
Statistical dictionaries for hypothetical in silico model of the
early-stage intermediate in protein folding

Barbara Kalinowska1,2 • Piotr Fabian3 • Katarzyna Stąpor3 • Irena Roterman1
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Abstract The polypeptide chain folding process appears

to be a multi-stage phenomenon. The scientific community

has recently devoted much attention to early stages of this

process, with numerous attempts at simulating them—ei-

ther experimentally or in silico. This paper presents a

comparative analysis of the predicted and observed results

of folding simulations. The proposed technique, based on

statistical dictionaries, yields a global accuracy of 57 %—a

marked improvement over older approaches (with an ac-

curacy of approximately 46 %).

Keywords Early stage folding � Folding intermediate �
Structure predictability � Folding process � Folding

simulation

Introduction

Ab initio protein structure prediction methods (new fold,

Boltzmann-based) [1] strongly depend on initial structures.

Optimization algorithms tend to produce conformations

which either match or closely approach local minima in-

stead of the protein’s native form. Some progress in this

regard can be observed by tracking the outcome of the

CASP competition (http://www.predictioncenter.org). Ex-

perimental analysis indicates that protein folding involves

multiple stages [2–8] and this observation is further rein-

forced by in silico models [9, 10]. The analysis presented in

this work assumes a two-stage process [11–14]. We will

focus on the so-called Early Stage (ES) intermediate whose

structure can be derived on the basis of a limited confor-

mational subspace, restricting the allowed set of (u, w)

angle pairs to an elliptical path on the Ramachandran plot.

The rationale behind this restriction is extensively dis-

cussed in [15–22] and has been stipulated for many years

[23].

Early stage model (ES)

The ES model assumes that the initial conformation of the

polypeptide chain can be predicted on the basis of its

backbone, neglecting side chain contributions. In our model

the ES intermediate is expected to conform to the previously

mentioned limited conformational subspace [12, 15, 16].

This subspace is represented by an elliptical path which

traverses areas corresponding to well defined secondary

structural motifs on the Ramachandran plot. Its shape and

placement follow from analysis of the chain’s backbone

structure, expressed using pairs of V-angles, i.e. angles be-

tween planes corresponding to two adjacent peptide bonds.

This second-order function delineates a path along which the

curvature radius matches observed values (Fig. 1).

If each observed pair of (u, w) angles is projected onto

the limited subspace using the minimum distance criterion,

the distribution of the resulting pairs (ue, we) can be shown

to exhibit seven distinct maxima (Fig. 2). The areas cor-

responding to each local maximum can be translated into a

structural code, resulting in a structural alphabet which
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consists of seven letters (A–G). This alphabet enables us to

express the predicted structure of the ES intermediate with

the precision of limited conformational sub-space.

ES structure prediction

Once the structure of the polypeptide chain (as given by

PDB) is denoted using the structural codes discussed

above, it becomes possible to study the relation between

residue sequences and structural codes. This relation can be

expressed as a contingency table in which each sequence of

amino acids corresponds to a given code with specific

probability. Contingency tables can be used to predict the

structure of input sequences. While constructing our

structural alphabet we have applied the greatest probability

criterion and selected tetrapeptide fragments as the basis of

our contingency tables.

As already indicated, the ES intermediate structure can

be predicted to within the nearest maximum of the limited

conformational subspace. Further analysis based on infor-

mation theory principles indicates that the quantity of in-

formation required to make this prediction corresponds

closely to the quantity of information which is present in

the polypeptide chain itself [16]. The accuracy of structural

predictions based on tetrapeptide fragments and contin-

gency tables has been discussed in [24]. In this paper we

present a different code selection method, based on sta-

tistical dictionaries which permit us to take into account

longer input sequences.

Statistical dictionaries

The newly implemented early-stage secondary structure

prediction method is based on statistical dictionaries: we

have assembled a dictionary of primary substrings and their

corresponding secondary structures. In general, dictionary

methods use a large set of items—words, translations, se-

quences of symbols etc. These methods are applied in

many domains: text translation (the dictionary contains a

number of phrases with the corresponding translations),

speech synthesis, cryptography, etc. Dictionary methods

depend on a large set of previously solved problems in

order to find a solution to the problem at hand. Even if a

direct solution is not present in the dictionary, the solver

algorithm may find similar problems and use their solutions

to generate a suitable answer.

Fig. 1 Conformational subspace represented by an elliptical path on

the Ramachandran plot (gray line), with areas corresponding to local

probability distribution maxima of (ue, we) angle pairs obtained

through minimum-distance projections (black lines). The black arrow

depicts a sample projection (ui, wi) ? (uei, wei)

Fig. 2 Probability distribution

profiles for (ue, we) values for

histidine, along with structural

codes corresponding to

individual maxima. The

t parameter traverses the

elliptical path starting with one

of its poles which is located in

the bottom right-hand corner of

the Ramachandran plot. Bars

represent the specific placement

of all seven probability maxima

which are used to express the

early stage intermediate

structure
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The presented method is based on the assumption that a

sufficiently long substring of the primary structure always

leads to the same secondary structure subsequence. The

method consists of two stages: dictionary construction

stage and prediction stage.

Comparing the presented technique with earlier ap-

proaches based on analysis of tetrapeptide fragments

indicates that using statistical dictionaries produces a

marked increase of accuracy (from 46 to 57 %), rendering

our new method superior.

Materials and methods

Databases

The dictionary is built on the basis of selected proteins

from the PDB database. A nonredundant protein database

was generated using the BlustClust tool (http://www.ncbi.

nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html). Fol-

lowing elimination of proteins whose degree of sequential

similarity was greater than 95 % the database numbered

24820 proteins. The training set consisted of 24426 protein

chains while the testing set consisted of 246 protein chains,

selected to be dissimilar to chains in the training set. This is

essential to ensure, that the prediction stage does not use

information about chains from the testing set. Residues

involved in interactions with external molecules were

identified by measuring the distance between the external

molecule and the protein under analysis [a cutoff distance

of 2.9 Å was applied, in line with PDBSum standards

(http://www.ebi.ac.uk/pdbsum)].

Statistical dictionaries

Each dictionary contains records composed of two ele-

ments: the primary subsequence and corresponding sec-

ondary structure for the middle element of the

subsequence. Substrings are generated from the training set

using a sliding window. Each chain of length n generates

n pairs (substring, secondary structure class). For a given

length l of the window, [l/2] additional neutral ‘X’ symbols

are added at the beginning and end of the chain. The sliding

window is then moved from left to right, generating pairs.

The secondary structure class applies to the middle element

in the window. Our implementation collected substrings up

to 13 elements long. The dictionary uses a family of hash

functions [25] to place all strings in a number of hash

tables. Each hash table creates one subdictionary Di, i = 1,

3, 5, …, lmax. Subdictionary Di contains strings of length

i. Each record placed in a dictionary is composed of two

elements: the primary string and a set of seven counters

counting the occurrences of seven possible structural code

classes (A, B, …, G) for the middle element of the primary

string.

The prediction algorithm uses information from the

dictionary built in the first stage. Each position of input

string ps is analyzed. For each position, subdictionaries Di,

i = 13, 11, …, 1 are used to match a substring extracted

from ps, from position ps[k - 2i] to ps[k ? 2i]. If a match

is found, the corresponding best secondary structure class

is retrieved from the dictionary. If an exact match is not

found, another try is made to find an approximate match

with one non-matching position. If not successful, a

smaller value of i is taken. The last subdictionary, D1,

contains all twenty possible elements so this algorithm

always finds a match. Sequence ps is additionally padded

with a sequence of [i/2] ‘X’ elements at the beginning and

end, which is not shown in the code.

Evaluation measures for prediction of the 7-class

structural alphabet

The evaluation formula is very simple and similar to the Q3

measure. For a given amino acid chain of length n, the

observed structural code is denoted as Sobs[1…n], and the

predicted structural code as Spred[1…n]. The accuracy for

this amino acid is computed as m/n, where m is the number

of indexes i, for which Sobs[i] = Spred[i] and n is the length

of the chain. Accuracies for all 7 classes (A–G) of the

structural alphabet have also been computed in a similar

way. For each class only positions with Sobs[i] equal to this

class have been taken into account. If there were no ele-

ments of this class in the secondary structure, the accuracy

for this class was assumed to be 0 % (which may be a bit

misleading). The total accuracy for the whole testing set is

defined as the arithmetic mean of accuracies for all chains.

Total accuracies for 7 classes of the structural alphabet are

computed analogously.

Comparative analysis

Predicted structural codes were compared with secondary

structures determined by the DSSP algorithm for structures

deposited in PDB [26, 27]. The secondary structures were

obtained from the online DSSP database (http://www.cmbi.

ru.nl/dssp.html). Additionally, the prediction results were

collated with prediction of secondary structures obtained

by the SPINE X method [28, 29] for the identical testing

set of protein chains. The method distinguishes three sec-

ondary structure classes—helical (H), extended (E) and

coils (C). In order to draw a comparison, such three groups

of structures were created also for ES structural codes and

DSSP structures. DSSP structures were grouped as fol-

lows—helical structures contain H (a-helix), G (helix-3)

and I (helix-4), extended—B (b bridge) and E (strand),
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coils—T (turn), S (bend) and not classified. The same di-

vision was used by authors of SPINE X for evaluating

predictions. The ES structural codes can be easily assigned

to helical (C) and extended (E and F) structures. The four

other codes create the third group but they cannot be

identified with turns, bends and coils unambiguously.

Results

Results summarized in Table 1 present the overall accu-

racy of the structural code identification method discussed

above. The aggregate value of 56.67 % compares favor-

ably to results obtained using contingency tables which

assign structural codes to tetrapeptides. Table 1 also shows

the prediction accuracy for residue sets obtained by

eliminating residues involved in external interactions (with

ligands, other proteins or DNA/RNA chains). The differ-

ences between all four groups of results are negligible—the

statistical dictionary method does not seem to favour non-

interacting residues, while the contingency table method is

substantially affected by eliminating residues engaged in

ligand interaction as shown in [24]. In contrast, elimination

of residues which interact with proteins and DNA/RNA

does not alter the accuracy of predictions and both methods

are quite similar in this scope. Results obtained using the

maximum probability criterion are on the order of 46 %

and seem affected by the status of each residue (i.e. whe-

ther it is involved in external interactions). As shown, this

correlation is strongest for residues which bind external

ligands and other proteins, whereas interaction with DNA/

RNA chains has a limited effect on prediction accuracy.

The proposed method does not seem affected by such

perturbations—whether due to methodological differences

or to the relatively limited representation of interacting

residues in the study set. The physical model assumes that

the presence of external factors (such as ligands) may

affect the local conformation of peptide bonds. Due to its

highly specific nature of such distortions we should not

expect the resulting conformation to match the ‘‘standard’’

structural form for a given sequence.

The improved accuracy of the statistical dictionary

method (which takes into account fragments consisting of

1–13 amino acids) indicates that tetrapeptides are not suf-

ficient for predicting the structure of the resulting chain.

Restricting analysis to such short fragments effectively

eliminates all nonstandard conformations, while taking into

account longer chains may result in (correct) selection of

structural forms which occur with lower probability.

Prediction accuracy for individual amino acids

Table 2 presents the prediction accuracy for individual

amino acids. The presented values (obtained using the

statistical dictionary method) hint at specific correlations

(Fig. 3).

Major differences can be observed for C-type structures

(clockwise a-helix) and for cysteine. The presented method

is less apt to propose a-helical forms for all residues except

aspartic acid. D- and F-type structures are predicted with

greater accuracy for most residues. Code D represents

transitional structures which form the bridge between the

a-helix and b-twist areas on the Ramachandran plot.

Likewise, code F is adjacent to the b-twist area, aggre-

gating forms with low negative values of u. The corre-

sponding structures are generally deformed counter-

clockwise a-helixes. Analysis of such structures indicates

that they represent important deviations from a and b
forms: codes D and F are usually found at the ends of well-

known secondary motifs (D for a-helixes and F for b-twists

respectively). Termination of such motifs produces a new

structural class (see Fig. 3.5 in [14] ) which is very im-

portant from the point of view of determining the overall

conformation of larger residue chains. The greater

Table 1 Structural code

prediction accuracy (percentage

values) for the full set of amino

acids and for partial sets

obtained by eliminating residues

which interact with ligands,

other proteins and DNA/RNA.

The final row contains values

obtained using the contingency

table method [24]

Prediction accuracy (%)

Structural code Complete set Amino acids excluded engaged in interaction with

Total Ligand Protein DNA/RNA

A 18.83 18.71 18.69 18.83

B 9.40 9.50 9.70 9.40

C 72.30 72.47 72.25 72.29

D 27.62 27.29 27.67 27.64

E 54.37 54.24 53.60 54.37

F 36.53 36.57 36.67 36.53

G 44.81 44.97 44.83 44.82

56.67 56.77 56.69 56.67

Previous results 45.77 45.93 45.92 45.75
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predictive accuracy of the statistical dictionary method

should be viewed as a significant advantage in this regard.

Another notable difference between the presented

methods is the lower accuracy of the statistical dictionary

method for cysteine residues (where only B-type structures

are more accurately predicted than using the contingency

table method). A decrease in accuracy is also observed for

glycine (affecting 5 out of 7 structural codes), however the

statistical dictionary method produces better results for

G-type structures which are the most common conforma-

tion for this amino acid. The presented method is also less

accurate with regard to B-type structures and—somewhat

unexpectedly—C-type structures. Code C represents a

clockwise helix which dominates the structure of many

proteins. Results obtained using the older method suggest

significant overrepresentation of helical fragments.

Individual prediction examples

For 2VBL the statistical dictionary method produced cor-

rect results in 92 % of cases. All a-helixes and b-twists

were correctly predicted (Fig. 4), with incorrect structural

codes occurring mainly at the ends of a-helixes. The

contingency table (tetrapeptide) method achieved a much

lower accuracy (51 %) with a marked overrepresentation

of helical structures.

2JEK is an example of a protein for which the statistical

dictionary method produces less accurate results than the

contingency table method (12 % decrease in accuracy).

The statistical dictionary method is less apt to propose

helical structures, which form the majority of this protein

(Fig. 5).

The final example is 2VAD for which the statistical dic-

tionary method proved vastly superior to the contingency

table method (85 vs. 35 %). This particular protein consists

mainly of b-sheets; a structural motif for which the contin-

gency table method produces poor results. Figure 6 highlights

the differences between the outcome of each algorithm, with

extended fragments corresponding to individual b-sheets.

Another possible reason for the reduced accuracy of the

contingency table method is the potential presence of a ligand,

which distorts the protein’s conformation.

Additional examples of structures predicted with par-

ticularly high or low accuracy are presented in Table 3.

Analysis of results listed in Table 3 confirms that the

statistical dictionary method is less accurate when model-

ing helical structures. This is however, compensated for by

its high accuracy with regards to b-twists and random coils

(codes A, B, D and G), as confirmed by our analysis of

1CR9-L (immunoglobulin domain) and 1XAU-A (random

coil).

Comparison with SPINE X method

The accuracy of secondary structure prediction is presented

in the Table 4. The level of correct prediction of helical

structures is especially high for ES prediction method

(78.3 %), while the SPINE-X method overpredicts coils

(helixes—36.5 % and coils—48.4). The extended

Table 2 Structural code prediction using new method (top row) and

the method described in [24] (bottom row)

Total A B C D E F G

ALA 60.05 0.00 1.45 77.92 14.44 35.34 27.33 4.47

0.00 2.20 96.04 1.42 13.38 14.37 0.0

CYS 13.39 0.00 0.81 29.62 4.55 28.87 6.81 1.22

25.0 0.0 71.37 16.48 65.07 30.0 21.87

ASP 49.17 0.00 3.75 66.39 22.06 38.73 19.85 10.16

5.87 3.60 52.68 2.96 16.35 5.97 64.34

GLU 62.50 0.00 1.12 81.05 10.43 33.2 20.55 3.65

0.0 0.0 93.22 6.67 30.32 13.79 8.86

PHE 52.00 0.00 0.81 50.42 14.96 47.19 16.09 3.04

0.0 2.67 63.04 0.55 2.04 74.54 3.03

GLY 44.00 19.34 4.15 38.98 11.57 16.16 12.47 57.41

14.28 5.20 85.60 15.84 30.66 16.79 11.7

HIS 36.16 0.00 0.41 38.92 10.76 39.79 9.28 5.01

0.0 2.08 92.03 7.43 27.98 13.99 6.12

ILE 58.55 0.40 0.81 62.90 10.97 55.86 19.35 0.40

0.0 1.35 95.69 2.49 21.01 10.99 1.94

LYS 52.81 0.00 0.61 67.02 9.75 39.64 19.30 6.57

0.0 0.0 78.04 1.06 61.75 5.62 0.0

LEU 58.77 0.00 0.51 73.62 17.88 42.88 24.33 3.25

0.0 0.0 79.80 5.69 50.84 10.57 8.70

MET 22.21 0.00 0.68 45.02 9.01 24.73 6.23 0.81

0.0 7.69 86.44 0.92 46.79 9.85 10.34

ASN 45.44 0.00 2.84 48.95 20.69 36.49 15.55 20.49

0.0 9.33 83.76 0.65 53.19 2.68 0.0

PRO 59.66 0.00 2.23 52.46 7.08 1.83 64.67 0.41

NA 0.0 80.19 1.37 59.75 30.93 27.78

GLN 51.47 0.41 0.81 63.67 12.33 30.57 14.08 4.27

NA 0.0 78.35 13.19 52.68 21.6 18.64

ARG 53.00 0.40 0.81 64.86 12.90 38.24 18.78 4.27

NA 1.47 79.71 16.23 37.86 17.05 24.91

SER 45.61 2.44 2.98 60.25 16.92 41.07 23.94 4.53

NA 0.0 79.43 11.90 51.54 9.50 2.22

THR 47.26 0.00 2.44 50.06 19.96 50.35 22.70 1.22

NA 0.0 93.52 4.56 31.53 12.63 4.20

VAL 60.66 0.00 0.00 57.58 10.56 62.48 9.85 0.81

NA 0.0 94.91 2.21 26.74 8.95 0.0

TRP 25.73 0.00 0.00 43.32 4.94 27.68 6.37 0.41

NA 1.33 85.13 2.24 32.98 22.4 1.22

TYR 41.26 0.00 0.81 46.4 12.9 48.24 10.51 3.86

NA 2.0 77.55 5.07 48.58 18.88 3.03
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structures are predicted with similar accuracy by both

methods. The SPINE-X allows users to predict coils with

significantly higher accuracy (56.6 %, while only 11.5 %

for the ES method). The ES prediction method does not

distinguish turns and bends, which are included into coils

class. The reason behind this is the location of many of

such structures in C, E and F zones, what may cause high

levels of prediction of these codes for the coils class.

Fig. 3 Comparison of

prediction accuracy between

statistical dictionaries method

(DIC) and contingency table

approach (based on the

Maximum Probability in

contingency table—MP) for

amino acid residues and

individual structural codes. The

list of residues is given on the

bottom line. The zones on

Ramachandran map is

represented according to

symbols a–g. The c—represents

the helical area, e and f the b-

structural forms and g—left

helical area. The codes a, b and

d traditionally are treated as

Random Coil
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Discussion and conclusions

In conclusion, it should be noted that the proposed method

provides significantly more accurate results than the

contingency table method [24] with an overall accuracy of

57 %. This accuracy seems sufficient given that deter-

mining the final structure of the target protein requires

another simulation step—the late stage (LS) intermediate,

which accounts for pair-wise interactions between atoms,

as well as interactions between the polypeptide chain and

its environment [13, 30, 31]. The main difficulty in

modeling the ES intermediate lies in the lack of infor-

mation regarding the molecule’s intended role—its bio-

logical specificity. The statistical dictionary method

should be regarded as superior to the contingency table

method as it acknowledges a broader neighborhood of

Fig. 4 2VBL structure (A

chain) a native structure derived

from PDB, b structure obtained

by projecting each (u, w) angle

pair onto the elliptical path

which represents the ES

conformational subspace, c ES

structure obtained using the

statistical dictionary method,

d ES structure obtained using

the contingency table method.

Blue, red and green fragments

correspond to residues which

form a-helixes, b-twists and

loops respectively. Source:

PyMOL

Fig. 5 2JEK structure (A

chain) a native structure derived

from PDB, b structure obtained

by projecting each (u, w) angle

pair onto the elliptical path

which represents the ES

conformational subspace, c ES

structure obtained using the

statistical dictionary method,

d ES structure obtained using

the contingency table method.

Blue, red and green fragments

correspond to residues which

form a-helixes, b-twists and

loops respectively. Source:

PyMOL
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each residue (compared to the tetrapeptide fragments,

which form the basis of the contingency tables). This re-

sults in better prediction accuracy, particularly in the

scope of D and F motifs which correspond to the terminal

parts of a-helixes and b-twists respectively. Of note is the

reduced accuracy in predicting cysteine and glycine con-

formations—this, however, can be alleviated by

incorporating elements of the contingency table analysis

algorithm into the proposed method. The further work

assumes the analysis of non-redundant data base with

\30 % sequence similarity. The comparative analysis of

these two data base may deliver information about pos-

sible influence of homology sequence on the final

prediction.

Fig. 6 2VAD structure (A

chain) a native structure derived

from PDB, b structure obtained

by projecting each (u, w) angle

pair onto the elliptical path

which represents the ES

conformational subspace, c ES

structure obtained using the

statistical dictionary method,

d ES structure obtained using

the contingency table method.

Blue, red and green fragments

correspond to residues which

form a-helixes, b-twists and

loops respectively. Source:

PyMOL

Table 3 Best- and worst-case results using the statistical dictionary method. Comparative data obtained using the contingency table method for

each structural code is given in parentheses [24]

PDB ID Chain Lenght Accuracy (%)

(previous results)

Main secondary

structure

1ICC A 87 93.33 (51.25) a and b Best accordance

3CU4 A 85 93.15 (58.11) a

2VBL A 153 92.37 (68.24) a and b

2H5U A 499 91.68 (35.68) b

2R56 M 211 91.58 (47.03) b

2J04 D 109 32.82 (32.88) b Lowest accordance

2DMH A 524 31.16 (38.41) a and b

1UEN A 140 30.89 (32.48) b

2KCA A 74 30.84 (37.74) b

1J3T A 125 29.17 (33.82) b

Table 4 Prediction accuracy (in percentage) of the presented method and SPINE-X in relation to native secondary structures obtained by DSSP.

In rows: percentage values of positions of a given DSSP class predicted as a structural class presented in columns

DSSP classes ES structural codes’ groups (%) SPINE-X secondary structural classes (%)

C E, F A, B, D, G Helical Extended Coils

Helical 78.3 6.9 14.8 37.5 13.7 48.8

Extender 35.4 51.3 13.2 11.7 47.2 41.1

Coils 44.7 43.7 11.6 25.1 18.4 56.5
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The detailed analysis of (u, w) angles distribution addi-

tionally suggests the possible incorporation of the zone B to

the zones E and/or F. Elimination of B of low probability

observed for this zone may significantly improve the pre-

diction reliability of the model. The discussion of the effect

of ligand binding seems unrelated to the model under con-

sideration. However the late stage model taking in consid-

eration the interaction of folding polypeptide with the

surrounding environment (water and ligands) seems to be

significantly sensitive to the external molecules. This was the

reason to distinguish the status of particular residue in re-

spect to possible interaction influencing its conformation.

The comparative analysis (Table 4) reveals much better

prediction of random coil structures SPINE-X, however the

others recognitions seem to be of similar efficiency.

Besides the methods based on theoretical calculations

some experiments deliver valuable information about the

ES steps of protein folding process. Experimental obser-

vations [for example hydrogen-exchange pulse-labelling

mass-spectrometry method applied for large two-domain

maltose binding protein (MBP; 370 residues)] suggest the

presence of intermediate composed of segments that are

distant which generate the immediate interaction and final

collapse in the next steps of folding process [32]. However

ab inito methods are limited to the proteins of domain-like

size pf about 100–120 aa. This is why the experimental

analysis of small molecules like RNase H (152 aa 1F21)

may the perfect object for verification of theoretical

methods simulating folding process and protein structure

prediction [33].
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