor-

porated monochromatic deterministic phase noise, while the actual clock signal

included many different spurs of different frequencies and magnitudes.

7.2 Conclusions

This thesis presents the overall system performance characterization of the

RF Channel Emulator. An emphasis of the digital component design and analy-

sis is presented in this work as much of the input and output analog stages were

characterized by Kyle Woolrich [22]. Due to the necessity to improve perfor-

mance, some of the original analog design was modified and analyzed here. From

the component level to the system level, the RF Channel Emulator performs

very well across the specified band in emulating channel characteristics without

significantly degrading the input signal.

The use of digital components proved to be an effective method to implement

channel emulation parameters. Implementing a significant delay to the signal is

only practically possible in a lab environment through the use of digital delay.

By itself, the memory controller allows for as large of a delay as there is RAM

to store it with the ability to change the delay rapidly and dynamically. Digital

interpolation allows the delay to be fine tuned to much less than a single sample,

which is an inherent limitation of a digital delay. The interpolation component

also allows for rapid delay changes in addition to providing a means for improved

Doppler emulation through data “throttling” while minimizing impact to signal

integrity with its very linear phase and flat magnitude in-band response. Wool-

127

rich [22] showed that single side-band modulation can be effectively achieved in

the analog output stage of the emulator design with the inclusion of a mixer and

an additional DDS. As with the addition of any analog component, additional

thermal noise and inherent nonlinearities can increase the overall random and

deterministic noise respectively. A digital implementation, as presented in this

thesis, can eliminate the need for additional analog components while provid-

ing a low noise response. Finally, the digital additive noise component produces

a white (flat) frequency response with a Gaussian probability density function

without the need for additional analog components.

Despite being designed around specific channel requirements such as center

frequency and bandwidth, the RF Channel Emulator has a robust and flexible

design that may be modified to fit a wide range of specifications with minimal

work. The design of the digital delay can accommodate many different DRAM

configurations with very few changes to the hardware design code allowing for

significant increases in the size of the RAM module capacity which translates

directly to an increase in the maximum delay possible. The other digital compo-

nents are all designed with highly parallel topologies allowing for increases in the

data rate to meet other bandwidth requirements. In addition, the digital compo-

nents were all designed in VHDL which reduces overhead in porting to another

hardware platform if necessary for a significant increase in performance require-

ments. The physical hardware is composed of modular, off-the-self components

easing the ability to change or replace a single component with minimal impact

to the rest of the system.

Although much design effort went into eliminating noise sources and meeting

design requirements set by JPL, there are inherent limitations in the RF Chan-

nel Emulator. The most prevalent limitation is in the maximum delay possible.

While the requirement of two seconds was exceeded, this only allows for the em-

ulation of systems operating roughly as far as twice the distance to the moon.

Many of the missions operated by JPL work at much greater distances. The delay

128

limitation also affects the duration for which certain scenarios can be executed.

For example, emulating the reception of transmissions from the Earth to a satel-

lite in geosynchronous orbit would effectively require a continuous Doppler shift

due to the combined effects of special and general relativity. Since the Doppler

Effect is emulated using a continuous change in the delay, the time of the emu-

lation is limited by how long the delay buffer would take before it was overrun.

Although, this limitation is rendered moot since the complexities of simultane-

ity in relativistic scenarios require both the change in apparent distance to be

non-zero while the round trip propagation time to be constant which, outside of

slowing time down in a portion of the lab, is impossible to emulate. It should

also be noted that a geosynchronous orbit around the Earth would require a time

scaling factor of roughly 1 + 2−31 while the interpolation hardware can currently

only achieve an accurate scaling factor down to 1 + 2−27.

Aside from the limitations with the delay hardware, there are inherent lim-

itations to the achievable signal to noise ratio with the current design. The

dominant contributor to the spurious noise in the system is the DDS. While the

input reference oscillator has an impeccably clean frequency response, the output

of the DDS is impacted by spurs associated with quantization and nonlinearities

in the internal DAC of the DDS itself. Since the DDS is used to generate the

sampling clock, these spurs are incorporated into the digital signal reducing the

overall SNR. Although these spurs will be a component of any DDS, using an

industrial grade DDS could reduce their magnitude.

Overall, the RF Channel Emulator provides a platform for accurately emulat-

ing channel characteristics while giving the ability to instantly change static or

dynamic parameters of the channel. It is my expressed hope that the RF Chan-

nel Emulator will ease performance characterization of communication protocols

used by JPL on current and future missions.

129

Power Supply

DAC

ADC 100 MHz
Reference
Oscillator

DDS

Analog
Backend

Analog
Frontend

Figure 7.3: Final Assembly. The final hardware implementation as-
sembly was constructed in a rack mountable frame.

130

Bibliography

[1] Additive white gaussian noise (awgn) core v1.0 data sheet.

www.xilinx.com/support/documentation/ip.../awgn.pdf, October 2002.

[2] Sle700 satellite link emulator data sheet.

http://www.dbmcorp.com/pdf/sle700.pdf, November 2002.

[3] Fading in wireless communications. Wireless Technology (YlessTech), Octo-

ber 2006. http://www.ylesstech.com/terminology.php?letter=all&id=15.

[4] Mixers. Microwaves101.com, August 2006.

http://microwaves101.com/encyclopedia/mixers.cfm.

[5] Virtex-ii pro and virtex-ii pro x platform fpgas: Complete data sheet.

November 2007.

[6] Ashok Ambardar. Analog and Digital Signal Processing. PWS Publishing

Company, Boston, USA, 1995.

[7] C. R. Baugh and B. A. Wooley. A two’s complement parallel array multi-

plication algorithm. IEEE Trans. Comput., 22(12):1045–1047, 1973.

[8] A.D. Booth. A signed binary multiplication technique. Quart. Journ. Mech.

and Applied Math., 4(2):236–240, 1951.

[9] Emmanuel Boutillon, Jean-Luc Danger, and Adel Ghazel. Design of high

speed awgn communication channel emulator. Analog Integr. Circuits Signal

Process., 34(2):133–142, 2003.

131

[10] I. A. Glover and P. M. Grant. Digital Communications, 2nd Edition.

Prentice-Hall, New Jersey, USA, 2003.

[11] Guillermo Gonzalez. Microwave Transistor Amplifiers: Analysis and Design,

2nd Edition. Prentice-Hall, New Jersey, USA, 1996.

[12] Michel C. Jeruchim, Philip Balaban, and K. Sam Shanmugan. Simulation of

Communication Systems: Modeling, Methodology, and Techniques. Kluwer

Academic/Plenum Publishers, New York, NY, USA, 2000.

[13] J.F. Kaiser. Nonrecursive digital filter design using i0-sinh window function.

IEEE Int. Symposium on Circuits and Systems, pages 20–23, April 1974.

[14] Walt Kester. Analog-Digital Conversion. Analog Device, Inc., USA, 2004.

[15] Walt Kester. Converting oscillator phase noise to time jitter. Analog Devices,

October 2005.

[16] C. Kurth. Generation of single-sideband signals in multiplex communication

systems. Circuits and Systems, IEEE Transactions on, 23(1):1–17, Jan 1976.

[17] H. Scheuermann and H. Gockler. A comprehensive survey of digital trans-

multiplexing methods. Proceedings of the IEEE, 69(11):1419–1450, Nov.

1981.

[18] M.J. Schulte and J.E. Stine. Symmetric bipartite tables for accurate function

approximation. In Computer Arithmetic, 1997. Proceedings., 13th IEEE

Symposium on, pages 175–183, Jul 1997.

[19] Bernard Sklar. Rayleigh fading channels in mobile digital communication

systems part i: Characterization. Communications Magazine, Jul 1997.

[20] Bernard Sklar. Digital Communications: Fundamentals and Applications.

Prentice-Hall, New Jersey, USA, 2001.

132

[21] C. Tseng and S. Pei. Design of discrete-time fractional hilbert transformer.

In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000

IEEE International Symposium on, volume 5, pages 525–528 vol.5, 2000.

[22] Kyle Woolrich. Emulating a space communication channel using analog

and digital signal processing. Master’s thesis, California Polytechnic State

University, San Luis Obispo, June 2008.

133

Appendix A

Statement of Work

70 MHz Channel Emulator Specification

Background

Evaluation of end-to-end communications systems in use for space exploration often

requires emulation of the RF path. While noise and delay may be adequately simulated in

a Linux environment for the evaluation of their effects on communications protocols,

these simulations are inadequate for the purpose of testing systems with actual radio

hardware. To adequately emulate the space link channels, an emulator is required that can

inject realistic noise, delay and Doppler effects into an RF link between radios under test.

Lunar exploration will likely rely on radio links at S-band, Ka-band, frequencies that are

impractical to directly digitize and digitally process in the context of a link channel

simulation; in addition, the data rates required range from 72 Kbps to 25 Mbps. For this

research project, as a proof-of-concept for the digital processing techniques required,

operation at lower intermediate frequencies and somewhat lower maximum data rates

will be required. Since lab UHF radios are available that operate at 70 MHz IF and

maximum data rates of 4 Mbps, these parameters were selected for this emulator.

Summary Description

The emulator shall use digital techniques, and provide for digital control from an external

PC using a Graphic User Interface such as LabView (to be negotiated). The Digital Link

Channel Emulator (DLCE) shall be used in a lab test environment shown in figure 1:

134

UHF Transceiver
Digital Link

Channel Emulat or
UHF Transceiver

cont rol

70 MHz
IF signal

70 MHz
IF signal

DLCE adds del ay, nois e, &

doppler ef fects

Figure 1: DLCE in Lab Test

The specifications below are a combination of firm requirements and some performance

goals that will be negotiated; should initial work (or budget) prohibit the achievement of

the stated goals, the design should be such that future modifications and improvements

are not precluded.

Interface Description

The input and output characteristics of the RF signal in and out of the channel simulator

are as follows:

70 MHz center frequency without doppler

0 dBm input power maximum; normal input signal operating range -7 to -12 dBm.

Output power at 70 MHz = -12 dBm

Modulation types (SN formatting representative of current baseline Lunar radio

requirements)

 suppressed carrier, uncoded at 4 Mb/s (for an 8 MHz bandwidth)*

 residual carrier, coded at 72, 192 or 256 Kb/s

* Note: The current Lunar baseline calls for 25 Mbps uncoded suppressed carrier, but

for the purposes of this initial link channel simulator a 4 Mb/s capability will be the

design point. The task should include consideration of the technology required to

achieve this higher bandwidth in future designs.)

135

Computer control and status data interface: via Ethernet

Functional Objectives & Requirements

The DLCS is a hybrid analog/digital device to simulate the RF space path of a radio

signal being used for communication between two spacecraft. To accomplish this, a 70

MHz intermediate frequency can be used between two standard lab test radio

transceivers, with the signal being digitized, manipulating the digital signal with

appropriate noise, frequency shift and amplitude changes, and the resulting signal

upconverted to 70 MHz for insertion into a receiver baseband processor.

Typical Utilization of the DLCS

A typical radio test scenario would be to simulate the radio link characteristics between a

spacecraft and a lander, with the spacecraft passing overhead at 300 km typical orbital

altitudes over a period of 10 minutes (number approximate.) This results in a signal that

fades in and out as a function of antenna pattern and relative geometry, possible

multipath, noise and Doppler frequency shift during the pass as the geometry changes.

Another possible scenario might be communications between two spacecraft as they

approach for a rendezvous; if one was at lunar distances and the other was enroute to

earth, propagation delays might be on the order of 1-2 seconds.

The specifications below represent the performance and design goals for the CalPolySLO

simulator:

Simulator Control

The simulator shall be required to accept continuous control inputs to determine the

amount of delay, fading, noise and Doppler characteristics using an Ethernet interface to

a control computer based on manual operator inputs or a script. A GUI is desired and

optimally will be based on LabView. GUI or operator control shall provide for steady-

state selection of Doppler, Eb/No and delay, as well as providing for dynamic control of

those parameters via script or other program input (e.g. for use in piping the output of an

orbital simulation running in the control computer to the channel simulator.)

Digitization and Sampling

It is desired that the digital signal domain be in both I and Q so that noise and fading in

these channels may be either independent or correlated.

(For this the recommended digitization process is that the simulator should sample at a 56

MHz rate using 12-bit digitization for a 14 MHz digital IF, which is then complex

basebanded to DC for ease of subsequent computation.)

136

Delay Processing

Sufficient memory and buffering should be provided for a variable propagation delay

from 0 to 2 sec (desired), with 1 msec granularity. (Delay processing shall accommodate

a minimum of 500 msec delay)

Noise Processing and Signal Fading

The simulator should add noise as complex Gaussian. The simulator should be capable

of adding independent signal fading to the I and Q channels. Typically the mobile

satellite fading environment stastistics follow a complex Ricean distribution, essentially a

Rayleigh distribution plus a line-of-sight component. The signal fading may be

accomplished by either real time generation of fading components or reading the I – Q

fading components from a stored file.

In order to accommodate the operation of the projected radios, the emulator shall mimic

the signal as seen by the baseband processor after the front end ACG process is applied.

This radio AGC system provides the baseband processor with a -12 dBm signal+noise

and the effect of path noise, system noise and signal amplitude fading will be to change

the Eb/No signal-to-noise ratio. The simulator output should leave the input data signal at

the nominal -12 dBm level after the delay and doppler processing, with the effect of noise

and fading being that the Eb/No changes from 0 dBm (noise at signal level) down to zero

noise added (with 10 dB Eb/No being a typical operating point).

It is desireable to operate the noise and fading signal components on I and Q channels

independently. JPL will collaborate with CalPoly SLO on potential noise injection

designs.

Doppler Processing

The DLCS shall impress user specified Doppler and Doppler rate upon the output

frequency as follows:

 Doppler shift of +/- 3.5 KHz at 70 MHz (to be negotiated, TBN)

 Instantaneous Doppler rate of 1000Hz/sec (TBN) to 200 Hz/sec (TBN)

137

70 MHz Channel Simulator Specifications

According to the attached proposal from Ed Satorius, you are prepared to build a programmable delay line

with the following specs:

In/Out frequency = 70 MHz

8 bit A/D and D/A

FPGA input data rate = 1.6 Gbps

SRAM Memory = 20 MBytes

I would like to modify these specs as follows:

In/Out Frequency = 70 MHz or 390-450 MHz

Variable delay from 0 to 2 sec

Impress user specified Doppler and Doppler rate upon the output frequency:

 Doppler shift of +/- 3.5 KHz at 70 MHz or +/- 20 KHz at 400 MHz

 Instantaneous Doppler rate of 1000Hz/sec (TBC) to 200 Hz/sec (TBC)

138

1

INTEROFFICE MEMORANDUM

 August 16, 2005

TO: Caroline Racho

FROM: Ed Satorius

SUBJECT: Architecture for the Channel Simulator

A block diagram of the simulator testbed is presented in Figure 1.

BPF D/ADelay
IF Input

@70 MHz

A/D

@ 56 MHz

12 bits

Memory:

2 SRAM

(70 Mbytes each)

@ 56 MHz

IF Output

@70 MHz

8 bits

70 MHz

+/- 12 MHz

Complex

Baseband

28 MHz: complex data paths

NCO A(t)

Upsample

By 2

56 MHz

@14 MHz IF

BPF

56 MHz

FPGA

70 MHz

+/- 12 MHz

LPF

0-26 MHz

BPF D/ADelay
IF Input

@70 MHz

A/D

@ 56 MHz

12 bits

Memory:

2 SRAM

(70 Mbytes each)

@ 56 MHz

IF Output

@70 MHz

8 bits

70 MHz

+/- 12 MHz

Complex

Baseband

28 MHz: complex data paths

NCO A(t)

Upsample

By 2

56 MHz

@14 MHz IF

BPFBPF

56 MHz

FPGA

70 MHz

+/- 12 MHz

LPFLPF

0-26 MHz

Figure 1. Simulator block diagram.

Note that bandpass sampling is used to shift the 70 MHz input IF down to a digital IF of 14

MHz, which is then complex basebanded (to DC). The digital complex baseband block diagram

is depicted in Figure 2.

From ADC

Real

Imaginary

z
−1 1−

z

-1

2

z
−1 1−

z

-1

2

1/2

1/2

cos(πn/2) = 1, 0, -1, …

-sin(πn/2) = 0, -1, 0, …

Halfband

filter

Halfband

filter

Identical
From ADC

Real

Imaginary

z
−1 1−

z

-1

2

z
−1 1−

z

-1

2

1/2

1/2

cos(πn/2) = 1, 0, -1, …

-sin(πn/2) = 0, -1, 0, …

Halfband

filter

Halfband

filter

Identical

Figure 2. Digital complex baseband down-conversion and decimation.

139

2

The digital complex baseband down-conversion scheme is chosen for its computational

efficiency and flexibility [E. Satorius, “Candidate MCAS receiver front-end architectures and

issues,” JPL Internal Memorandum, 27 April 1998]. Although the depiction in Figure 2 shows

that the digital mixing is accomplished using two multipliers, a counter and two 4-to-1

multiplexers are used in the actual implementation. The counter controls the selection for the

multiplexers. The multiplexers receive their inputs from identical sources but via different input

channels. Two of the inputs to the multiplexers are tied to zeros. The other two are tied to the

incoming A/D data and its inverted version.

Following digital mixing, a pair of identical half-band filters are applied to remove aliased

images near the Nyquist band edge. A 10-tap FIR half-band filter is chosen for this purpose. The

FIR half-band filter has the following transfer function:

ωωω

ωωω
ω

jjj

jjj

eee

eeeH

51648752

829651098

2))(2222(

))(222()1)(22()(

−−−−−−−−

−−−−−−−−

+++++

++++−++=

Note that although the filter is 10-th order, only 4 multiplications are required for its

implementation. These multiplications can be implemented using bit shifts and adds because the

non-zero filter coefficients are given by:

1875296598 2)5(;2222)4();222()2(;22)0(−−−−−−−−−−

=+++=++−=+= hhhh

Following the half-band filters, the (complex) data are further decimated by 2 using sum-and-

dump filters (creating one output from the mean of two successive input samples). At this point

the complex data are output from the complex basebander at 28 MHz (both real and imaginary

data channels).

With reference to Figure 1, the complex data are delayed (variable delay up to 2 seconds using

dual, 70 Mbyte SRAMs), frequency and amplitude shifted to simulate the effects of both time-

varying multipath and Doppler offsets. Following the amplitude shift, the data are then mixed

back up to the 14 MHz digital IF and upsampled back to 56 MHz. A block diagram depicting this

process is presented in Figure 3. Note that the upsampler (duplication of each input sample) is

essentially a digital zero-order-hold.

Real

Imaginary

cos(πn/2) = 1, 0, -1, …

sin(πn/2) = 0, 1, 0, …

Duplicate each

input sample

28 MHz

complex in

56 MHz real out

@ 14 MHz IF

Duplicate each

input sample

56 MHz

56 MHz

Real

Imaginary

cos(πn/2) = 1, 0, -1, …

sin(πn/2) = 0, 1, 0, …

Duplicate each

input sample

28 MHz

complex in

56 MHz real out

@ 14 MHz IF

Duplicate each

input sample

56 MHz

56 MHz

Figure 3. Digital complex baseband up-conversion and upsampling.

140

3

Following upsampling to a 14 MHz digital IF (Figure 1), the digital data stream is converted

back to analog via a D/A and lowpass filter and finally mixed up to the final 70 MHz output IF.

A sample simulation example is provided in Figure 4 corresponding to a 4 Mbps BPSK signal.

Figure 4. Matlab simulation example: 100 µsec delay simulated without Doppler or amplitude

shift and without the post D/A analog lowpass filter in Figure 1.

The input waveform (top plot in Figure 4), is immediately after the input 70 MHz bandpass filter

in Figure 1 (prior to the A/D) whereas the output (bottom plot in Figure 4), immediately follows

the output 70 MHz bandpass filter in Figure 1 (after the mixer). The total synthesized delay

between the input and output waveforms in this example (including the delay added by the

outbound 70 MHz bandpass filter) is approximately 100 micro secs. As is seen from Figure 4, the

digital processing in the FPGA does not add significant distortion to the output waveform.

141

	List of Tables
	List of Figures
	Introduction
	Background
	Doppler Effect
	Delay
	Noise
	Fading

	System Description
	General Description
	System Requirements and Overview
	Analog Input Stage
	Digital Signal Processing Path
	The Memory Controller
	Interpolation Finite Impulse Response (FIR) Filter
	Digital Single Side Band Modulation
	Digital Attenuation
	White Gaussian Noise Generator
	Digital Output Filter

	Digital and Analog Output Stage
	Clock Management

	System Comparisons
	Component Design and Evaluation
	Component Selection
	FPGA Development Board
	Analog to Digital Converter (A/D)
	Digital to Analog Converter (D/A)
	Oscillator
	Direct Digital Synthesis

	Digital Components
	The Memory Controller
	Interpolation Finite Impulse Response (FIR) Filter
	Digital Single Side Band Modulation
	White Gaussian Noise Generator
	Digital Output Filter and Upsampler
	Power Measurement

	RF Channel Emulator System
	System Assembly
	Clock Network
	Digital Components

	Communicating with the User Interface
	Delay Settings
	Doppler Effect Settings
	Noise and Attenuation Settings

	Conclusion and Future Work
	Future Work
	Phase Noise Measurements
	Spurious Noise in the Clock Signal
	Sampling with Deterministic Clock Jitter

	Conclusions

	Bibliography
	Statement of Work

