
Interactive Preferences and Decision-Theoretic Planning 

Derek Williams∗, Kyle Bailey†, Alex Dekhtyar∗, Judy Goldsmith∗ ,
 
Beth Goldstein‡, Raphael Finkel∗, Joan Mazur§
 

Abstract	 planning. During plan examination, the user may alter pref-

We introduce a suite of interlinked software tools 
for eliciting preferences, doing decision-theoretic 
planning, and displaying the plans. The software 
allows a user to walk through possible trajectories, 
adjust preferences, and compare potential trajecto­
ries. This paper focuses on the elicitation process, 
the plan display, and interactions between the two. 

1	 Introduction 

Plan always involves a mental formulation and 
sometimes graphic representation: It often suggests 
a particular pattern and some degree of achieve­
ment or harmony. [6] 

Decision-theoretic planning software for a wide range of 
applications (from island evacuation [3] to academic advising 
to medical planning [2; 9; 11]) should react to changes in the 
planning environment. These changes can occur both in the 
external world and within a user. Changes within a user are 
often prompted by observing the plan that has been submit­
ted for review. Thus, planning should be a highly interactive 
process — user preferences form the utility function for the 
planning software; the output plan is displayed to the user; 
upon observing the plan, the user modifies their preferences 
and repeats the process. 

In our interactive planning system, information flows from 
user to preference elicitation tool to the planner to the plan-
display tool, then back to the user, forming a feedback loop 
that repeats during plan-building until the user is satisfied 
with the proposed plan. In this paper, we focus on the first 
and the last software components of this system: the prefer­
ence elicitation tool (POET) and the plan display tool (Plan-
Scan) and on the direct and indirect interaction between them. 

The feedback process using these tools proceeds as fol­
lows. Together with the plan, PlanScan receives from the 
planner the information about the user preferences used in 

∗Department of Computer Science, † Department of Psychol­
ogy, ‡ Department of Educational Policy, § Department of Curricu­
lum and Instruction, University of Kentucky. Corresponding author 
email: goldsmit@cs.uky.edu. Work partially supported by NSF 
grant ITR-0325063. 

erences using POET and request a new plan from PlanScan, 
which can display different plans and their associated pref­
erences in different tabbed panels. The user can view and 
compare plans for different preferences. 

PlanScan allows the user to specify a particular state and 
start the plan walkthrough from that state. This feature aids 
in the comparison process. It also allows the user to choose 
an action not recommended by the plan for comparison pur­
poses. 

In this paper, “plans” are long-term plans or policies for 
action in a stochastic domain. The domain is assumed to be 
modeled as a factored Markov decision process, where a state 
is defined as a setting of values for all of the fluents (also 
known as state variables or attributes). Policies are mappings 
from states to a finite set of actions. 

What makes such plans difficult for a user to comprehend 
is that each action from a given state may lead to many pos­
sible next states. Following all possible outcomes into the 
future leads to potentially exponential growth in the number 
of possibilities. It is impractical and incomprehensible to dis­
play all of that information at once. The screenshots given 
here are of an initial interface design for plan display that is 
intended to minimize the cognitive load of the user.1 

This paper is organized as follows. We first present POET, 
the programmable online elicitation tool for preferences, and 
discuss the underlying representation of preferences and util­
ities. We present PlanScan, the plan displayer. We then walk 
through a decision process based on these two tools (assum­
ing factored MDP model of a system and an appropriate plan­
ner). Finally, we discuss a smattering of related work. 

2	 POET, the Programmable Online 
Elicitation Tool 

We developed POET to elicit undergraduate’s preferences 
about their academic programs. Our assumptions were that 
some students do not know their preferences, and preferences 
may be contradictory, and may change. 

1According to the Wikipedia [14], “Cognitive load is how much 
of a person’s attention is being used up. For example, a person in a 
boring lecture will likely have a lower cognitive load than a soldier 
in battle.” 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19150509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http:displayer.We
http:ities.We
http:follows.We
mailto:goldsmit@cs.uky.edu


In order to guide students, we introduced the notion of 
“archetypes”. For instance, for computer science majors, we 
defined archetypical preferences for “Wants to go to grad 
school,” “Wants to work in industry,” and “Wants to party 
like a rock star.” The latter archetype included strong pref­
erences against morning classes, classes with large program­
ming assignments, and against or for certain professors. The 
archetypes are initial sets of preferences that the students 
could agree with, or could adjust as desired. Archetypes 
are important because they present users with a example that 
they can then critique and adjust. Studies have shown that 
example-based interfaces can more accurately elicit user pref­
erences and increase user confidence in their choices [7]. 

In order to allow contradictory preferences (“must graduate 
as soon as possible, while only taking Tues/Thurs classes be­
tween noon and 2pm”), we assumed an additive utility func­
tion that could assign both positive and negative values to the 
same instance. We offered both hard constraints (“must have” 
and “must not have”) on attribute values, and soft constraints, 
which translated into utility. 

We address the third assumption, that preferences change, 
by re-elicitation and replanning, and in particular by the in­
teractions offered by our current suite. 

2.1 POET Representation of Preferences 

We have defined the following model for preference repre­
sentation [10]. The universe over which preferences are ex­
pressed is a collection A = {A1, . . . , An} of preference at­
tributes. With each attribute Ai, we associate a finite domain 
dom(Ai) of possible values. 

The preference over one attribute, for instance, the profes­
sor, may depend on the values of other attributes, such as the 
course topic. We represent such a dependency as a tree with 
(in this case) PROFESSOR at the root and utilities at the leaves. 
Each path is interpreted as the conjunction of attribute values; 
each internal node is an attribute name and outgoing edges 
represent values for that attribute. Each attribute can appear 
at most once per branch, and each conjunction can appear at 
most once (as a branch or subset) within the preference forest. 

We use a Likert scale from “MUST NOT HAVE” to “MUST 
HAVE”, with weak and strong preferences for and against, 
and indifference also available. The extreme values represent 
hard constraints while values in between are soft constraints. 
We hide the numeric values of these preferences (their trans­
lation into utilities) from the user. The independence of the 
trees allows a user to express both positive and negative feel­
ings about attribute values of the same instance. The software 
assumes a default value of “indifference” for those attributes 
and values that the user does not explicitly consider. 

Each tree branch has a utility, and each state in the MDP 
satisfies at most one branch per tree. If the state satisfies no 
branches of the tree, then that tree contributes the indifference 
value, usually 0, to the overall utility of the state. The leaf 
values of all branches that are satisfied by the state are added 
together. 

At present, we assign utility values on a linear scale, with 
“don’t care” translating into a utility of 0, and positive utili­
ties (“weakly prefer” and “strongly prefer”) mapped to 1 and 

2. Negative utilities are mapped to -1 and -2. We will experi­
ment with other mappings in later work. 

Because the trees function independently of each other, 
software can evaluate them in parallel. Furthermore, the eval­
uation of each tree on a given instance is fast. 

2.2 POET Elicitation Process 
The first step of the POET elicitation process, after login 
and tutorials, is the choice of an “archetype,” or general de­
scription, which is linked to a set of suggested preferences. 
POET displays these preferences in tabbed panes labeled by 
attribute. 

Once the user has selected an archetype, they are free to 
change anything presented in the preference structures: They 
may add new attributes or dependencies, delete attributes 
or dependencies about they indifferent about, or adjust the 
slider value for any dependency chain or single attribute. The 
archetypes are starting points and suggestions. The user may 
choose to jump immediately from the provided preferences to 
the planner and plan displayer, or they may do so at any later 
point in the elicitation process. 

When the user requests a plan, the plan pops up a per­
sistent window (as described in Section 3). Included in the 
window is a description of the preferences used to compute 
that suggestion. The window persists as is, even if the user 
then modifies their current preferences. This presentation al­
lows the user to compare different outcomes and recover the 
preferences that led to their favorite recommendations. The 
user can access multiple recommendation windows as tabbed 
panes, making navigation easier and minimizing clutter on a 
potentially small screen. 

3 PlanScan 
The input to PlanScan is a model (a factored MDP descrip­
tion) and a plan. It maintains a link to the POET preference 
description for that plan. The plan maps states to actions. 
Each factored state is an assignment of values to the set of 
state variables, and each state has a set of allowable actions. 
Each action results in stochastic effects: the model specifies 
the probability distribution of winding up in a specific state. 

PlanScan parses and displays the input plan. It uses a lay­
out that the user doesn’t adjust. Its layout flows from left 
to right, detailing the current state, suggested and allowable 
actions, possible consequent states, and the details of the se­
lected consequent state.The GUI details the current state in a 
vertical, scrollable list of all attributes and their values. The 
input to PlanScan that describes the domain includes plain­
text descriptions of attribute values for display purposes. 

PlanScan displays actions in a series of labeled buttons. 
The first button shows the action that the plan recommends, 
and its text label is shown in boldface. The user may choose 
an alternative action from the list in order to explore a dif­
ferent trajectory. Based on the input file, PlanScan uses text-
based names for actions as well as state attributes, and pro­
vides descriptions of those actions when the mouse cursor 
hovers over the button. 

Once the user selects an action, PlanScan displays the set 
of possible consequent states. Rather than displaying mul­
tiple detailed state views, it generates a series of rectangles 



of various sizes and colors in a horizontally scrollable pane. 
Each rectangle represents a possible consequent state. The 
sizes of the rectangles correspond to the likelihood of enter­
ing that particular state after taking the selected action; larger 
rectangles correspond to higher probabilities. The colors of 
the rectangles correspond to the utility (hence, the desirabil­
ity) of each consequent state. Colors range from dark blue 
(very positive utility) through white (neutral) to dark red (very 
negative utility). The rectangles (states) can be ordered in de­
creasing order by probability or utility. 

When the user selects a rectangle, PlanScan details the 
consequent state in the righthand pane in the same format 
in which it shows the current state. Attribute values in the 
current and result state are shown in boldface if they differ. 
Once the user has selected a consequent state, clicking the 
“forward” button advances to that state. The “forward” but­
ton shows a right-facing arrow; the “back” button, which lets 
the user restore the previous state from a stack, shows a left-
facing arrow. Together, these buttons mimic the advance and 
retreat functions of popular web and file browsers. 

When exploring a plan, a user might want to compare pos­
sible outcomes after a series of actions. PlanScan allows users 
to chain together a series of actions (which we call action se­
ries) and look at the possible outcomes after taking that series 
of actions, while maintaining the current state. 

Action series allow users to explore future states without 
backtracking and trying all the trajectories manually; the cur­
rent state provides a static point of reference. This facility al­
lows users to “jump” as well as “walk” through a plan. Users 
can utilize action series to focus on fragments of the plan that 
are of interest to them. 

In many decision-support applications, one can define sub-
goals. A subgoal is either a complete state or a partial list of 
attribute values. When a user defines subgoals, PlanScan au­
tomatically adds a new tabbed window to display all subgoals 
being tracked. For each tracked subgoal, PlanScan shows 
the probability of reaching that subgoal by following the plan 
from the current state and the expected number of actions to 
do so. The user may add or remove subgoals at any point; 
PlanScan does not limit the number of tracked subgoals. 

4 A Walkthrough 

We illustrate how the user interacts with POET and PlanScan 
on the following example (Figures 1–4). Petra is a junior 
in the Department of Computer Science. She is consider­
ing which courses she should take in the next semester. Be­
cause Petra likes computer gaming and considers program­
ming computer games to be a possible career path, she de­
cides that she is very interested in taking an AI class with Dr. 
Goldsmith. At the same time, she has heard that she would be 
expected to speak at every class in a programming languages 
course taught by Dr. Finkel. Petra does not like this prospect. 
Using POET, Petra specifies her preferences for AI (high) and 
programming languages (very low) (Figure 1). This informa­
tion is passed to the planner, which constructs a tentative plan 
for the remaining three semesters of Petra’s study. The plan 
is passed to PlanScan, which displays it for Petra (Figure 2). 

While walking through the plan, Petra and her advisor no­

tice that the plan estimates the probability of success (getting 
a grade of “B” or higher) in the AI class to be rather low. This 
outcome can be explained: Petra got “C”s in Discrete Math 
and Logic courses, and in the minds of the advisors who built 
the model used by the planner, performance in AI is closely 
related to performance in these classes. During the planning 
stage, Petra’s high utility of taking the AI class “overrode” 
the low probability of success. 

Petra is somewhat discouraged by the advisor’s comment 
that the AI course might be hard for her to succeed in. The 
advisor proposes alternatives to the AI course, including pro­
gramming languages. As it turns out, Petra did very well in 
the prerequisite classes for this class, so the chances of suc­
cess in it appear to be significantly higher. Because of the 
low initial utility, the possibility of taking programming lan­
guages had not been suggested. 

Realizing she is better off with an “easier” programming 
languages class, Petra mentally downgrades the inconve­
nience of oral presentations. She upgrades her preference for 
this class in POET and decreases her preference for the AI 
class (Figure 3). The new plan is computed (Figure 4). In this 
plan, the suggested course of actions is to take the program­
ming languages class. 

In this simplified example, the “straw plan” based on the 
student’s initial description of her preferences gave her a con­
crete basis for preference revision. By linking preference 
elicitation, planning, and plan display, we are able to involve 
the user in the planning process in an interactive manner. We 
conjecture that this interaction leads to better plans and hap­
pier users. 

5 Related Work 
The area of interface design for MDP-based decision-support 
systems is a new one, with limited literature. There is a wider 
body of work on interfaces for recommender systems, which 
we do not survey here. Recommender systems require po­
tentially complex elicitation (direct or indirect) of a user’s 
preferences, but the actual recommendations are reasonably 
straightforward to present. 

Similarly, we do not discuss the slightly more relevant 
work on interfaces for deterministic planners, such as those 
used in the Rochester Interactive Planning System [3]. How­
ever, we look briefly at some of the cognitive psychology 
work on interface design as it relates to our task of prefer­
ence and policy presentations. 

The interface for a decision support system must take hu­
man processing into account. Lin, Choong, and Salvendy [5] 
examine some key areas of importance in interface design. 
Several of their categories play into the idea of representing a 
strategy planned using decision theoretic planning. These in­
clude compatibility, consistency, flexibility, minimal actions, 
minimal memory loads, perceptual limitations and user guid­
ance (defined below). The GUI design should consider each 
category, so that the interface shows all necessary information 
for the user to complete their part of the plan, and displays 
that information in a manner easily understood by the user. 

The interface must be able to display any output of the 
planner (compatibility), and must maintain a consistent pre­

http:manner.We


Figure 1: POET: Initial preferences 

Figure 2: PlanScan: Initial plan 



Figure 3: POET: revised preferences 

Figure 4: PlanScan: revised plan 



sentation across different outputs. Flexibility refers to the in­
terface’s ability to handle varying output formats. It is im­
portant that the user be able to both comprehend the pre­
sented plan and be able to act on it. Consistency is one aspect 
of comprehensibility, as is minimal memory load: The user 
should not be expected to memorize a complex manual in or­
der to use the display tools or to understand what is displayed. 
Minimal actions refer to the actions required of the human in 
order to get the desired output. 

Ullman [13] claims that users often choose a method based 
on cognitive limitations. A display should be easy to under­
stand, with all portions clearly labeled; users should not have 
to spend time contemplating their next move. Multiple paths 
should be presented in a way that allows users to see the pros 
and cons of the plan before taking an action, giving the user 
further flexibility in their choice of actions. 

One of the few plan displayers we found was particular to 
the domain of shopping in an airport on the way from check-
in to boarding [1]. However, the displays do not show multi­
ple plan trajectories, nor do they exhibit a “you are here” on 
the trajectories. 

One of the eight fundamental rules of interface design [12] 
is to limit the amount of short-term memory the user must 
dedicate to the interface. One can achieve this goal with a 
full, clear path that gives users a sense of their progress to­
ward a goal (whether it be maneuvering through an airport, or, 
in the academic domain, how much longer until graduation. 
While MDP policies are good at answering “What should I do 
next?”, a raw representation of a plan does not show progress 
toward goals or subgoals. 

In contrast with the airport planner, PlanScan graphically 
and vividly indicates when there are multiple possible futures. 
It allows the user to explore one or more of futures, giving 
them a measure of control over the exploration process. The 
addition of a subgoals allows the user to track their progress 
toward the goal as they explore the plan. The ability to choose 
actions different from those suggested by a plan gives the user 
further control over their environment. 

Finally, choosing other actions, insisting on those actions, 
or by altering preferences in a way that pushes desired actions 
into the plan, puts the user into the decision-making loop as a 
partner rather than a servant to the computer. 

There is considerably more literature on interfaces and in­
teraction between preference elicitation and solution displays 
for recommender systems. We cannot begin to do justice to 
that subject here, but we mention particular work that has in­
fluenced our thinking. 

Faltings, Pu, and others [4; 8] have investigated eliciting 
preferences by example critiquing. They display ranked re­
sults of a search and ask users whether they prefer the top-
ranked items, and if not, why not. Example critiquing is 
meant to avoid traditional preference elicitation, which can 
be both complex and insufficient to articulate the users’ ac­
tual preferences. It allows users to state their preferences on 
any attribute and in any order. Their work supports explicit 
tradeoffs between attribute preferences, but not explicit con­
ditional preferences. 

Our work uses utilities to implicitly represent tradeoffs, 
and explicitly represents conditional preferences. The sim­

ilarity with Faltings, et al.,’s work is our use of candidate cri­
tique to refine the user’s understanding of their own prefer­
ences. It is this interaction between MDP planner, plan dis-
player, and preference elicitor that makes our work unusual 
and exciting. 

References 

[1] T. Bohenberger, A. Jameson, A. Kruger, and A. Butz. 
Location-aware shopping assistance: Evaluation of a 
decision theoretic approach. In Proc. 4th International 
Symposium on Human-Computer Interaction with Mo­
bile Devices, pages 155–169, 2002. 

[2] C. Cornalba, R. Bellazzi, S. Quaglini, R. Bellazzi, and 
M. Stefanelli. An adaptive decision support system for 
risk management in haemodialysis departments. Tech­
nical Report SS-05-02, AAAI, 2005. 

[3] M. O. Dzikovska, J. F. Allen, and M. D. Swift. Inte­
grating linguistic and domain knowledge for spoken di­
alogue systems in multiple domains. In IJCAI ’03, 2003. 

[4] B. Faltings, M. Torrens, and P. Pu. Solution generation 
with qualitative models of preferences. Computational 
Intelligence, 20(2):246–263, May 2004. 

[5] H. Lin, Y. Choong, and G. Salvendy. A proposed index 
of usability: a method of comparing the relative usabil­
ity of different software systems. Behavior and Infor­
mation Technology, 16:267–278, 1997. 

[6] Merriam-Webster. Webster’s 9th New Collegiate Dic­
tionary. 1992. 

[7] P. Pu and L. Chen. Integrating tradeoff support in prod­
uct search tools for e-commerce sites. In Proceedings 
of 6th ACM Conference on Electronic Commerce, 2005. 

[8] P. Pu and B. Faltings. Decision tradeoff using example­
critiquing and constraint programming. Constraints, 
9(4), 2004. 

[9] S. Quaglini, T. Giorgino, C. Rognoni, M. Stefanelli, 
E. Marchesi, and J. Baccheschi. Adapting an hyper­
tension home-monitoring system to the patient’s cardio­
vascular risk. Technical Report SS-05-02, AAAI, 2005. 

[10] J. Royalty, R. Holland, J. Goldsmith, and A. Dekhtyar. 
POET, the online preference elicitation tool. In Proc. 
AAAI Workshop on Preferences in AI and CP: A Sym­
bolic Approach, 2002. 

[11] A. Sboner, R. Bellazzi, P. Carlid, and M. Cristofolinie. 
User-tailored clinical decision support systems. Techni­
cal Report SS-05-02, AAAI, 2005. 

[12] B. Shneiderman. Designing the user interface: strate­
gies for effective human computer interaction. Addison 
Weseley Longman, Inc., 3rd edition, 1998. 

[13] D. G. Ullman. The ideal engineering support system. 
Research in Engineering Design, 13:55–65, 2000. 

[14] Wikipedia. Cognitive load, March 2005. 


