
MULTIPLE ROBOT BOUNDARY TRACKING WITH PHASE AND

WORKLOAD BALANCING

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Michael J. Boardman

June 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19150684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c⃝ 2010

Michael J. Boardman

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Multiple Robot Boundary Tracking with
Phase and Workload Balancing

AUTHOR: Michael J. Boardman

DATE SUBMITTED: June 2010

COMMITTEE CHAIR: Christopher M. Clark, Ph.D.

COMMITTEE MEMBER: Fred DePiero, Ph.D.

COMMITTEE MEMBER: Lynne Slivovsky, Ph.D.

iii

Abstract

Multiple Robot Boundary Tracking with Phase and Workload Balancing

Michael J. Boardman

This thesis discusses the use of a cooperative multiple robot system as ap-

plied to distributed tracking and sampling of a boundary edge. Within this

system the boundary edge is partitioned into subsegments, each allocated to a

particular robot such that workload is balanced across the robots. Also, to mini-

mize the time between sampling local areas of the boundary edge, it is desirable

to minimize the difference between each robot’s progression (i.e. phase) along

its allocated sub segment of the edge. The paper introduces a new distributed

controller that handles both workload and phase balancing. Simulation results

are used to illustrate the effectiveness of the controller in an Autonomous Un-

derwater Vehicle (AUV) under ice edge sampling application. Successful results

from experimentation with three iRobot R⃝ Creates are also presented.

iv

Contents

List of Tables vii

List of Figures viii

1 INTRODUCTION 1

2 BACKGROUND 4

3 PROBLEM DEFINITION 12

3.1 Workload . 13

3.2 Phase . 13

3.3 Implementation . 14

4 CONTROLLER DESIGN 15

5 PARTICLE FILTER LOCALIZATION 19

6 EXPERIMENT 22

6.1 Implementation . 24

6.1.1 Simulation . 24

6.1.2 Hardware . 24

6.1.3 Software . 26

6.1.4 Environment . 28

6.1.5 Particle Filter . 29

6.2 Experiment Configuration . 31

7 RESULTS 33

7.1 Simulation . 33

7.2 Robot Implementation . 35

v

7.2.1 Odometry . 35

7.2.2 Particle Filter Localization 36

8 CONCLUSION 38

9 FUTURE WORK 40

Bibliography 42

vi

List of Tables

7.1 Phase Steady State Error (radians) 34

7.2 Workload Steady State Error (m2) 34

7.3 Experiment Steady State Error 36

vii

List of Figures

1.1 A candidate coordinate system for distributed control of multiple
robots on a boundary edge. In this example, multiple AUVs are
distributed along an edge of ice rafts. 2

3.1 Distributed Multiple Robot System Performing Boundary Tracking 14

6.1 Experiment setup: Three iRobot R⃝ Creates before navigating un-
der a simulated ice edge with global axes displayed. 22

6.2 Desired States of Robot Crossing Patrolling Axis 23

6.3 The iRobot R⃝ Create robot is shown from above in (a), and below
in (b). The bluetooth module and IR sensor added to the robot
can be found in (c). 25

6.4 Hardware Flow Diagram . 26

6.5 System Level Algorithm . 27

6.6 Workload/Phase Balancing Algorithm 28

6.7 The hardware setup: Three iRobot R⃝ Creates navigated under-
neath an overhanging foam block used to simulate an ice raft. . . 29

6.8 The SICK Laser rangefinder is shown in (a). A scan of the robots
at their initial position with particle filter localization is seen in (b). 30

6.9 Particle Filter Test: iRobot R⃝ Create moving toward location of
known distance (tape). 31

6.10 The Simulator GUI: A top down view of three robots (circles)
navigating water (blue) and under ice (white). The algae (green)
covers part of the under ice edge in some scenarios. In (a), there
is no algae on ice edge. In (b), algae is covering half of ice edge.
Scenario simulation (c) has a random coverage of algae. 32

viii

7.1 Simulation results for the case with no algae under the ice and the
three robots starting in phase. The phase error is plotted in (a)
and the workload error is plotted in (b). 33

7.2 Trajectories of iRobot R⃝ Creates in following the simulated ice raft
(i.e. the overhanging foam block.) 35

7.3 Experimental results for the case with no algae under the ice and
the three iRobot R⃝ Create robots starting in phase. The phase
error is plotted in (a) and the workload error is plotted in (b). . . 36

7.4 Trajectories of iRobot R⃝ Creates using Particle Filter Localization 37

7.5 Experimental results for the case with no algae under the ice and
each robot starting 1m apart from one another. The phase error
is plotted in (a) and the workload error is plotted in (b). 37

9.1 OceanServer Iver2 AUVs can be deployed in the Arctic 41

ix

Chapter 1

INTRODUCTION

Robots are increasingly being used to perform a large variety of tasks. Com-

mercial applications give robots the ability to assist the disabled, clean homes,

and aid in the manufacturing and processing of products. Military applications

give robots additional purpose. They can scour fields for mines, search for snipers

in urban combat environments, and even maintain full battlefield awareness for

soldiers. They also have great potential in scientific exploration. They have the

capability to withstand harsh and unforgiving environments thereby giving them

the ability to perform tasks humans cannot perform.

In single robot systems, there is a higher likelihood of mission failure. If the

single robot fails, the mission fails. Further, a single robot can only cover so

much area in a given time frame. Multi-robot systems typically do not suffer

from such possibility of a single point failure. Multi-robot systems also allow

for accomplishing tasks of larger size and complexity when compared with single

robot systems.

This thesis concerns the task of tracking and sampling the (possibly dynamic)

1

Figure 1.1: A candidate coordinate system for distributed control of
multiple robots on a boundary edge. In this example, multiple AUVs
are distributed along an edge of ice rafts.

boundary of some entity with multiple robots. This is useful for scientific, mil-

itary, and even commercial applications. For example, boundary tracking can

be used to track a crowd of people, survey an oil spill, or detect the edge of a

harmful algae bloom with Autonomous Underwater Vehicles (AUVs).

A goal of this research is to design a distributed controller in which multi-

ple robots track and follow a continuous boundary edge, while balancing both

the phase and workload between vehicles. Controlling the workload will allow

the coverage along the boundary to be partitioned equally between the multiple

robots. Meanwhile, the phase controller will ensure the robots are at the same

location within their partition of the boundary.

In chapter 2, a background of multiple robot systems and boundary tracking

is discussed. Chapter 3 defines specifics of the problem at hand. Chapter 4 is an

overview of the controller method used for the cooperative multiple robot system.

Particle filter localization is described in chapter 5. In chapter 6, simulation and

real world experimentation implementation are discussed. Results are illustrated

in chapter 7. Finally, chapter 8 gives a conclusion of the information discussed

2

in this thesis, and future work on the topic is revealed in chapter 9.

3

Chapter 2

BACKGROUND

There are several functional areas needed to create a distributed multiple

robot system that can perform phase and workload balancing for the purpose of

boundary tracking. The vehicle localization is necessary for robot patrol applica-

tions. Boundary tracking and more importantly boundary following is required

for this distributed multiple robot application. Area coverage allows a given

space to be surveyed in its entirety. Phase balancing and spatio-temporal sam-

pling methods give robots the capability to patrol a given area at a consistent

rate.

Related to this research is work performed on the localization and navigation

of autonomous robots. In [10], a simple autonomous underwater vehicle utilizes

a vision system to identify a laser on a target. This determines the distance

from the robot to the target using the image location of where the laser as it

hits the target. The navigation system uses a compass module to gain trajectory

information, while a laser rangefinder [19] is used for distance information. The

calculation controller unit determines the bearing of the robot with respect to the

target area. The motor controller linearly reduces the error between the bearing

4

of the robot and the target area to zero in order to arrive at the desired location.

Sensor measurements can not be assumed to be exact in real world scenarios.

A.W. Stroupe, et. al. [2] performs object tracking by fusing Gaussian distri-

butions of sensor data from multiple robots. The approach used in [2] utilizes

Bayes rule with a Kalman filter [17], [19], [23]. Multiple Gaussian distributions

of the data are thus combined using simple matrix operations. Fusing the data

in this manner provides the ability to more accurately predict the location of

an object with multiple robots and permits these robots to be localized within

their environment. Kalman filtering is typically used to localize robots within a

mapped environment and object tracking. Monte Carlo localization is normally

applied to multiple robot localization in unknown environments.

Monte Carlo (or particle filter) localization [13],[23] is utilized to estimate the

state of the centroid of a triangle with each robot representing a corner. The

particle filter allows for less state information to be required (the position of the

centroid and its orientation) and thus less computational complexity. Further,

this localization method allows for robots with limited sensor capability to accu-

rately localize themselves within their environment. Though each robot performs

the particle filter independently, the robots share their highest belief states with

every other robot before particle resampling. Given the distance between each

robot, the robots are able to utilize the centroid information to localize them-

selves within their environment. Though [13] discusses this form of localization

in a three robot environment, it is also inferred that this method can be scaled

to several robots. This method also requires the robots having the capability to

sense one another. Otherwise particle filters must be performed on each individ-

ual robot.

Particle SLAM algorithms can use prior low resolution maps of an area to im-

5

prove the accuracy in a map and trajectory of an autonomous underwater vehicle

[20]. The BPSLAM algorithm utilizes a particle’s ancestry in the particle filter

to create the map of the environment. The prior maps of an area are initialized

as the map for the root particle, the particle at the base of the ancestry tree.

Particles are weighted based on the quality of their observation with respect to

their stored estimates. This method improves localization and mapping accuracy

only when prior maps of an area are available.

Several traditional robot navigation strategies have been applied to boundary

tracking. To follow boundaries while avoiding obstacles, work in [21] used Artifi-

cial Potential Fields. Potential field systems can be used to guide a robot toward

a target while avoiding obstacles. Though there is a risk of becoming caught in

a local minima, measures can be made to reduce the risk.

Work in [3] describes a method of implementing a global path planner with

local sensor data. Instant goals are used to set the path that the robot will follow

along with a boundary following algorithm to maintain global boundary following

and prevent local minima due to obstacles. This method may detract a robot

from observing important elements during observation as an attempt to follow

around obstacles.

In [8], non-linear planning is used as an optimization-based approach for path-

planning. Given a location that is a significant distance away in an unknown

environment, it is not feasible to plan the entire path off line. Real-time path

planning occurs as multiple plans are created to plans the robot trajectory to a

point on the horizon in the direction toward its goal state.

Using an auction system [24], robots are able to travel to all task points faster

than just alternating the assignment of points. Though this motion planner can

6

be utilized to patrol a boundary area, localized dynamic events may be missed

when performing scientific missions requiring such observation.

Q-learning allows the robot to create a path based on a reward system [15].

The Q-learning algorithm gives the robot the ability to not only move based

on previous rewards, but also to explore new areas to determine other methods

of traveling to the target location. Self-organizing control uses a measurement

unit and a modifying unit to control the actual movement of the robot. The

measurement unit is a fuzzy incremental controller, while the modifying unit

modifies the F-table when controller performance is not met. The purpose of such

a controller can be utilized in applications not calling for specific path following.

In [11], a collaborative path planning algorithm assigns one robot as a coor-

dinator and all of the robots comprise a team. The coordinator guides the other

robots toward a target. The follower robots are designed to follow the coordina-

tor robot in order to give additional sensing of the environment to the follower

robot. Making a single robot the coordinator can lend itself to issues caused by

a single robot’s failure.

The distance of the robot from a discovered boundary becomes minimized as

it moves back and forth across a boundary in [1]. Multiple robots are used to

collect and analyze information to follow the boundary closely in a convoy. The

research in [1] did result in false positives due to noisy sensor readings. The focus

of this thesis was to make all robots traverse the entire area getting as close to

the boundary as possible. Another method for coordinating the robots would be

to divide the boundary area to be covered.

F. Zhang and S. Haq [9] propose a shape theory approach to boundary follow-

ing in a multiple mobile robot system. The center of mass of a group of robots,

7

formed in any shape, (similar to [13]) is used to determine boundary following

characteristics. In [9], robots are to keep a distance from the boundary to be

followed so as to avoid collision. Collision avoidance is performed by keeping the

minimum distance between the robot and center of mass less than the minimum

distance between the center of mass and the nearest boundary point. A linear

proportional controller is used for the center of mass. Other feedback controls

are designed such that the center of mass maintains a desired distance from the

boundary and the robots maintain a desired shape. GPS is proven unnecessary

in [9] given the robots have sensors to observe the behavior of themselves and of

the other robots in the system.

The UUV-gas algorithm [4] can be used to perform boundary tracking com-

prised of circular motion. The focus of this multiple vehicle cooperative tracking

is to prevent vehicle collision while having each vehicle following the same bound-

ary. The circular motion in this algorithm is designed to allow the robot to travel

only a set distance within the boundary region and outside the boundary region.

Using circular motion only could prevent necessary coverage within the boundary

region dependent on the application.

Recent work in area coverage allows single and multiple robots to offer com-

plete coverage of an unknown area. To fully cover an unknown area, simplices

can partition a 2D region to be covered by multiple robots [22]. The simplices give

a path that robots can take to cover the entire unknown area. The path created

does not take into account spatio-temporal sampling needs. Further, partitioning

the area into separate paths for multiple robots to follow could improve efficiency.

In [6], Boustrophedon decomposition performs complete coverage of an area

in single and multiple robot implementations. Adjacency graphs are used to keep

track of cells. Cells are created when new areas are explored and obstacles are

8

reached. Multiple robot implementations create new cells once they no longer

have cells to explore to prevent idling. During a single robot failure, this method

allows other robots within a multiple robot system to continue coverage of the

area; however, overlapping coverage does occur.

Instead of using an adjacency graph, coverage can be achieved using a span-

ning tree coverage algorithm [14]. On-line multiple robot spanning tree coverage

breaks down the work area using cell decomposition. Groups of cells are made

from larger cells until each robot is given 4 cells as the area to immediately

cover. Robots explore the cells and broadcast their connection to each robot.

When multiple robots attempt to assign themselves to the same group of cells,

the robot with the least cell coverage is assigned. Spanning tree coverage allows

for non-redundancy in most cases. If a robot fails, the area that the robot had

covered along with the areas assigned to be done are cleared to be reassigned to

other robots. This application involves covering the work area exactly once as

opposed to surveillance applications where continuous area coverage is desired.

Coverage of a dynamic environment with obstacles and other robots can also

be accomplished using a neural network [5]. Each neuron in the network is defined

as an unclean area or an obstacle. The neural network is set to globally attract

unclean areas while locally avoiding obstacles. Multiple robots each have their

own shunting equation to be used for the neural network. Collision avoidance is

also offered as each robot considers other robots to be obstacles.

Y. Guo and M. Balakrishnan [25] offers complete coverage of a bounded area

with a car-like mobile robot. Complete coverage is performed using a minimum

number of discs, representing sensor coverage of the vehicle, to partition the

bounded area. The discs are covered by the robot using a neural network to

determine the path to cover all discs. Each neuron is defined as being either

9

unclean, already cleaned, or an obstacle, where unclean areas are to be explored

by the robot. Multiple robot systems are designed whereby the bounded area is

divided into sub-regions for each robot.

Utilizing robots for a mobile sensor network [12] also deals with the problem

of area coverage. Relationships between robots are defined by a Delaunay tes-

sellation and a Voronoi diagram. The Delaunay tessellation defines properties

between robots within one link of one another, and an adjacency matrix is used

to specify the connectivity of the Delaunay tessellation. The Voronoi diagram is

used to describe the coverage area of each robot along with the coverage area of

the entire system. To maximize area coverage of the sensor network, robots must

move using a continuous control law (Lloyd’s algorithm) to reach the centroid of

each Voronoi region. Fault tolerance is considered with the merging and splitting

of Voronoi regions. This method maintains maximum area coverage for a group

of robots as a sensor network. The robots move in formation to cover different ar-

eas in either an asynchronous or synchronous pattern, moving all Voronoi regions

with it.

A reactive policy is used on a single unmanned aerial vehicle to cover a given

area with all points (referred to as cells) being observed at the same time dura-

tion [16]. The single UAV heads toward the cell having the longest time since

previously observed (age). When multiple cells have the same age, the robot

moves toward the closest cell. A search pattern emerges displaying a spiral pat-

tern along the area boundary heading inward, and then returning to the start

position. A multi-agent reactive policy is applied for multiple robot scenarios.

This policy acts in a similar pattern, whereby the robot heads toward the cell

closest with the maximum age. Another multiple robot approach explored uses

space decomposition (SD) to partition the area into regions of cells for cover-

10

age by each UAV. Genetic algorithms are used to determine AUV assignment to

region. Results concluded both multiple UAV approaches valid, with SD being

closer to an optimal solution in smaller robot applications.

Also, current research on spatio-temporal sampling offers the ability for a

robot to maintain a relative location at set time intervals. In [7], phase balancing

is used to maintain distance between a fleet of AUV gliders along a set path.

Similar phase balancing can be used for spatio-temporal sampling. This system

has all robots covering the entire boundary edge, causing overlap of the same

location multiple times. If this is combined with workload balancing, the multi-

robot system can efficiently partition the coverage of a boundary area along with

improving spatio-temporal sampling of the boundary edge.

Though many of the previously discussed methods for multiple robot coop-

erative control are outlined in [18], the task of coverage with respect to spatio-

temporal sampling is also discussed. To perform coverage spatiotemporal sam-

pling, vehicles are allocated to regions to patrol. A region can be divided into

polytopes that are assigned to a robot to each region. Coverage control can then

be performed by minimizing a function that determines the sensing performance

of a robot to a location and the importance of that location. Voronoi decompo-

sition is used to determine a graph of the vehicles. The centroids of the Voronoi

decomposition is then utilized in a linear control law to determine critical points

for the cost function and give locally optimal coverage. Using Voronoi decompo-

sition allows for robots to only need to communicate with their nearest neighbor

for information.

The topics discussed above describe several methods for performing localiza-

tion, boundary tracking, area coverage, and phase balancing. It is the combined

efforts of these principles that can allow for balancing the area covered by mul-

11

tiple robots while following a boundary edge, keeping each robot at the same

relative location along the boundary.

12

Chapter 3

PROBLEM DEFINITION

Consider a continuous edge segment E defined by two end points s0 and

sn defined within a coordinate frame where the SG axis follows the edge. The

problem is to partition E into n sub-segments, each of which is allocated to one

of n robots that must track the sub-segment. Hence, the ith robot is designated

to sample an interval ∆si = si+1 − si along the boundary edge between si and

si+1. An illustration of the proposed problem can be found in (Fig. 1.1).

To permit repeated sampling measurements over time, the ith robot will travel

from si to si+1, and back to si. This motion will constitute one cycle, where

the location of the robot within this cycle is referred to as the phase ϕi and is

measured in radians. The robot’s phase ϕi relates to the position srob,i along the

SG axis by:

ϕi =


π

srob,i−si
∆si

if ṡi > 0

π
si+1−srob,i

∆si
+ π else

 (3.1)

In tracking E, it is desirable to balance both Workload and Phase.

13

3.1 Workload

In this thesis, the workload is defined as the area covered by the robot as it

traverses the edge. This area will be a function of the distance the robot travels

perpendicular to the boundary edge (e.g. the depth under ice an AUV must travel

to observe ice algae population density). Further, this perpendicular distance

(da,i) can differ along the boundary edge. Hence, to balance the workload, the

error to minimize is the difference between each robot’s area covered Ψi:

eΨ,i = Ψi+1 −Ψi

=
∫ si+2
si+1

ddes(s)ds−
∫ si+1
si

ddes(s)ds

≈ da,i+1∆si+1 − da,i∆si

(3.2)

In eq. 3.3, the area covered by a robot is approximated as a rectangle and

calculated as the product of average depth da,i and ∆si. While the ddes is a

function of the robot position srob,i along the edge, the boundary values si can

be controlled by the robot itself. Workload balancing dynamically adjusts the

workload of each robot in real time as it traverses the edge.

3.2 Phase

The second goal of this controller is to the improve the spatio-temporal sam-

pling by minimizing the phase difference between AUVs. This will reduce the

likelihood of missing a localized dynamic event. A localized dynamic event can

occur at any location along the boundary at any given time. Maintaining equal

distances within each robot partition permits the robots to be close enough where

events are less likely to go unnoticed. Such dynamic events could be important

14

for observation and surveillance applications. Further, phase balancing allows for

consistent sampling of the same location within its respective partition for all

robots. The associated error to be minimized is:

eϕ,i = ϕi+1 − ϕi (3.3)

3.3 Implementation

The controller designed must be able to function on an actual distributed mul-

tiple robot system. In (Fig. 3.1), multiple robots are aligned toward a boundary

to be followed using sensors. Localization is performed with an external range

sensor to place the robots within a global coordinate frame. The robots can com-

municate with each other and the external sensor via wireless communication

method.

It is assumed that the field of view of the rangefinder is at a fixed location

during the experiment. Also, the rangefinder must be capable of maintaining all

of the robots within its field of view to sufficiently track the robots.

15

Figure 3.1: Distributed Multiple Robot System Performing Boundary
Tracking

16

Chapter 4

CONTROLLER DESIGN

Since the boundary values si can be controlled by the robots themselves,

consider the dynamics of the boundary values to be modeled as in eq. 4.1, with

a proposed control input Us,t in eq. 4.3.

St+1 = St + Us,t (4.1)

where

St = [s0 s1 ... sn]t (4.2)

Us,t = (0 Kses,0 ... Kses,n−2 0)T (4.3)

To understand the error dynamics, consider a three AUV system in which

n = 3. Considering eigenvalues of the transition matrix in eq. 4.4, the error

dynamics can be proven stable for Ks > 0.

17

Es,t+1

=

 es,0

es,1


t+1

=

 da,0 −da,0 − da,1 da,1 0

0 da,1 −da,1 − da,2 da,2

St+1

=

 1− (da,0 + da,1)Ks da,1Ks

da,1Ks 1− (da,1 + da,2)Ks

Es,t

(4.4)

While the controller operates using proportional feedback to control boundary

coverage (workload balance), a feedback linearization controller is used for robot

location (phase balance). The following phase dynamics were used:

Φt+1 = Φt + δΦs,i,t + Uϕ,t (4.5)

where

Φt = [ϕ0 ϕ1 ... ϕn−1]t (4.6)

As shown in eq 4.7, the proposed control input UΦ,t for the tth time step

consists of several terms, the first of which incorporates the desired phase velocity

ϕ̇des at which all robot’s should maintain, once steady state is reached. Adding

the second term −δϕs,i implements feedback linearization to counter the change

in phase caused by workload balancing, (i.e. change in si). The final term

18

Kϕeϕ,i −Kϕeϕ,i−1 is used to minimize phase error.

Uϕ,t =



ϕ̇des∆t− δϕs,0 +Kϕeϕ,0

ϕ̇des∆t− δϕs,1 +Kϕeϕ,1 −Kϕeϕ,0

...

ϕ̇des∆t− δϕs,n−2 +Kϕeϕ,n−2 −Kϕeϕ,n−3

ϕ̇des∆t− δϕs,n−1 −Kϕeϕ,n−2


t

(4.7)

where

δϕs,i =
srob,i,t−1 − si,t

∆si,t
− srob,i,t−1 − si,t−1

∆si,t−1

(4.8)

The resulting error dynamics are shown below. For clarity, and without losing

generalization, only the case with n = 3 is shown. This system is guaranteed

stable if eigenvalues of the transition matrix are less than 1, requiring the stability

condition Kϕ < 2/3.

EΦ,t+1

=

 eϕ,0

eϕ,1


t+1

=

 −1 1 0

0 −1 1

Φt+1

=

 1− 2Kϕ Kϕ

Kϕ 1− 2Kϕ

EΦ,t

(4.9)

While the phase cannot be controlled directly, it can be controlled indirectly

through the robot’s forward and rotational velocities. For example, inputting the

controller into equation 4.5 can yield a desired phase. This phase can be tracked

using a linear velocity controller in which the difference between the desired phase

19

and the actual phase of the vehicle are minimized (4.10).

vi = Kv(ϕdes,i − ϕi) (4.10)

As expected, the Kv term is the proportional control gain.

20

Chapter 5

PARTICLE FILTER

LOCALIZATION

A particle filter will be used to localize the robots within the global envi-

ronment. Odometry measurements from the robots are used for robot particle

propagation. Scans from a laser rangefinder are used to measure the robot loca-

tion in a global frame.

Particle filter localization allows robots to determine their position within a

global coordinate frame. Passive localization aids in the navigation of a robot

through the environment while the vehicles carry out tasks autonomously. Par-

ticle filters work by creating a set of randomly generated entities. Each entity is

an individual state estimate with a state (xt,i, yt,i, θt,i) in the configuration space

and a weight wt,i representing the probability of the belief state being the actual

robot. Initially, N particles are randomly drawn from the configuration space

and added to a set X0. These particles are then iterated over the entire time of

the experiment. At time t, the particle filter algorithm is performed (5.1).

21

For i = 1 : N

Pick xt−1,i from Xt−1,i

Draw xt,i with probability p(xt,i|xt−1,i, ot)

Calculate wt,i = p(zt|xt,i)

Add xt,i to Xt,TEMP

For i = 1 : N

Draw xt,i from Xt,TEMP with probability wt,i

Add xt,i to Xt,i

(5.1)

The particle filter is comprised of two main parts, a prediction and a correc-

tion step. The prediction step consists of propagating each particle forward and

determining the likelihood that particle is the actual state of the robot. The cor-

rection step is then utilized to propagate the particles with the highest likelihood.

The average state of all particles is thus an estimation of the actual state of the

vehicle Xt.

The prediction step of this algorithm is essentially a Bayes Filter. It begins by

propagating a given particle xt−1,i forward by adding the odometry measurement

plus random gaussian noise to the original state (5.2). The random gaussian

noise gives the particle error to distribute the particles around where the robot

believes it to be. This is to account for sensor noise that may exist within the

system.

xt,i = xt−1,i + (ot +N(µ = 0, σ = 1)) (5.2)

The perceptual probability is then determined (5.3). A unimodal (Gaussian)

distribution of mean µ, expected range for the particle, and variance, from sensor

data, is utilized in order to determine the probability density function for a given

22

measurement. These weights are normalized using η to transform the weight into

appropriate probabilities.

wt,i = ηN(µt,i, σt,i)bel(xt,i) (5.3)

The correction step selects particles by first randomly selecting a value be-

tween 0 and the sum of all weighted values. The particles are iterated through,

adding their weights, until the sum is greater than the previously selected value.

Particles that satisfy this condition are propagated. This method ultimately gives

favor to particles that are closer to the actual robot state having a higher weight.

23

Chapter 6

EXPERIMENT

The distributed control system was implemented within MATLAB, and tested

with a MATLAB simulator as well as with actual robots. In both cases, experi-

ments were designed to represent a system of multiple Autonomous Underwater

Vehicles (AUVs) tracking and sampling the underside of an ice raft edge, where

ice algae commonly grows. Figure 6.1 shows the testbed design (to be discussed

in further detail later) with the global coordinate frame.

Figure 6.1: Experiment setup: Three iRobot R⃝ Creates before navi-
gating under a simulated ice edge with global axes displayed.

24

To traverse the boundary edge, each robot uses a repeated series of motions

that result in a lawnmower pattern that follows the edge. This series of motions

includes 1) the robot moving forward until detecting the entering ice edge using

upward facing range sensors, 2) driving forward under the ice as long as the

presence of algae is still detected, 3) completing a 180 degree turn along a circular

arc, 4) driving forward until leaving the ice edge is detected, and 5) completing

another 180 degree turn along a circular arc. Throughout these motions, each

robot adjusts its forward and rotational velocity to track a desired phase (see

equation 4.10). To note, if the robot has reached the limit of the edge segment

defined by si and si+1, it will change its boundary edge traversal direction.

Figure 6.2: Desired States of Robot Crossing Patrolling Axis

Figure 6.2 illustrates the movement of the robot across the patrolling axis,

continuing forward until there are no longer algae, turning around, continuing

past the patrolling axis, turning around again, and then repeating the pattern.

The numbers on the image refer to these different states. Each state is assigned

relative to the current position of the robot.

25

6.1 Implementation

6.1.1 Simulation

MATLAB scripts and functions are used to test the functionality of the dis-

tributed multiple robot control system. Using the equations in the theory section,

the multi-robot system can be used on an assortment of maps to evaluate the

system under various conditions. Using a simulator offers ease in troubleshooting

and analysis in different scenarios and environments before adapting theory to

the real-world application.

The locations of the simulated algae are represented in maps using booleans to

determine if there exists algae in a discretized grid. Rounding functions are used

to determine if a robot is located within a grid that contains algae. The other

type of map created determines the location of the simulated ice raft. Values of

either 0.8 or 1 refer to whether the ice raft is present or not, respectively.

6.1.2 Hardware

Real-world testing is vital to observe the ability of actual robots to carry out

the desired task. Three iRobot R⃝ Create robots are used for the robot implemen-

tation of the control system. These robots have a differential drive system with a

stabilizing wheel. Odometry measurements are made via wheel encoders located

on the servos for the main wheels of the robot. The robots have been outfitted

with an upward facing infrared sensor to determine the presence of the boundary

edge. This is attached to a bluetooth R⃝ communication module that replaces the

standard serial communication cable.

A flow diagram of the hardware system can be seen in (Fig. 6.4).

26

(a) (b)

(c)

Figure 6.3: The iRobot R⃝ Create robot is shown from above in (a),
and below in (b). The bluetooth module and IR sensor added to the
robot can be found in (c).

The Create robots utilize the same MATLAB controller application as the

simulator. Modifications to the MATLAB application include initializing and

operating multiple sensors and running serial communication. The robots com-

municate with a computer running the MATLAB program via bluetooth R⃝ wire-

less communication that is converted to a serial interface. The robots receive

wheel velocities from the computer and return odometry and IR measurements.

The computer also collects scans of data from a SICK Laser rangefinder con-

27

Figure 6.4: Hardware Flow Diagram

nected via serial interface. The main computer may act as a centralized system,

however, the program architecture is decentralized.

6.1.3 Software

The main algorithm (Fig. 6.5) implemented in MATLAB operates for each

robot. The robots first acquire measurements from their IR sensors. This in-

formation determines whether the vehicles are crossing the boundary edge. If

the border edge is reached, the robots must alternate their direction to continue

following the boundary. If the boundary has been discovered by all robots, phase

and workload balancing occurs and the appropriate control laws are utilized to

determine the wheel velocities. Particle filter localization determines the global

location of each robot in the environment. Figure 6.6 performs the workload and

phase balancing for the MATLAB program. The area covered by the robot is

28

Figure 6.5: System Level Algorithm

determined. The phase of the robot is then found and the error between desired

and actual phase is determined. The same occurs for the region the robot is

to cover. Feedback linearization occurs to counter the phase change caused by

29

workload balancing (as discussed earlier). Finally the desired phase and resulting

phase error are calculated for the linear proportional control.

Figure 6.6: Workload/Phase Balancing Algorithm

6.1.4 Environment

The testbed environment for the robots consists of an empty room with a

foam board hanging from the ceiling. The foam board is approximately 4m in

length and hangs approximately 0.8m above the ground.

The robots are initially placed 1m from the foam board’s edge, and are aligned

with each other at varying distances parallel to the SG axis. IR sensors on the

robots detect the boundary edge based on the difference in IR height measure-

30

Figure 6.7: The hardware setup: Three iRobot R⃝ Creates navigated
underneath an overhanging foam block used to simulate an ice raft.

ments between the ceiling and the foam board. Four different experiments were

performed as in simulations. The first experiment begins with robots first reach-

ing the foam’s edge in phase with each other. The next experiment is initialized

with the first robot 72 degrees out of phase with the other two robots. Another

experiment begins with the middle robot 72 degrees out of phase with the other

two robots. The final experiment sets the third robot 72 degrees out of phase

with the other two robots. The results from this data should illustrate that the

robots can recover from being out of phase quickly while sampling the underside

of the overhanging foam block and evenly disperse the workload between them.

6.1.5 Particle Filter

The particle filter utilizes a SICK Laser rangefinder (6.8a) placed 1m behind

the robots, and centered along the boundary edge. This sensor has a scanning

angle of 180 degrees with a resolution of 0.5 degrees and maximum distance set

to 8m. The SICK Laser rangefinder combined with the odometry measurements

from the robots themselves, create the basis for the particle filter localization

31

used (6.8b).

(a)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Distance (m)

D
is

ta
nc

e
(m

)
(b)

Figure 6.8: The SICK Laser rangefinder is shown in (a). A scan of the
robots at their initial position with particle filter localization is seen
in (b).

Since multiple samples of the robot are taken from a single scan, these mea-

surements need to be translated into a single decisive point that would designate

the robots’ center, of which all other localization data is based. To simplify this

calculation, the shortest sample in a scan where samples curved along the robot

was taken. The known radius of the robot was added to the range of the sample

and the bearing was maintained. This estimated the location of the robot center.

Further, the accuracy of the particle filter was tested prior to implementation

with phase and workload balancing (Fig. 6.9). To test the accuracy in the

x-direction (direction perpendicular to the boundary), tape was placed exactly

1m from the starting position of the robot. The robot is then programmed to

drive past the tape. Video is recorded of the vehicle driving over the tape. The

timestamp from the video is then used to determine the time at which the robot

believes it passed over the tape. Five runs are performed, and the average error

32

Figure 6.9: Particle Filter Test: iRobot R⃝ Create moving toward loca-
tion of known distance (tape).

was found. The same test is then performed in the y-direction (parallel to the

boundary). The average error in the x-direction was 6.73cm and 6.88cm in the

y-direction. This error is believed to be negligible for the sake of this application.

6.2 Experiment Configuration

Three different scenarios were simulated, each with a different algae popu-

lation. The first scenario used has no algae. In this scenario, each robot will

travel an equal distance underneath the ice and return out. Here the boundaries

should remain equal and all robots should remain in phase. Figure 6.10a shows

the simulated environment. The white area represents the ice and the blue area

is the water surrounding the ice raft.

The next scenario has a large amount of algae across half of the ice raft, and

no algae across the other half. For this simulation, one robot will be completely

submerged in the algae-side as well as half of another robot’s boundary. The last

robot will only have the axis to patrol. In this case, the boundaries along the

33

patrolling axis should be significantly shorter for one robot, longer for the second

robot, and longest for the robot without algae to observe. The algae in (Fig.

6.10b) is illustrated by the green areas.

15 20 25
24

25

26

27

28

29

30

(a)

15 20 25
24

25

26

27

28

29

30

(b)

15 20 25
24

25

26

27

28

29

30

(c)

Figure 6.10: The Simulator GUI: A top down view of three robots
(circles) navigating water (blue) and under ice (white). The algae
(green) covers part of the under ice edge in some scenarios. In (a),
there is no algae on ice edge. In (b), algae is covering half of ice edge.
Scenario simulation (c) has a random coverage of algae.

Finally, the third scenario involves algae growing to random lengths from the

ice edge, (Fig. 6.10c). To test the phase balancing aspect of this experiment,

the robots were first placed in phase with one another. Then, the next three test

cases involve initially placing one of the robots 72 degrees out of phase from the

other robots. The goal is then for the robots to return to a state of equilibrium

with each other while balancing the workload between them.

34

Chapter 7

RESULTS

7.1 Simulation

In the first simulated test scenario, the three robots were initially in phase

with each other and followed the boundary of a simulated ice edge with no algae.

In Fig. 7.1, the error in phase and workload is illustrated. In order to compare

this nominal error, the actual phase of each robot is displayed in the figure.

(a) (b)

Figure 7.1: Simulation results for the case with no algae under the ice
and the three robots starting in phase. The phase error is plotted in
(a) and the workload error is plotted in (b).

35

It can be seen in Fig. 7.1 that the phase remains constantly tracked. Also,

the workload does adjust slightly and the error approaches zero.

The other simulations gave similar results. The steady state error for the

phase can be found in Table 7.1. The steady state error differs between scenarios,

but it always decreases over time. This method lends itself to a worst case average

of 4.1% steady state error.

Table 7.1: Phase Steady State Error (radians)
All Robots Robot 1 Robot 2 Robot 3

Ice Initially Initially Initially Initially
Edge In Out of Out of Out of

Phase Phase Phase Phase
No Algae 0.073 0.093 0.073 0.073
Half Algae 0.169 0.189 0.206 0.207
Random Algae 0.222 0.240 0.257 0.238

The steady state error for the workload is in Table 7.2. The steady state

error does not increase significantly between no algae and half algae scenarios.

However, the random algae scenario shows a significant increase compared to the

other scenarios. Despite this increase, the steady state error remains only a few

cm2.

Table 7.2: Workload Steady State Error (m2)
All Robots Robot 1 Robot 2 Robot 3

Ice Initially Initially Initially Initially
Edge In Out of Out of Out of

Phase Phase Phase Phase
No Algae 0.010 0.013 0.015 0.012
Half Algae 0.015 0.015 0.016 0.019
Random Algae 0.037 0.036 0.043 0.043

36

7.2 Robot Implementation

7.2.1 Odometry

Three iRobot R⃝ Creates were tested to track the boundary of a 4m long foam

board without any simulated algae. Figure 7.2 displays the resulting boundary

following with robot trajectories.

Figure 7.2: Trajectories of iRobot R⃝ Creates in following the simulated
ice raft (i.e. the overhanging foam block.)

In Fig. 7.3, the error in phase and workload is displayed. In order to compare

this nominal error, the actual phase of each robot is displayed in the figure.

It can be seen in Fig. 7.3 that the phase remains constantly tracked. Also,

the workload does adjust slightly and the error reduces to zero just after one

cycle of the robot between its boundaries.

Other cases produced similar results. Table 7.3 displays the steady state error

for the phase in all cases. In the worst case the steady state error remains below

2.5%.

The steady state error for the workload is also seen in Table 7.3. The steady

37

(a) (b)

Figure 7.3: Experimental results for the case with no algae under the
ice and the three iRobot R⃝ Create robots starting in phase. The phase
error is plotted in (a) and the workload error is plotted in (b).

Table 7.3: Experiment Steady State Error
All Robots Robot 1 Robot 2 Robot 3

Steady State Initially Initially Initially Initially
Error In Out of Out of Out of

Phase Phase Phase Phase
Phase 0.129 0.1474 0.1381 0.152
(radians)
Workload 0.014 0.018 0.016 0.015
(m2)

state error for the workload remains constant. This makes sense since the work-

load should not have to change across the various cases.

7.2.2 Particle Filter Localization

As with odometry, three iRobot R⃝ Creates tracked the boundary of a 4m long

foam board without any simulated algae. These robots utilized a particle filter

to localize themselves within their global area. Figure 7.4 displays the resulting

boundary following with robot trajectories.

In Fig. 7.5, the error in phase and workload is displayed. The actual phase

38

−1 0 1 2 3

−3

−2

−1

0

1

2

Distance (m)

D
is

ta
nc

e
(m

)

Figure 7.4: Trajectories of iRobot R⃝ Creates using Particle Filter Lo-
calization

of each robot is displayed in the figure to illustrate the nominal error.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

Time (s)

A
bs

ol
ut

e
P

ha
se

 E
rr

or
 (

ra
d)

eφ,0

eφ,1

φ
1

φ
2

φ
3

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2

0.25

Time (s)

A
bs

ol
ut

e
W

or
k

Lo
ad

 E
rr

or
 (

m
)

e

s,0

e
s,1

(b)

Figure 7.5: Experimental results for the case with no algae under the
ice and each robot starting 1m apart from one another. The phase
error is plotted in (a) and the workload error is plotted in (b).

It can be seen in (Fig. 7.5) that the phase and workload are properly balanced

as it did when the robots used only odometry for localization. This proves the

ability to globally localize the robots in an environment passively while still having

the capability to perform accurate phase and workload balancing.

39

Chapter 8

CONCLUSION

This work presents a distributed boundary edge tracking controller for mul-

tiple robot systems. The controller balances workload and phase. It balances

workload with a proportional controller that adjusts the boundaries that each

robot works within in order to appropriately disburse the total coverage area

between each robot. It balances the phase using a feedback linearization con-

troller that allows robots to match their edge traversal progression within their

individual boundaries.

The controller is provably stable to drive differences between robot workloads

and phase differences to zero. This was demonstrated with simulations of a three

robot system. The simulations tested conditions where simulated algae coverage

covered half of the map at the same depth, all of the map at random depths, and

none of the map at all. The simulations also tested these maps against robot

locations having various phase differences with respect to one another. Real-

world experiments with three iRobot R⃝ Create robots displayed similar results.

The robot implementation illustrated the ability to perform boundary tracking

while performing phase and workload balancing by testing the robot traversal of

40

varying distances underneath the simulated ice raft as well as varying the initial

phases of the robots with respect to one another. Steady state error remained

only a few percent in the worst cases among all scenarios.

Particle filter localization is applied to the multiple robot system. Particle

filter localization allowed the vehicles to be passively localized within a global

coordinate frame. Odometry only methods fail to account for measurement drift

and thus display inaccurate tracking information. The particle filter increased

the accuracy of the robots’ map of the ice edge through localizing the robots and

accounting for process noise. Running the particle filter on the multiple robot

system permitted the robots to perform boundary tracking while balancing their

workload and phase.

41

Chapter 9

FUTURE WORK

Future work for this thesis will first consist of an elaboration of the current

testbed. Due to space and time constraints, the robot implementation was unable

to test full workload balancing through adjusting the location of simulated algae

(as was performed in MATLAB simulation). In order to test workload balancing

in area coverage on the current robot implementation, additional foam board

could be added to the bottom of the current hanging foam board. The IR sensor

can then be calibrated to decipher the lower areas as coverage areas as opposed to

solely being underneath the boundary. Currently, the distributed system is tested

using a centralized computer. However, in order to accurately test the scalability

of the system, it is necessary to build a proper distributed system. The current

computer can barely handle the coordination of all three robots. Giving each

robot a microcomputer to perform only the algorithm for that robot, should allow

the system to operate smoother and be scaled to as many robots as is necessary.

Also, the particle filter on the current system could use further adjustment. One

such modification would be to make the particle filter localization into a PF

SLAM algorithm. Combining the mapping of the boundary edge with robot

42

localization can increase accuracy and reduce complexity through integration.

Figure 9.1: OceanServer Iver2 AUVs can be deployed in the Arctic

Other work will ideally involve placing these controllers on Autonomous Un-

derwater Vehicles (AUVs) deployed in Arctic expeditions where ice is abundant.

This system can be designed to deploy on multiple OceanServer Iver2 AUVs

(Fig. 9.1). These AUVs prove themselves useful for environmental monitoring

and ideal for coastal applications. The distributed system can be placed on com-

puters on each robot, using GPS and Sonar, along with acoustic modems for

communication.

A key difficulty with AUV localization is underwater positioning error. GPS

measurements can be taken only when the vehicle is surfaced, which can allow for

measurement error propagation. Utilizing sensors to detect the locations of other

robots could prove useful for a multiple robot particle filter to increase position

accuracy. Further, beacons may also be able to be utilized with sensor fusion for

global localization of multiple underwater vehicles.

Utilizing phase and workload balancing with large numbers of these au-

tonomous underwater vehicles can one day allow for the exploration, and un-

derstanding for the growth of harmful algae blooms. An understanding of this

knowledge can further research to repair polar ecosystems that are damaged by

such algae. Similarly, this same research can aid in exploring and observing the

43

growth of indigenous algae that is dying out due to climate changes.

44

Bibliography

[1] A. Joshi, et. al., ”Experimental Validation of Cooperative Environmental

Boundary Tracking with On-board Sensors”, in American Control Confer-

ence, pp.2630-2635, June 2009.

[2] A.W. Stroupe, et. al., ”Distributed Sensor Fusion for Object Position Es-

timation by Multi-Robot Systems”, Proceedings of the IEEE International

Conference on Robotics & Automation , pp. 1092-1098, 2001.

[3] B. Chow, et. al., ”Assigning Closely Spaced Targets to Multiple Autonomous

Underwater Vehicles”, Proceedings of the Unmanned Untethered Submersible

Technology, 2009.

[4] C.H. Hsieh, et. al., ”Experimental validation of an algorithm for cooperative

boundary tracking”, Proceedings of the American Control Conference, pp.

1078-1083, 2005.

[5] C. Luo and S.X. Yang, ”A Real-Time Cooperative Sweeping Strategy for

Multiple Cleaning Robots”, Proceedings of the IEEE International Sympo-

sium on Intelligent Control, pp. 660-665, 2002.

[6] C.S. Kong, et. al., ”Distributed Coverage with Multi-Robot System”, Pro-

45

ceedings of the IEEE International Conference on Robotics & Automation,

pp. 2423-2429, 2006.

[7] D.A. Paley, et. al., ”Cooperative Control for Ocean Sampling: The Glider

Coordinated Control System”, IEEE Transactions on Control Systems Tech-

nology, vol. 16, no.4, pp.735-744, July 2008.

[8] D. Kogan and R.M. Murray, ”Optimization-Based Navigation for the

DARPA Grand Challenge”, Conference on Decision and Control, pp. 1-6,

2006.

[9] F. Zhang and S. Haq, ”Boundary Following by Robot Formations without

GPS”, Proceedings of the IEEE International Conference on Robotics & Au-

tomation, pp. 152-157, 2008.

[10] H. Majeed, et. al., ”A Cost Efficient Design for an Autonomous Underwater

Vehicle Capable of Localizing and Navigating within a Bounded Body of Wa-

ter”, International Conference on Computational Intelligence for Modeling

Control and Automation, pp. 987-992, 2008.

[11] J. Chen and L. Li, ”Path Planning Protocol for Collaborative Multi-Robot

Systems”, in IEEE International Symposium on Computational Intelligence

in Robotics and Automation, pp.721-726, June 2005.

[12] J. Tan, et. al., ”Modeling Multiple Robot Systems for Area Coverage and

Cooperation”, Proceedings of the IEEE International Conference on Robotics

& Automation, pp. 2568-2573, 2004.

[13] M. Peasgood, C.M. Clark, and J.McPhee, ”Localization of Multiple Robots

with Simple Sensors”, Proceedings of the IEEE International Conference on

Mechatronics & Automation, pp. 671-676, 2005.

46

[14] N. Hazon, et. al., ”Towards Robust On-line Multi-Robot Coverage”, Pro-

ceedings of the IEEE International Conference on Robotics & Automation,

pp. 1710-1715, 2006.

[15] N. Kim, et. al., ”Intelligent Navigation and Control of an Autonomous Un-

derwater Vehicle based on Q-Learning and Self-organizing Control”, ICROS-

SICE International Joint Conference, pp. 630-634, 2009.

[16] N. Nigam and I. Kroo, ”Persistent Surveillance Using Multiple Unmanned

Air Vehicles”, IEEE Aerospace Conference , pp. 1-14, 2008.

[17] R.G. Brown, P.Y.C. Hwang, Introduction to Random Signals and Applied

Kalman Filtering, 3rd. ed. Hoboken, NJ: John Wiley & Sons, 1997.

[18] R.M. Murray, ”Recent Research in Cooperative Control of Multivehicle Sys-

tems”, Transactions of the ASME Journal of Dynamic Systems Measurement

and Control, pp. 571-583, 2007.

[19] R. Siegwart, I.R. Nourbakhsh, Introduction to Autonomous Mobile Robots.

Cambridge, MA: Bradford, 2004.

[20] S. Barkby, et. al., ”Incorporating Prior Maps with Bathymetric Distributed

Particle SLAM for Improved AUV Navigation and Mapping”, OCEANS, pp.

1-7, 2009.

[21] S. Charifa and M. Bikdash, ”Adaptive boundary-following algorithm guided

by artificial potential field for robot navigation”, IEEE Workshop on Robotic

Intelligence in Informationally Structured Space, pp.38-45, May 2009.

[22] S.S. Ge, et. al., ”Boundary Following and Globally Convergent Path Plan-

ning Using Instant Goals”, IEEE Transactions on Systems, Man, and Cy-

bernetics, vol.35, no.2, pp.240-254, April 2005.

47

[23] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics. Cambridge, MA: MIT

Press, 2006.

[24] X. Wang and V. Syrmos, ”Coverage Path Planning for Multiple Robotic

Agent-Based Inspection of an Unknown 2D Environment”, 17th Mediter-

ranean Conference on Control and Automation, pp. 1295-1300, June 2009.

[25] Y. Guo and M. Balakrishnan, ” Complete Coverage Control for Nonholo-

nomic Mobile Robots in Dynamic Environments”, Proceedings of the IEEE

International Conference on Robotics & Automation , pp. 1704-1709, 2006.

48

