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ABSTRACT 

This study presents an experimental investigation of fracture mechanics for isotropic 
material, aluminum alloy Dl6AT. The problem of stable crack growth (SCG) has been 
addressed in this paper. Experimental results are presented for symmetrically stiffened 
and unstiffened three point bend specimens subjected to different modes. mode I and 
mixed mode. The stiffeners are doubly bonded to the fatigue pre-cracked specimens 
parallel to the length at a certain distance behind the crack tip using an adhesive Redux 
410 NA. Results concerning load displacement variation, growth of plastic zones, 
instantaneous crack edge profiles, tunneling, are presented. 

There is evidence that the whole stable growth can be characterized by the crack opening 
angle, COA, criterion. The stiffening helps to increase both initiation and maximum 
fracture loads substantially. 
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INTRODUCTION 

Many materials give rise to stable crack growth before instability. In order to exploit the 
potential ofsuch a material beyond the initiation fracture load it is necessary to be able to 
predict the variation of load with crack opening displacement (COD), or length of crack 
extension (L1a) up to the Point of instability or maximum load. Mode I problems have 
received a considerable attention in thls context It is now well known that the whole SCG 
can be characterized in terms ofa constant COA or tearing modulus (1-13] 

An analysis of mode I problem is facilitated by the in-plane crack growth and the node 
release method can be easily adapted. In order to develop similar predictive methods for 
a mixed mode it is necessary to examine the following. What criterion governs the whole 
SCG? How can the node release method be adapted? There has been some progress in 
this direction (7-13]. Some results, both theoretical and experimental, are presented here. 
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Repair patches/stiffeners can be used to enhance the load capacity or life ofa component. 
These have so far been analyzed within the framework of LEFM Their exploitation 
beyond the LEPM requires the knowledge of their performance in the elastic-plastic 
regime. This really calls for an examination of the SCG criteria to select the most 
suitable one that can characterize the SCG through patched/stiffened specimens, and 
development of a procedure for analysis of the growth. There have also been some 
advances in the understanding of this problem [7,8]. Typical results, both theoretical and 
experimental, are reported here. Results are now available for both compact tension (CT) 
and three point bend (TPB) specimens. TPB specimens are only ofconcern here. 

EXPERIMENTS 

Experiments have been carried out using an aircraft grade aluminum alloy DI6AT with 
modulus ofelasticity E = 72594 MPa, plastic tangent modulus Er,. 1471 MPa, Poisson's 
ratio v =0.3, yield stress cr1 = 353 MPa and fracture toughness lc: = 16160 J/m2 (for 10 
mm specimen thickness). The material has negligible anisotropy. Specimen geometry is 
shown in Fig. 1. Mode I specimens are of nominal size 160 mm x 40 mm x 8 nun 
thickness. Length in the case of mixed mode is 245 mrn. Cracks are located parallel to 
the width, at the center of the span in the case of mode I, and offset by 10% or 200/o; span 
in the case of mixed mode. Specimens are made following some of the ASTM E399 
(1981) guidelines. Stiffeners of nominal size 50 mm x 10 mm x 1.82 nun thick are 
doubly bonded to the fatigue pre-cracked specimens parallel to the length at a certain 
distance behind the crack tip using an adhesive Redox 410 NA (manufactured by 
Hindustan Ciba Geigy). The adhesive has a lap shear strength of 32 MPa; with post
curing at 120°c; the strength is 40 MPa Experiments have been carried out quasistatically 
on a displacement-controlled machine. 

The crack opening displacement has been measured at the mouth using a clip gauge. The 
load-displacement diagrams are shown in Fig. 2. There is an increase in both initiation 
and maximum load by about 1000/o because ofthe stiffening in almost all the cases. 

The crack edge profiles have been obtained by the method of replication. The general 
observation is that the crack opening angle remains almost constant during the whole 
SCG irrespective of the mode of loading. 

The plastically deformed zone (Fig. 3) around the maximum load has been determined 
employing an etchant [14]. The white bands adjoining the crack flanks are the plastic 
zones. The plastic zone normal to the crack path increases in size with the crack 
extension. 

Typical photographs of fractured samples, crack tunneling and fracture surfaces are 
presented in Fig. 4. The fractured samples show very negligible plastic deformation. 
There is a substantial tunneling • 4 to 6 mm in the case of mode I and 5 to 7 mm in the 
case of mixed mode. The fracture surfaces are mostly flat; there is a marginal slant 
fracture near the surfaces, 

CONCLUSIONS 

From the results reported here and presented elsewhere (7-11), it appears that the COA 
criterion can characterize the whole stable crack growth in both mode I and mixed mode. 
Although the stiffening in a sense gives rise to some loading on the crack flanks at a 
location not so far away from the crack tip, the COA criterion still characterizes the crack 
growth in such a situation. The stiffener can help to increase the load capacity of the 
specimens by as high as 100%. The load-displacement variation can be predicted 
reasonably accurately. The adhesive shear stresses are highest at the crack flanks. 
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Table I J at various ruutcs ofonset of extensiOn 

Stage l:6a (mm) 
WlStiffened 

PIP, I J~,
(Nrnlm2

) 
PIP, 

Stiffened 

I J..,. {Nm/ml) 

Model 

1 00 
2.00 
3.00 
4.00 
5 00 
6.00 

0.00 
0.40 
0.80 
1.20 
1.60 
2 .00 

Pi= 4943'86 N 

1.00 8440 67 
1.24 1616333 
133 20626.67 
l.39 25708.33 
1.41 29491.67 
1.43 33518.33 

l.OO 
P1= 14540 36 N 

8573 17 

Mixed Mode (O.IS) 
Pi= 435S 00 N Pi = 12856.54 N 

11 .00 0.00 1 00 8948.50 1.00 8506.30 
2.00 0.40 1.26 I 1696.67 I 31 1100330 
3.00 0.80 I 39 16575 00 

Mixed Mode (0.2S) 
P.= 5750.5G N Pi= l6174.00 N 

1.00 
2.00 
3.00 
4.00 
5 00 
6 00 

000 
0.40 
0.80 
1.20 
160 

36557 00 

1.00 
1.26 
1.38 
1.44 
1.50 
I 52 

8901 80 
12033.30 
17041 70 
20610 00 
25530 00 
29928 30 

1.00 
1.33 

7978 17 
l 1528 33 

Table 2 J at various s~es of completion ofunloading 

unstiffened Suffcncd 
Stage l:6a (nun) 

PIP, IJ""' (Nmlm2
) PIP, I J.va (Nm/m") 

Model 

PI= 4943'86 N P1- 14540.36 N 

I 00 0.40 1 00 9649.83 1.00 8948. 17 
2 00 0.80 1.24 17331 67 
3.00 1 20 I 32 22296 67 
4 00 160 1 39 '28103 33 
5.00 2.00 1.41 32335.00 
6 .00 2 40 1.43 36818.33 

Mixed Mode (0.1S) 

Pi= 435S.OO N P1=12856.54 N 

1 00 0 40 100 5090 67 I 00 4222 20 
200 0 80 126 12380 00 
3.00 1.20 1.39 18023 33 

M1xed Mode (0 2S) 

PI= 5750.5G N P1= 16 174.00 N 

1.00 
200 
3 00 
4.00 
5.00 
16.00 

0.40 
0.80 
1.20 
1.60 
2.00 
2 40 

1.00 
1.26 
1.38 
1.44 
1.50 
1.52 

5095.30 
12668 30 
18586.70 
22730.00 
28438.30 
333 16 70 

1 00 4002.33 
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Figure. I Specimen geometry 
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Fig. 2 Load-displacement diagram. 
Mode I (a) stiffened and (b) unstiffened. 
Mixed mode (O. IS) (c) Stiffened and (d) Unstiffened. 
Mixed mode (0.2S) (e) Stiffened and (f) Unstiffened. 
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Fig. 3 Plastic wakes. Stiffened (a) mode I, (b) mixed mode (0 IS) 
and (c) mixed mode (0.2S). Unstiffened (d) Mode 1, 
(e) mixed mode (0.1 S) and (f) mixed mode (0 2S) 
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Fig 4 Fractured specimens, crack tunneling and fracture surfaces. 
Fractured specimens: (a) Stiffened and (b) Unstiffened. 
Crack tunneling· (c) Stiffened and (d) Unstiffened. 
Fractured surfaces· (e) Stiffened and (f) Unstiffened. 
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