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A design method for state-feedback controllers for single-input non-linear systems is 
proposed. The method makes use of the transformations of the non-linear system 
into 'controllable-like' canonical forms. The resulting non-linear state feedback is 
designed in such a way that the eigenvalues of the linearized closed-loop model are 
invariant with respect to any constant operating point. The method constitutes an 
alternative approach to the design methodology recently proposed by Baumann and 
Rugh. Also a review of different transformation methods for non-linear systems is 
presented. An example and simulation results of different control strategies are 
provided to illustrate the design technique. 

I. Introduction 

A common method of controlling a non-linear system involves linearizing the 
system about an operating point, and then using linear feedback control methods to 
design the controller. This approach is successful when the operation of the system is 
restricted to a small region about this chosen operating point. When a wider range of 
operation is desired, this technique may fail. In such a case an alternative method is 
often used. This alternative method involves linearizing the system about a series of 
operating points. This approach, referred to as gain scheduling, involves varying the 
controller parameters in a way that pieces together several linear controllers. 

Recently, a number of papers that suggest new approaches to control of non-linear 
systems have appeared. First, Sommer (1980) proposed a method that transforms a 
class of non-linear time-varying systems into a phase-variable canonical form. 
Subsequently, Su (1982) and Hunt et al. (1983) developed a procedure for global 
linearization. This procedure consists of transforming a non-linear system into a 
linear one in the whole state space. Dualization of these results allowed Krener and 
Respondek (1985) to devise a new design method for asymptotic observers (with 
linearizable error dynamics) for a class of nonlinear systems. The method of Hunt 
et aJ. (1983) was generalized by Reboulet and Champetier (1984). They proposed a 
technique for the transformation of a non-linear model into a linear one which is 
independent of the operating point. A similar idea can be traced in the approach taken 
by Baumann and Rugh (1984). Their method consists of finding a family of 
linearizations of the non-linear system, parameterized by constant operating points. 
Then a non-linear state feedback is computed such that the eigenvalues of the 
linearized closed-loop system are invariant for all closed-loop-constant operating 
points. This technique is an interesting alternative to the gain-scheduling method. The 
non-linear feedback obtained by using the Baumann and Rugh's algorithm provides 
scheduling of its own linearizations according to the closed-loop operating points. 



x(t) = a(x(t)) + b(x(t))u(t) (1) 

2. System description and problem statement 
The class of systems considered in this paper can be described by the following 

equation: 

where a E IR"is analytic in a neighbourhood of the origin, with a(O) = 0, b e  IR"is also 
analytic in a neighbourhood of the origin. In other words, we assume that a and bare 
Coo vector fields on an open set in IR"containing the origin a(O) = O. 

The problem of interest to us is finding sufficient conditions on a and b so that 
there exists a Coo transformation x* = T(x):~" -+ /R" such that system (1) can be 
transformed into the global non-linear controller form: 

xi x* 02 

d (2)- + u 
dt x:-1 x* 0" 

x* f(x*)" 
We will also investigate other types of quasi-canonical forms if a reduction to form (2) 
is impossible. 

The next issue we discuss in the paper is an application of the transformation of 
the non-linear system to the design of a state-feedback controller. In particular we are 
seeking a feedback law with the property that the eigenvalues of the linearized closed-
loop system are placed at prescribed values and are invariant for all closed-loop­
constant operating points. An example and the computer simulation of different 
control strategies are provided to illustrate the design technique. 

3. Transformations of non-linear systems into quasicontroller canonical forms 
It is well known that if a linear system, represented by a triple {A, b, c} is 

completely controllable, then it can be reduced via a non-singular transformation to 
an equivalent controllable form (Kailath 1980). For a number of reasons, such as ease 
of determining a control law, it is often advantageous to work with such an equivalent 
system rather than with the original one. 

The purpose of this section is to present constructive procedures for reducing non­
linear systems into 'equivalent' forms which resemble controllable canonical forms 
known from linear-systems theory. 

Specifically, we review three different approaches to simplification of non-linear 
systems. We begin by considering the approach inspired by Sommer (1980). In this 
discussion, notation proposed by Su (1982) and Hunt et al. (1983) and their results are 
utilized. 

3.1. Method 1 

Let f: IR"-+~" be a continuous function defined in a region n of IR". We may 

picture f as a vector field. 
For two vector fieldsf and g on /R", the Lie bracket [f, g] is a vector field defined by 

[f,gJ~~~f­ af gax ax 



where af/ax and ag/ax are the jacobians off and g respectively. The Lie bracket is also 
denoted as 

We define 

(ad' f, g) = [f, (adk-If, g)J 

where 

(ad" f, g) =g 

Thus 

(ad ' f, g) = [f, [f, gJJ 

For a scalar field h and a vector fieldf = (fl' ... ,1n)T the Lie derivative of h with respect 
tofis 

ah ah 
<dh,f) = -a t.+ ... +-a t. 

XI Xn 

Note that <dh,f) = ;~  ·f = vi. of In further considerations, the following identity (Su 

[982), which can be proven by verification, will be useful: 

on: [f, gJ> = <d<dT, g),f) - <d<dT,f), g) 

Let 
x* = T(x), X En  <;; IRn 

be a one-to-one mapping and let 

X = T(x*) 

be the inverse mapping. Differentiating x* with respect to t gives 

d er et
-x* = -a x = -a (a(x(t)) + b(x(t))u(t))
dt x x 

(3) 

Comparison of (3) with (2) gives 

(4) 

(5) 



From (4) we conclude that 

or 
ax' a(x) = Ti+j, i= I, ...,n-I 

or equivalently, 

<d T;,  a) = T; + 1, i = I, ... , n ­ 1. 

Thus, for example, 

and 

etc. Therefore the desired transformation has the form 

T= 
<dTj,a) 

<d<dTj, a), a) 
(6) 

Thus the problem of constructing the desired T is reduced to finding appropriate T; 
In order to specify Tl, let us consider (5). It can be written in the following form: 

or. 
-'b(x)=O, i=I, ... ,n-! 
ax 

er,
~b(x)= 1 

or 

<dTi>b)=O, i=I, ... ,n-1 

<dTm b) = 1 

Thus we have 

Next, consider the equation 

Observe that 

Hence 

<dTz, b)  = <d<dTj, a), b) = 0 

After some manipulations, we see that 

j oTl 1
<dTz, b)  = ­ <dT!> (ad a, b) = ­ ax (ad a, b) = 0 "I 

I 
I 



and 

oT1 Z
(dT3, b>= + ax (ad a,b)=O 

(dTn -1, b> =(_I)n-Zoo:1(adn-2 a, b)=O 

(dTm 
b> = (_1)n-1 oT1 (adn-1 a, b) = 1 

ox 

In the matrix form the above set of equations can be represented as follows: 

°a:1 [b (ad ' a, b) (ad? a, b) ... (adn 
-
t a, b)] = [0 0 ... 0 1] 

The matrix 

C(j ~ [b (ad 1 a, b) (ad? a, b) ... (adn -1 a, b)] 

will be designated as the controllability matrix of system (1). If C(j - 1 exists then the last 
row of <i&'-1, denoted by q, satisfies the equation 

q<i&' = [0 0 ... 0 1] 

Therefore we may make the following association: 

aT1 

ax = q(x) (7) 

A vector field q(x) for which there is a real-valued function T1 such that (7) holds is 
called a conservative field or gradient field. In such a case T1 is called the field potential 
of q(x). 

It is known that if q: IRn
-4 IRn is a continuously differentiable gradient field then the 

jacobian matrix of q is symmetric. However, the converse is false. But the following is 
true. Let Q be an open coordinate rectangle in IRn and let q(x) be a continuously 
differentiable vector field on Q. If q1(X), the jacobian matrix of q(x), is symmetric on Q, 
then q(x) is a gradient field. 

In order to illustrate this algorithm for reducing a non-linear system into the non­
linear global controller form, consider the following example. 

Example 1 

Consider an inverted pendulum with DC motor control as illustrated in Fig. I. 
Assume that the DC motor is armature-controlled, and that motor inertia is negligible 
when compared with the pendulum inertia. The DC motor may be modelled as shown 
in Fig. 2. The torque delivered by the motor is 

T; = Kml 

Thus the torque applied to the pendulum is 

T; = 10Tm = lOKml 

and 
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Figure I. Inverted pendulum controlled by a DC motor.
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Figure 2. Model of an armature-controlled DC motor.

The pendulum kinematics can be described by the equation

Tp = -12mB + lmg sin e
Now, if we introduce the state variables

Xl e, X2 B W, X3 I

we arrive at the equations that describe our system:

X2

+[J}[J g . lOKm
- sm Xl + -1-2-x3
1 m

iox, R
---X2--X3

L L

" 

= = = = 



Let

1
Ks L

Then, in terms of the above notation, the system equations take the form

r::l r KI sin :1
2
+ K2X3l + r ~1ulX3 l K3x2 + K4x3 KJ

The controllability matrix is

(8)

C(j = [b [a, b] [a, [a, b]]] = [b (ad ' a, b) (ad ' a, b)]

o

The last row of C(j I is

o oJ
It is required that

oTI
-=qax

Hence a natural choice of TI is

Therefore

and

Thus the transformation has the form

r
Tll rXil 1 r XI lT = T2 xi X2

T3 xj K
2
K

s
KI sin Xl + K2X3

In the new coordinates, our system is represented by the following equations:

=­

= 

-

= = ­ -



It is worthwhile to note that a transformation constructed as such preserves the
eigenvalues of the linearized system about the origin (Su et al. 1983). In our example
the linearized model (about the origin) of the system in the original coordinates has
the form

It is easy to verify that the characteristic equation of the linearized model (9) is

83 sZK4 (K 1+ KzK3)s + KIK4 = 0 (10)

The linearized model of the system in the new coordinates is

(11)

Obviously the characteristic equations of the two systems (9) and (11) are identical.
The construction of the transformation that brings a non-linear system to the non-

linear controller canonical form involves the solution of the exact differential equation
represented by (7). In other words, the last row of the inverse of the controllability
matrix must be a gradient field for (7) to be solvable. Often (7) is not exact.
Fortunately, in some cases, it can be made exact by the use of an integrating factor. It
is known that if one integrating factor exists then there are an infinite number of
integrating factors (Moon and Spencer 1969). Let us consider the implications when
(7) is not exact. Suppose we were able to find an integrating factor J1(x) such that the
following equation is satisfied:

aTI(x)-----a;- f1(x)q(x) ij(x) (12)

Thus we have

ijC6' [0 0 ... 0 J1(x)]

The above implies that

aT! !~(adn- a, b) J1(x)

Therefore application of the transformation (6) to (1) with T!(x) as a solution of (12)
brings the non-linear system into the following form:

Xz 0
XI

x3 0
d Xz

(13)+ u
dt

s, 0
xn

f(x} ± f1(x)

- -

= = 

= 

= 

-



This form was designated by Sommer (1980) as the non-linear phase-variable controller 
form. 

Example 2 

To illustrate the implications of the non-exactness of (7), we analyse the following 
non-linear system on [R2 (Su et al. 1983): 

The controllability matrix is 

[ 
0 -coos x2]~=[b (adla,b)]= I 

The last row of ~ - 1 has the form 

q(x) = [- _1_ oJ 
cos X2 

One can easily verify that q(x) is not a conservative field, but it can be made 
conservative by the use of an integrating factor, e.g. IJ. = ­ cos x2. Then 

oJ = oTl 

ax 
Integration gives the solution 

i.e. T1 is the field potential of ij. Thus 

Note that 

d
d x = ~T (a(x) + b(x)u) = [sin X 

2 
] + [  0 ]u 

t  ox  ° cos X2 

But Xz = sin xz, yielding the transformed system 

3.2. Method 2 

The second method of the simplification of non-linear systems by a non-linear 
transformation was discussed by Kuntsevich and Lychak (1977), and it is attributed to 
Korobov. Method 2 works for the systems described by the following class of non­
linear equations: 

(14) 
x; = fn(xl, Xl> ... , Xm u) 



It can be shown that the transformation 

x=T(x)= 

fl(X1, X2) 

d 
d/1(X1, X2) (15) 

d(n-2) 

dt(n-2/1(X1, X2) 

puts the original system (14) into the form 

0 0 0 0 0 
0

:E} 
0 0 0 0 0 r:} 0 

0 
v(T(x), u) 

0 0 0 0 0 

0 0  0 0 0 0 

where T(x) is the inverse mapping of T(x). 

Example 3 
Consider the inverted pendulum controlled by a DC motor as described by (8). 

Note that this system belongs to a class described by (14). The transformation (15)will 
have the form 

Note that this transformation differs from the one we obtained using Method 1 only 
by a factor 1/K2Ks. The transformed system using (16) can be represented as follows: 

3.3. Method 3 

The third class of transformations of non-linear systems considered in the paper 
has the important property of preserving the eigenvalues of the linearized model at 
any of the operating points. Method 3 is based on the ideas of Reboulet and 
Champetier (1984), and applies to a general class of the non-linear systems described 

by the equation 
x =f(x, u) 



I Method 3 assumes thatf(O, 0) = 0, i.e. x = 0, u = 0, is an operating point. We are 
also interested in constant operating points corresponding to non-zero constant 
inputs u = s, These points form a set 

0= {(x" 8)/f(x" 8) = O} 

In the neighbourhood of an operating point (x" 8) the dynamic behavior of the 
system can be described by a linear equation of the form 

bx = A(x" 8) bx + b(x" 8) bu (18) 
where 

A A Ofl bA Ofl - ax  (x,. E)' - au (x" ,) 

Assume that at any operating point (x" 8) the pair {A(x" 8), b(x" o)} is completely 
controllable. This then implies that 

det [b(x" 8) A(x" 8)b(x" 8) ... An -l(X" 8)b(x" 8)] # 0 

\I (X" 8) EO = {(X" 8)lf(x" 8) = O} 

Therefore we can find a similarity transformation Ttx.; 8) such that at any operating 
point of interest 

0 0 0  0 0 0 

0 0 0 0 0 0 

TAT-1 = Tb= 

0 0 0 0  0 1 0 

x x x x x x 1 

The transformation T is constructed in the usual way (Kailath 1980), i.e. 

T= 

q 

qA 

qAn-2 

qAn-1 

where q is the last row of the controllability matrix [b Ab ... An-1b]. 
Note that the rows of T(x£, 8) can be viewed as differential l-forms over the set 

Ox = {x, /38 s·t.f(x" 8) = OJ.Integrating T;(x" 8) along this set results in the mappings 
Tili= 1, ... , n, such that 

In other words, 

OT/
ox (x",) 

q 

qA 



Observe that the transformation constructed via Method 3 preserves the eigenvalues 
of the linearized system at any constant operating point. 

Let us illustrate this in the following example. 

Example 4 

Consider again the inverted pendulum controlled by a DC motor. The system 
equations are 

r::tfKI sin:1 

1 

+K2xJ+ r~ lulxJ K2xZ + K4x3 J lKJ 
The set of constant operating points is 

o = {x I. = sin - I (K 1K s c), X 2.  = 0, X 3,  = _  K S e, u = e}
KIK4 K4 

The linearized model at any (x" c) E 0 has the form 

f
O~\J f 0  0  J  fOXI 

J 
f 0 JO~2 = KI cos Xl' 0 K2 OX2 + 0 ou 

oX3 0 K3 K4 oX3 x, 

In order to find the desired transformation we compute 

o oJ  
Integrating q along Ox, we obtain 

i 
Now 

qA = [0 1 oJ
K1Ks 

The integration of qA along Ox results in 

qA2 = [K I cos Xl' 

KzKs 

Integrating qA 2 along Ox yields 

o _1 J
Ks 

Finally, 

KI. 1T3=--smxI +-x3K2Ks «, 
As a result of the above manipulations, we have the desired transformation which 
transforms locally and globally the non-linear system (8) to the controllable form. 



I Moreover, this transformation preserves the constant operating points of the
linearizedmodels.

Example 4 illustrates the main purpose of this section. The goal is to find an
algorithm for the construction of a transformation that would exhibit the property of
both global and local transformations. Specifically, we are seeking a transformation
that brings a non-linear system into its global non-linear controller canonical form
while simultaneously preserving the eigenvalues of the linearized model at any
constant operating point. Such a transformation may be obtained by combining the
discussed methods together. The algorithm for constructing such a transformation is
as follows.

Step 1. Using Methods 1 or 2, find a transformation

T(x)

TII(x)

bringing a non-linear system to non-linear global controller form.

Step 2. Linearize the non-linear system about a generic constant operating point,
i.e. find a parameterized family of linearized models of the non-linear
system.

Step 3. Form the controllability matrix of the linearized model.
Step 4. Find

q

qA

such that the following relations are satisfied:

VTj(x)l(x,.,) qiAi-1

In § 4 we will examine the application of these results to state-feedback design for
non-linear systems.

4. State-variable feedback design
Recall that the systems considered in this paper can be described by the following

equa tiori:

x(t) = a(x(t)) + b(x(t))u(t)

The state-feedback control laws to be examined have the form

u v+ k(x)

where k(·): 1R"---> IR,u(O) 0, and v is an external input.

= 

= 

= 

= 



Thus the closed-loop system can be described by the equation 

x = (a(x) + b(x)k(x)) + b(x)v 

Note that v = 0, x = 0 is a constant operating point for both the open- and the closed. 
loop systems. Consider also the constant operating points corresponding to non-zero 
constant inputs, say v = {3. Assume that 

oa (0) + b(O) ok (0) ox ox 
is invertible; then 

a(xp) + b(xp)k(xp) + b(xp){3 = 0 

has a unique solution for xp( .)  as an analytic function of {3 in some neighbourhood of 
{3 = o. It is possible to view the closed-loop operating point as a function of u = e (see 
Baumann and Rugh 1984). 

Our goal here is to find an analytic feedback k(·) such that the eigenvalues of the 
closed-loop system are invariant with respect to any particular closed-loop operating 
point. 

One approach to achieving this goal was proposed by Baumann and Rugh (1984). 
We suggest an alternative approach which utilizes a transformation of a non-linear 
system to a simpler form. 

Specifically, using the algorithm outlined in § 3, we transform an open-loop system 
into the global non-linear controller form while preserving constant operating points. 
An appropriate feedback is found which provides the desired system eigenvalues at 
any constant operating point. Finally, the transformation x* = T(x) provides a path 
back to the original state variables. 

Example 5 
Consider again the inverted pendulum controlled by the armature-controlled DC 

motor. 
The transformation that brings this system into a global non-linear controller 

form while simultaneously preserving the operating points was found in § 3 
(Method 3) and has the form 

(19) 

The transformed system is 

l~J[(K' cos (K,K,x,l+ K'K'lX':: K.x, - K,K. SiO(K,K,X,l]+U}
K2Ks 

Suppose we want the eigenvalues of the closed-loop linearized system to be the 
same at any constant closed-loop operating point. Denote these eigenvalues as -e1, 

-e2, -e3. Then the characteristic equation of the linearized closed-loop system has 



theform

(20)

The state feedback assigning the desired eigenvalues to the linearized closed-loop
system(in the new coordinates) is

And the desired feedback, in the old coordinates, is

(21)

Application of this state feedback to the system (8) results in the closed-loop system
whose linearized model at any constant (closed-loop) operating point has the
characteristic equation of the form (20).

5. Example
In this section we present simulation results for different control strategies applied

to the inverted pendulum controlled by the armature-controlled DC motor as
described by (8). Reasonable parameters describing our system are 1=1 m, m 1 kg,
g 9·8m/s", J 1 N msz/rad, Km 0·1 Nm/A, K; 0·1 Vs/rad, R 1n, L 100 ml-l.
In terms of these parameters, the coefficients entering (8) are K 1 9,8, K 2 1,
K3 10, K4 10, Ks 10.

We analyse three different control laws:

(i) linear state feedback (L);

(ii) globally linearizing state feedback (GL);
(iii) partially linearizing state feedback (PL).

In order to derive a linear state feedback, we linearize our system about the origin,
and then employ linear-systems pole-placement techniques (Kailath 1980) to find the
appropriate control law. Suppose that the desired characteristic equation of the
linearized closed-loop system has the form 83 + ('1ZS2 + C(lS + ('10 O.Then, after some
manipulations, we find the linear control law

Werequire the closed-loop linearized system to have its eigenvalues located at {-e1,

-e2, -e3}, where e1 ez 1 ± j 1·33 ans e3 100.
Globally (or fully) linearizing feedback was derived in § 4 and is given by (21).

= 
= = = = = = 

= = 

= ­ = ­ = 

= 

= = = 



Partially linearizing feedback (non-unique) has the form 

U = ­ _1_[KzK3XZ + «,«, cos Xl - K4Kzx3x,«, 

(.  )  3  Z  10  
3 

3J- C(oXt + C(tXZ + C(z KI Sill Xl + KZX3 + 10 XIXZ + TXz (22) 

Observe that the closed-loop systems with globally and partially linearizing 
state feedbacks, when linearized about any constant operating point, have the 
same eigenvalues, invariant with respect to the operating point. The partially 
linearizing feedback was obtained by the addition of the non-linear term g(x) = 

(103XIX~ + 1~3 X~) IKzK s to the globally linearizing feedback (21). This term can be 

thought of as modifying the characteristic equation of the linearized system as a 
function of state. The linear control law can be obtained by linearizing either (21) or 
(22) about the origin. By comparison, one can check that the eigenvalues of the closed-
loop system with the linear feedback are different at different constant operating 

points. 
The following figures contain simulation results for the discussed three different 

control strategies. First, in Fig. 3, the response of the open loop system (8) is depicted. 
In Figs. 4(a-c) a comparison of the responses of the closed-loop systems when 
subjected to different non-zero initial conditions is depicted. In all cases, the reference 

input is zero. 
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Figure 3. The response of the uncontrolled system (8) with the control voltage u = V = O. 
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Figure 4. The zero-input responses of the closed-loop system with three different control laws 
for different initial conditions: (a) x ,  = f) = n/4, X2 =X3 = 0; (b) Xl = f) =n/2, X2 =X3 = 0; 
(c) Xl = ()= n, X2 = X3 = O. 

Observe that the system with the globally linearizing (GL) non-linear control 
maintains a 'linear-like' constant response regardless of the magnitude of Xl(O). This 
verifies the linearizing action of the fully linearizing non-linear feedback. By contrast, 
the shape of the response of the linear-feedback system (L) varies with the magnitude 
of x1(O). It appears that the linear feedback exhibits larger (more-negative) eigenvalues 
than those intended when the system is displaced outside the neighbourhood of Xl = O. 
This results in a highly 'underdamped-like' response, even though we designed for 
only a slightly underdamped response. The compromise between the two extremes is 
partially linearizing feedback. The response of the closed-loop system with this type of 
feedback is 'better' than the other two, in the sense that it provides a fast response 
without excessive overshoot. Furthermore, this feedback, as globally linearizing 
feedback does, maintains the closed-loop eigenvalues at any constant operating point. 
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