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A B S T R A C T

Anisotropic palladium–poly(ionic liquid) catalyst membranes have been prepared by complexation of palladium
(II) chloride to poly(ionic liquid) functionalised flexible porous substrates. The practical viability of these low
loading (sub 0.1 mol%) palladium catalyst membranes for continuous flow reactions at ambient temperature is
demonstrated for the Suzuki–Miyaura carbon–carbon coupling reaction by contacting the reactant mixture with
the catalyst membrane and applying sonication. The Suzuki–Miyaura carbon–carbon coupling reaction proceeds
at the palladium–poly(ionic liquid) catalyst membrane surface in conjunction with selective permeation (se-
paration) of the desired product species through the underlying porous support. These palladium–poly(ionic
liquid) catalyst membranes display minimal metal leaching enabling them to be reused multiple times.

https://doi.org/10.1016/j.colsurfa.2018.02.044
Received 22 December 2017; Received in revised form 18 February 2018; Accepted 19 February 2018

⁎ Corresponding author.

1 These authors have made equal contributions.
E-mail address: j.p.badyal@durham.ac.uk (J.P.S. Badyal).

Colloids and Surfaces A 545 (2018) 78–85

Available online 21 February 2018
0927-7757/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/09277757
https://www.elsevier.com/locate/colsurfa
https://doi.org/10.1016/j.colsurfa.2018.02.044
https://doi.org/10.1016/j.colsurfa.2018.02.044
mailto:j.p.badyal@durham.ac.uk
https://doi.org/10.1016/j.colsurfa.2018.02.044
http://crossmark.crossref.org/dialog/?doi=10.1016/j.colsurfa.2018.02.044&domain=pdf


1. Introduction

Ionic liquids are used for a wide range of applications including
catalysis [1–3]. In the case of the Suzuki–Miyaura carbon–carbon
coupling reaction, palladium species immobilised within ionic liquids
have been shown to be highly effective catalyst systems [4–16]. For
instance, ionic liquid imidazolium cations can coordinate palladium
catalyst centres [4–15]. The covalent attachment of ionic liquids to
conventional polymer backbones such as poly(vinylbenzyl) [7,12] and
poly(divinylbenzene) [13] has also been reported [17]. Whilst such
systems can produce high yields and reaction selectivities [4–16], the
inherent requirement for elution of the product limits their more
widespread application. Other disadvantages include the need for high
metal catalyst loadings, metal loss due to leaching, or catalyst break-
down; all of which can lead to additional processing steps and extra
costs being incurred (e.g. post-reaction metal recovery in order to
comply with public health regulations for pharmaceutical active in-
gredients [18]).

For the case of heterogeneous catalyst Suzuki–Miyaura carbon–-
carbon coupling reaction systems, palladium dispersed onto carbon
(Pd/C) provides ease of product recovery, a relatively high reaction
rate, lower cost, and integration into packed bed reactors or columns
[19–22]. However, not only are high temperatures and loadings ne-
cessary to achieve adequate yields, significant levels of metal leaching
are observed. Lower palladium loadings have been reported for other
solid support materials (these include metal phosphates [23], metal
oxides [24], and organic polymers [25]). Despite such heterogeneous
systems displaying reduced palladium leaching compared to conven-
tional Pd/C systems, elevated temperatures or microwave heating are
still needed to achieve high product yields. Microchannel and capillary
reactors are alternatives to packed bed reactor systems, benefiting from
lower loadings, high turnover frequencies (TOFs), and low levels of
catalyst leaching [26,27]. Their drawback is the small active catalytic
areas available in such devices limiting the overall reaction product
capacity compared to conventional larger-scale packed bed flow re-
actors.

Hybrid catalyst–membrane systems can potentially address the
aforementioned limitations. Poly(ionic liquids) supported onto mem-
branes have been prepared by photo-initiated grafting of imidazolium
groups onto polyethersulfone membranes [28]. The resulting mem-
brane supported palladium–poly(ionic liquid) catalysts yield rapid
TOFs (147 h−1, moles of product per mole of palladium per hour), but
operate at above ambient temperatures (333 K).

In this article, we describe a continuous flow anisotropic palla-
dium–poly(ionic liquid) catalyst membrane system containing the
above advantages of low Pd loading, but which operates at low tem-
peratures (293 K) and delivers comparable performance
(TOF=154 h−1). Its fabrication comprises pulsed plasma deposition of
a poly(vinylbenzyl chloride) layer onto a membrane to generate surface
benzyl chloride groups followed by the Menshutkin reaction to form
surface tethered quaternised N-butylimidazole moieties which are
subsequently used to complex palladium chloride catalyst to the imi-
dazolium cations [29], Scheme 1.

The pulsed plasma deposition step entails modulating an electrical
discharge in the presence of vinylbenzyl chloride gaseous precursor
containing a polymerisable carbon–carbon double bond [30,31]. Me-
chanistically, there are two distinct reaction regimes corresponding to
the plasma duty cycle on- and off- periods (typical timescales are of the
order of microseconds and milliseconds respectively) [32]. Namely,
monomer activation and reactive site generation occur at the substrate
surface during each short burst of plasma (via VUV irradiation, ion, or
electron bombardment) followed by conventional carbon–carbon
double bond polymerization proceeding in the subsequent extended off-
period (in the absence of any VUV-, ion-, or electron-induced damage to
the growing film). High levels of precursor functional group structural
retention within pulsed plasma deposited nanolayers can be achieved

(as confirmed by ToF-SIMS [33] and NMR [34]). Furthermore, by
programming the pulsed plasma duty cycle, it is possible to control (i.e.
tailor) the surface density of desired chemical groups. Strong covalent
attachment of the deposited functional layers to the underlying sub-
strate occurs via free radical sites created at the interface during the
onset of plasma exposure (this has allowed for the preparation of
flexible substrate heterogeneous catalyst systems [35]). Other distinct
advantages include the fact that the plasmachemical approach is quick
(single-step), solventless, energy-efficient, and the reactive gaseous
nature of the electrical discharge provides conformality to the host
substrate membrane material [36,37].

The palladium–poly(ionic liquid) catalyst membranes fabricated in

Scheme 1. Preparation of anisotropic palladium–poly(ionic liquid) catalyst membrane by
pulsed plasma deposition of poly(vinylbenzyl chloride) layer (diagonally hatched
shading) onto PTFE membrane followed by solution phase quaternisation with N-buty-
limidazole and then complexation to palladium(II) catalyst.
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the present study have been employed for the Suzuki–Miyaura car-
bon–carbon coupling reaction, Scheme 2.

2. Experimental

2.1. Preparation of palladium–poly(ionic liquid) catalyst membrane

A cylindrical glass reactor (5.5 cm diameter, 475 cm3 volume)
housed within a Faraday cage was used for plasmachemical deposition.
This was connected to a 30 L min−1 rotary pump (model E2M2,
Edwards Vacuum Ltd.) via a liquid nitrogen cold trap (base pressure
less than 2× 10−3 mbar and air leak rate better than 6×10−9 mol
s−1) [38]. A copper coil wound around the reactor (4 mm diameter, 10
turns, located 10 cm downstream from the gas inlet) was connected to a
13.56MHz radio frequency (RF) power supply via an L–C matching
network. A signal generator (model TG503, Thurlby Thandar Instru-
ments Ltd.) was used to trigger the RF power supply. Prior to film de-
position, the whole apparatus was thoroughly scrubbed using detergent
and hot water, rinsed with propan-2-ol (+99.5 wt.%, Fisher Scientific
UK Ltd.), oven dried at 423 K, and further cleaned using a 50W con-
tinuous wave air plasma at 0.2mbar for 30min. Silicon substrate pre-
paration comprised successive sonication in propan-2-ol and cyclo-
hexane (+99.7 wt.%, Sigma–Aldrich Co.) for 15min prior to insertion
into the centre of the chamber. Further cleaning entailed running
a 50W continuous wave air plasma at 0.2 mbar for 30min prior to
film deposition. Polytetrafluoroethylene (PTFE) membrane film
(180 ± 10 μm thickness, 5 ± 2 μm surface pore size determined by
SEM, Mupor Ltd) was used following rinsing in a 1 : 1 vol. ratio mixture
of cyclohexane and propan-2-ol. Vinylbenzyl chloride (mixture of 3-
and 4- isomers, 97 wt.%, Sigma–Aldrich Co.) precursor was loaded into
a sealable glass tube, degassed via several freeze–pump–thaw cycles,
and then attached to the reactor. Monomer vapour was then allowed to
purge the apparatus at a pressure of 0.15mbar for 15min prior to
electrical discharge ignition. Pulsed plasma deposition was performed
at 293 K using a duty cycle on-period (ton) of 100 μs and a duty cycle
off-period (toff) of 4 ms in conjunction with a RF generator power output
(Pon) of 30W [39]. Upon plasma extinction, the precursor vapour was
allowed to continue to pass through the system for a further 15min,
and then the chamber was evacuated to base pressure followed by
venting to atmosphere. Deposited layer thicknesses were approximately
2.3 ± 0.2 μm (deposition rate 160 ± 10 nmmin−1).

For conversion to a supported poly(ionic liquid) layer, the pulsed
plasma poly(vinylbenzyl chloride) coated substrate was immersed for
120 h at 293 K into a 1 : 6 by volume solution of N-butylimidazole
(98 wt.%, Sigma–Aldrich Co.) in dimethylformamide (DMF, 99.5 wt.%,
Fisher Scientific UK Ltd.), followed by rinsing in DMF for 16 h. The
quaternised surfaces were then immersed for 16 h at 293 K into an
aqueous solution comprising 2mM palladium(II) chloride
(+99.999 wt.%, Alfa Aesar Co. Ltd.), 3.0M sodium chloride (+99.5 wt.
%, Sigma–Aldrich Co.), and 0.5 M sodium citrate dihydrate (+99wt.%,
Sigma–Aldrich Co.) in high purity water (BS 3978 Grade 1) adjusted to
pH 4.5 with citric acid monohydrate (+99wt.%, Sigma–Aldrich Co.)
[40]. The surfaces were then rinsed in high purity water for 20min.

2.2. Characterisation

Film thickness values of pulsed plasma poly(vinylbenzyl chloride)
deposited onto silicon wafers were measured using a spectrophotometer
(model nkd-6000, Aquila Instruments Ltd.). Transmittance–reflectance
curves (350–1000 nm wavelength range) were acquired for each
sample and fitted to a Cauchy model for dielectric materials [41] using
a modified Levenberg–Marquardt algorithm [42].

Reflection-absorption infrared (RAIRS) spectra of pulsed plasma
poly(vinylbenzyl chloride) deposited onto silicon wafers were acquired
using a FTIR spectrometer (Spectrum One, Perkin–Elmer Inc.) fitted
with a liquid nitrogen cooled MCT detector operating at 4 cm−1 re-
solution across the 400–4000 cm−1 range. The instrument included a
variable angle reflection-absorption accessory (Specac Ltd.) set to a
grazing angle of 66° for silicon wafer substrates and adjusted for p-
polarization. Attenuated total reflectance (ATR) infrared spectra of vi-
nylbenzyl chloride precursor were obtained using a Golden Gate ac-
cessory (Specac Ltd.).

Surface elemental compositions of pulsed plasma poly(vinylbenzyl
chloride) deposited onto silicon wafers and PTFE membrane were
measured by X-ray photoelectron spectroscopy (XPS) using a VG
ESCALAB II electron spectrometer equipped with a non-mono-
chromated Mg Kα1,2 X-ray source (1253.6 eV) and a concentric hemi-
spherical analyser. Photoemitted electrons were collected at a take-off
angle of 20° from the substrate normal, with electron detection in the
constant analyser energy mode (CAE, pass energies of 20 and 50 eV for
high resolution and survey spectra respectively). Experimentally de-
termined instrument sensitivity factors were C(1s) : O(1s) : N(1s) : Cl
(2p) : Pd(3d) : F(1s) equals 1.00 : 0.35 : 0.70 : 0.37 : 0.06 : 0.25 re-
spectively. The core level binding energy envelopes were fitted using
Gaussian peak shapes with fixed full-width-half-maxima (fwhm) and
linear backgrounds [43,44]. All binding energies were referenced to the
C(1s) –CxHy hydrocarbon peak at 285.0 eV [45]. Measurements were
repeated at least 3 times.

Palladium loading on the catalyst membrane, and amount leached
during multiple use studies was measured by ICP-OES (Vista MPX CCD
Simultaneous axial ICP-OES, Varian Inc.). Calibration of detected pal-
ladium signal intensity to actual palladium content in solution was
carried out to an accuracy of 0.01 ppm using reference samples at 1, 2,
and 5 ppm, prepared from a 1000 ppm stock solution (26 X 1-Pd(a),
MBH Analytical Ltd.) diluted in high purity water (resistance of 18.2
MΩ). Analyte solutions were digested in 5mL of sulphuric and per-
chloric acids (95 wt.% Normapur®, and 65wt.% Normatom® respec-
tively, VWR International Ltd.) using a wet digestion method followed
by dilution to 25mL in high purity water. The detection limit of pal-
ladium in these catalysis experiment analyte solutions was 0.1 ppm on a
mass basis. Palladium membranes were treated in the same manner to
remove the palladium containing poly(ionic liquid)–plasma polymer
layer from the PTFE membrane substrate.

2.3. Suzuki–Miyaura carbon–carbon coupling reaction

For palladium–poly(ionic liquid) catalyst membrane heated batch
reactor studies of catalysis, B10 borosilicate sample flasks were rinsed
with ethanol (+99.8 wt.%, Fisher Scientific UK Ltd.), thoroughly
scrubbed using detergent and hot water, followed by immersion for 1 h
in a solution comprising sodium hydroxide (99.2 wt.%, Fisher Scientific
UK Ltd.), propan-2-ol (+99.5 wt.%, Fisher Scientific UK Ltd.), and high
purity water (mass ratio 1 : 20 : 5) in order to remove any organic
residue. The flasks were then thoroughly scrubbed using detergent and
hot water, rinsed in propan-2-ol, and oven dried at 423 K. A final wash
step consisted of immersion for 1 h in a 1 wt% nitric acid bath (70 wt.%
in water, Fisher Scientific UK Ltd., further diluted in high purity water),
followed by thorough rinsing with high purity water and oven drying at
423 K, to ensure that no palladium transfer occurred between solutions.
This rigorous cleaning procedure was undertaken before each reaction.

Scheme 2. Suzuki–Miyaura carbon–carbon coupling reaction of iodobenzene with phe-
nylboronic acid using palladium–poly(ionic liquid) catalyst membrane.
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0.50 ± 0.05mmol of iodobenzene (98 wt%, Sigma–Aldrich Co.),
0.75 ± 0.01mmol of phenylboronic acid (95 wt%, Sigma–Aldrich
Co.), and 0.99 ± 0.01mmol of potassium carbonate (98 wt.%,
Sigma–Aldrich Co.) were weighed out into a borosilicate flask. 3 mL of a
solution comprising ethanol (+99.8 wt.%, Fisher Scientific UK Ltd.)
and high purity water in a 2 : 1 vol. ratio was added, the flask was
agitated to dissolve the potassium carbonate, and then the catalyst
membrane was added (47.9 ± 3.4mg catalyst membrane, with
0.304 ± 0.022 μmol of palladium(II) or 0.067 wt.% (32.3 ± 2.3 μg)
initial palladium loading as measured by ICP-OES analysis). The flask
was fitted to a water cooled condenser, and immersed in a water bath at
343 K for 30min for the reaction to proceed. The reaction solutions
were not stirred in order to prevent abrasive damage to the membrane
material (it should be noted this means the reported turnover fre-
quencies (TOF, moles of product per mole of palladium per hour) are a
lower estimate as diffusion may also limit reaction rates measured).
Afterwards, the flask was removed from the water bath and allowed to
cool to room temperature, followed by removal of the catalyst mem-
brane and the solution decanted. The flask was then rinsed twice with
1mL of chloroform (99.8 wt.%, Fisher Scientific UK Ltd.) and the
washings were added to the decanted solution. Solutions for gas chro-
matography (GC) analysis were extracted three times with 3mL of
chloroform, spiked with 4mgmL−1 decane (0.1 g, +99wt.%,
Sigma–Aldrich Co.), and made up to 25mL with dichloromethane
(99.99 wt.%, Fisher Scientific UK Ltd.). Solutions for ICP-OES analysis
were sealed in screw topped borosilicate glass vials fitted with a PTFE/
silicone slit septum. Catalyst membranes were dried in air at 293 K for a
minimum of 1 h before reuse with a fresh reactant solution each time.
As a control experiment, 0.50 ± 0.05mmol of 4-methoxyiodobenze
(98 wt.%, Sigma–Aldrich Co.) was substituted for iodobenzene to rule
out homocoupled by-product formation.

For Suzuki–Miyaura carbon–carbon coupling reactions under soni-
cated flow conditions at room temperature, a custom gravity-fed flow
cell was used with the membrane sealed using a compression fitting,
Fig. 1 and Supplementary information Fig. S1. 1.0 ± 0.1 mmol of io-
dobenzene, 1.50 ± 0.01mmol of phenylboronic acid, and
2.00 ± 0.01mmol of K2CO3 were added to the reactor along with 6mL
of a solution comprising ethanol and high purity water in a 2 : 1 vol.
ratio (the area of exposed catalyst was 3.6 cm2, with 0.61 μmol of
palladium(II) (64.6 ± 2.3 μg) initial palladium loading as measured by
ICP-OES analysis). The reactor was then immersed in an ultrasonic bath
(Clifton Ultrasonic Bath, Nickel-Electro Ltd.) at 20 ± 2 °C for 1 h.
Afterwards, the reactor was removed from the ultrasonic bath, the
product solutions and residual reaction solutions were decanted and
stored separately. As reported in the Results and Discussion sections,
the membrane setup preferentially separates biphenyl product (and
some remaining iodobenzene reactant) from the phenylboronic acid

reactant and reaction solvents. The product solution glassware was
rinsed twice with 1mL of chloroform and the washings were added to
the decanted product solution. Residual reaction solutions were ex-
tracted for GC analysis three times with 3mL of chloroform, spiked with
4mgmL−1 decane (0.1 g), and made up to 25mL with di-
chloromethane. Product solutions (which did not require extraction)
were spiked with 4mgmL−1 decane (0.1 g), and made up to 25mL with
dichloromethane. As a control experiment, 1.0 ± 0.1mmol of 4-
methoxyiodobenze (98 wt.%, Sigma–Aldrich Co.) was substituted for
iodobenzene to rule out homocoupled by-product formation.

GC (Bruker Corp. Scion 456 gas chromatograph with a flame ioni-
zation detector (FID) fitted with a siloxane capillary column (5% phenyl
/ 95% dimethylpolysiloxane BP-5), length of 30m, internal diameter of
0.25mm, coating thickness of 0.25 μm) was conducted using high-
performance liquid chromatography (HPLC) autosampler vials with a
PTFE/silicone slit septum at a starting temperature of 373 K, a hold
time of 4min, a ramp rate of 20 Kmin−1, and a final temperature of
473 K with a hold time of 9min. Product yield was calculated from GC
traces as the percentage conversion of haloarene to desired coupled
product in the recovered reaction solution, all other reagents were used
in excess. GC–MS (Shimadzu Europa Gmbh, GCMS-QP2010 Ultra fitted
with an Rxi®-5Sil column, length of 10m, internal diameter of 0.15mm,
column coating thickness of 0.15 μm) was conducted using high-per-
formance liquid chromatography (HPLC) autosampler vials with a
PTFE/silicone slit septum at a starting temperature of 303 K and a hold
time of 1min, a ramp rate of 50 K min−1, and a final temperature of
573 K, with a hold time of 5min.

3. Results

3.1. Pulsed plasma deposited poly(vinylbenzyl chloride)

Infrared spectroscopy of pulsed plasma deposited poly(vinylbenzyl
chloride) films confirmed a high level of benzyl chloride functional
group structural retention [46–48], Fig. 2. Disappearance of the
monoalkyl vinyl ]CH2 wag vibration mode (906 cm−1) associated

Fig. 1. Sonicated catalyst membrane reactor for room temperature Suzuki–Miyaura
coupling reaction. See Supplementary information Fig. S1 for further details about union
connector.

Fig. 2. Infrared spectra of: (a) vinylbenzyl chloride liquid precursor; (b) pulsed plasma
deposited poly(vinylbenzyl chloride); and (c) pulsed plasma deposited poly(vinylbenzyl
chloride) quaternised with N-butylimidazole. I and II denote characteristic para-sub-
stituted benzene ring stretches at 1603 cm−1 and 1490 cm−1 respectively. III denotes
characteristic CleCH2e wag mode at 1263 cm−1. IV denotes precursor monoalkyl vinyl
]CH2 wag at 906 cm−1.

M. Wilson et al. Colloids and Surfaces A 545 (2018) 78–85

81



with the precursor molecule confirmed selective vinyl group poly-
merisation during pulsed plasma deposition [49]. Characteristic para
substituted benzene ring absorbances can be found at 1603 cm−1, and
1490 cm−1 [49]. The band at 1263 cm−1 for both the precursor and
plasma deposited polymer corresponds to the CleCH2e wag mode [49].
This halogen-containing group is a prerequisite for quaternisation
leading to the formation of a poly(ionic liquid) layer.

XPS analysis of pulsed plasma deposited poly(vinylbenzyl chloride)
onto PTFE membrane detected carbon, chlorine, and low levels of
oxygen (attributed to a small amount of atmospheric water absorption
[50]), Table 1 and Supplementary information Fig. S2. The absence of
fluorine signal confirmed complete coverage of the underlying PTFE
membrane (no pinholes).

3.2. Palladium–poly(ionic liquid) catalyst membrane

Quaternisation of the pulsed plasma deposited poly(vinylbenzyl
chloride) films with N-butylimidazole resulted in the appearance of
nitrogen XPS signal at the surface, Table 1 and Supplementary in-
formation Fig. S3. The N(1s) binding envelope of the quaternised films
could be fitted to a main nitrogen environment at 401.9 ± 0.1 eV
corresponding to two equivalent nitrogen centres in positively charged
imidazolium rings [39,51,52], Fig. 3 and Scheme 1. The slight shoulder
towards lower N(1s) binding energy can be attributed to the reaction of
N-butylimidazole with trapped free radicals contained within the
plasma deposited layer [36,53]. The Cl(2p) peak envelope could be
fitted to two different chlorine atom environments with Cl(2p3/2)
binding energy values of 197.3 ± 0.1 eV and 200.6 ± 0.2 eV corre-
sponding to chloride anions and non-quaternised unreacted benzyl
chloride groups respectively [54], Fig. 4. Based on these two Cl(2p3/2)
binding energy environments, the level of surface quaternisation was
calculated to be 52 ± 9% (this is most likely to be an underestimate
due to the XPS sampling depth (2–5 nm) also probing the sub-surface
[55,56]). Infrared spectroscopy of the quaternised membranes did not

detect any contributions from characteristic positively charged imida-
zolium ring absorbances at 1350 cm−1 and 1180 cm−1 [57], thereby
indicating that only near-surface quaternisation had occurred (i.e. very
low concentration relative to the bulk underlying pulsed plasma de-
posited poly(vinylbenzyl chloride) layer), Fig. 2. This is consistent with
the shallower sampling depth for XPS.

Immersion of the quaternised films into aqueous palladium(II)
chloride solution gave rise to the appearance of palladium XPS signals,
signifying surface complexation, Table 1. No significant change in
binding energy was observed in the N(1s) XPS signal at
401.9 ± 0.1 eV, which is consistent with previous studies for palla-
dium(II) containing ionic liquids, Fig. 3 [58]. This was accompanied by
the relative Cl(2p3/2) chloride anion peak component at
197.3 ± 0.1 eV within the overall Cl(2p) envelope increasing (as well
as a shift towards higher binding energy) due to the incorporation of
additional chloride anions accompanying the palladium(II) catalyst
complexation process, Fig. 4.

3.3. Suzuki–Miyaura carbon–carbon coupling reaction

3.3.1. Heated batch catalysis
The Suzuki–Miyaura carbon–carbon coupling reaction product yield

at 343 K for the palladium–poly(ionic liquid) catalyst membrane was
measured to be 77 ± 7% (apart from unreacted iodobenzene and

Table 1
XPS relative atomic compositions at each stage of palladium–poly(ionic liquid) catalyst membrane preparation, and for a control sample comprising non-quaternised poly(vinylbenzyl
chloride) functionalised PTFE membrane exposed to PdCl2 solution and then rinsed in high purity water.

PTFE Membrane C/% N/% O/% Cl/% Pd/% F/%

Untreated 29.2 – – – – 70.8
Pulsed Plasma Poly(Vinylbenzyl Chloride) Functionalised 90.4 ± 0.5 – 0.4 ± 0.8 9.2 ± 0.3 – –
Pulsed Plasma Poly(Vinylbenzyl Chloride) Functionalised+Quaternised 83.7 ± 0.7 7.9 ± 0.4 4.1 ± 0.3 4.3 ± 0.3 – –
Pulsed Plasma Poly(Vinylbenzyl Chloride) Functionalised+Quaternised+ PdCl2(aq) 78.6 ± 2.2 6.4 ± 0.6 9.8 ± 2.4 4.3 ± 0.6 0.9 ± 0.1 –
Control Pulsed Plasma Poly(Vinylbenzyl Chloride) Functionalised + PdCl2(aq) 80.7 – 12.9 6.4 0.0 –

Fig. 3. N(1s) XPS spectra: (a) pulsed plasma poly(vinylbenzyl chloride) deposited onto
PTFE membrane and quaternised with N-butylimidazole; and (b) following palladium(II)
chloride complexation to (a). Signal intensity is counts per second.

Fig. 4. Cl(2p) XPS spectra: (a) pulsed plasma poly(vinylbenzyl chloride) deposited onto
PTFE membrane; (b) following quaternisation with N-butylimidazole; and (c) following
palladium(II) chloride complexation to (b). Due to spin–orbit coupling, Cl(2p1/2) com-
ponents are shifted by 1.6 eV to higher binding energy relative to the Cl(2p3/2) compo-
nents, with a Cl(2p3/2):Cl(2p1/2) peak area ratio equal to 2:1 [54]. Signal intensity is
counts per second.
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phenylboronic acid, no other compounds exceeded 1% of the GC bi-
phenyl product peak area), with a catalyst turnover frequency of
3097 ± 323 h−1 (TOF, moles of product per mole of palladium per
hour). Over 4 cycles, palladium leaching into the reaction solution was
measured to be 83 ± 33 ppb h−1 cm−3 (for the initial membrane
equivalent reaction solution loading of 11.1 ± 8 ppm on a mass basis
(or 0.061 ± 0.004mol%) — this is equivalent to ∼1% of the Pd pre-
sent leaching from an already sub 0.1 mol% catalyst loading during one
reaction cycle at 343 K). This is consistent with the negligible drop in
product yield with reaction cycle number, Supplementary information
Fig. S4.

As a control, the Suzuki–Miyaura coupling reaction was run using 4-
methoxyiodobenzene and phenylboronic acid reactants under similar
reaction conditions in order to rule out the possibility of homocoupled
by-product formation. GC–MS analysis of the obtained products showed
the presence of only 4-methoxybiphenyl, and an absence of homo-
coupled biphenyl by-product.

3.3.2. Room temperature sonicated membrane flow catalysis
The practical viability of these palladium–poly(ionic liquid) catalyst

membranes for continuous flow Suzuki–Miyaura carbon–carbon cou-
pling reactions was demonstrated by allowing the reaction solution to
permeate into the membrane during sonication at room temperature
(sonication speeded up the liquid flow rate). After 1 h of reaction time,
17mol% (0.17 mmol of 1.0 mmol) of the iodobenzene reactant present
in the starting solution had been transported through the catalytic
membrane as either product or unreacted iodobenzene. The collected
solution contained only aromatic organic compounds (54mol% bi-
phenyl product, 42mol% iodobenzene, and 4mol% phenylboronic acid
— no other components exceeded 3% of the GC biphenyl product peak
area). This indicates that iodobenzene (either unreacted or as car-
bon–carbon coupled biphenyl product) preferentially passes through
the membrane relative to phenylboronic acid. The TOF (calculated as
before) for biphenyl product formation was found to be 154 h−1.

For this system also, a control Suzuki–Miyaura coupling reaction
run using 4-methoxyiodobenzene and phenylboronic acid reactants
under similar experimental conditions showed an absence of homo-
coupled biphenyl by-product (only 4-methoxybiphenyl detected),
thereby ruling out the possibility of homocoupled by-product forma-
tion.

4. Discussion

Pulsed plasmachemical functionalisation of solid surfaces using
polymerisable functional precursors is a well-established, solventless,
single-step, conformal, and substrate-independent technique, which
offers the advantage of high levels of functional group retention [59],
thus making it well-suited for the preparation of membrane supported
poly(ionic liquid) catalysts. Infrared spectroscopy and XPS analyses
have shown that there is a high level of chloro- group and benzene ring
retention during pulsed plasma deposition of vinylbenzyl chloride
precursor, thereby facilitating the subsequent step of quaternisation
with N-butylimidazole to form a poly(ionic liquid) layer, Scheme 1,
Figs. 2–4. Complexation of this surface to palladium chloride yields a
palladium containing poly(ionic liquid) catalyst membrane.

Although high TOFs are achievable with conventional dispersed
homogeneous and heterogeneous palladium catalyst systems [60–63],
such materials suffer from the drawback of requiring post reaction re-
covery of the palladium catalyst or higher palladium loadings. The
practical viability of the palladium–poly(ionic liquid) catalyst mem-
branes in the present study has been demonstrated for the Suzuki–-
Miyaura coupling reaction of iodobenzene. The measured TOF value of
3097 ± 323 h−1 for heated (343 K) batch reaction mode is comparable
with previously reported homogeneous ionic liquid catalysts (TOFs of
102–105 h−1) [4,5,7,9,10] and other heterogeneous poly(ionic liquid)
catalysts (TOFs of 101–103 h−1) [12–15].

The palladium membrane loadings used for the Suzuki–Miyaura
coupling reaction (a reaction solution equivalent of 0.061 ± 0.004mol
% or 11.1 ± 8 ppm on a mass basis) are lower than most previously
reported ionic liquid catalysts (homogeneous and heterogeneous)
which range between 0.1–18mol% [5,7–12,14–16,22,64]. A palladium
leaching value of 83 ppb h−1 cm−3 at 343 K compares favourably with
previously reported solid support heterogeneous catalysts (where pal-
ladium leaching rates exceed 100 ppb h−1 cm−3) [65,66]. This is
equivalent to ∼1% of the Pd present leaching from an already sub
0.1 mol% catalyst during one reaction cycle at 343 K, and even lower
leaching rates are to be expected when the membrane is used at room
temperature.

In the case of the flow membrane reactor mode of operation, am-
bient temperature sonicated Suzuki–Miyaura reactions gave a calcu-
lated TOF value for biphenyl product formation of 154 h−1. This is
comparable with previously reported Suzuki–Miyaura flow reactors
(TOF 101 to 104 h−1) [24,26–28,67], however such systems require
high pressures or elevated temperatures. The beneficial preferential
separation of iodobenzene reactant and biphenyl product from the
phenylboronic acid and reaction solvents in the present study can be
ascribed to the selective solubility of the prepared membrane system,
Scheme 3. Ionic liquids tend to solvate a wide range of species including
unsubstituted benzene and haloarenes [68,69], therefore iodobenzene
can diffuse directly through the poly(ionic liquid) layer, accounting for
its high concentration in the product solution. Comparatively, phe-
nylboronic acid is insoluble in some imidazolium ionic liquids and will
therefore predominantly remain behind in the reactant ethanol:water
solvent phase [70]. The absence of transportation for the water and
ethanol reaction mixture constituents through the catalyst membrane is
most probably due to the immiscibility of ethanol and water with
imidazole containing ionic liquids and the pulsed plasma deposited
poly(vinylbenzyl chloride) interfacial layer at ambient temperature
[71–73], as well as liquid repellency from the underlying PTFE mem-
brane (surface tension of water= 72.8 mNm−1 [74], surface tension of
ethanol= 22.3 mNm−1 [74], and surface energy of
PTFE=20.0 mNm−1 [75]). Therefore, the outlined approach not only
allows for the palladium catalysed Suzuki–Miyaura carbon–carbon
coupling reaction to proceed at room temperature under flow condi-
tions, but also concurrently separates the solvent mixture from the
aromatic product phase, thereby eliminating any need for post reaction
separation of product from reaction solvents.

5. Conclusion

Plasmachemical surface functionalisation with benzyl chloride
groups provides a quick, low cost approach for fabricating anisotropic
palladium–poly(ionic liquid) catalyst membrane systems. This

Scheme 3. Selective separation of iodobenzene and Suzuki–Miyaura carbon–carbon
coupling reaction biphenyl product from phenylboronic acid and solvent mixture using
palladium–poly(ionic liquid) membrane flow reactor.
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comprises pulsed plasma deposition of a poly(vinylbenzyl chloride)
layer onto a membrane to generate surface benzyl chloride groups
followed by quaternisation with N-butylimidazole to form a surface
tethered poly(ionic liquid) which subsequently is complexed to palla-
dium(II) catalyst species. These palladium–poly(ionic liquid) catalyst
coated membrane substrates have been evaluated in a heated batch
reactor for the Suzuki–Miyaura carbon–carbon coupling reaction, and
shown to exhibit 77 ± 7% product yield (343 K, 0.5 h, 0.06mol % Pd
loading) and> 99% selectivity, as well as retaining catalytic activity
over extended periods in conjunction with low levels of palladium
catalyst leaching (from an already small (sub 0.1 mol% Pd) catalyst
loading). Their usage in a sonochemical anisotropic membrane flow
reactor setup operating at ambient temperature has shown that this
facilitates the selective separation of the desired Suzuki–Miyaura car-
bon–carbon coupling reaction biphenyl product (and some remaining
iodobenzene reactant) from the solvent mixture containing unreacted
phenylboronic acid.
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