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Abstract This paper presents a new method—the Tech-
nique of Iterative Local Thresholding (TILT)—for process-
ing 3D X-ray computed tomography (xCT) images for
visualization and quantification of rock fractures. The TILT
method includes the following advancements. First, custom
masks are generated by a fracture-dilation procedure, which
significantly amplifies the fracture signal on the intensity
histogram used for local thresholding. Second, TILT is par-
ticularly well suited for fracture characterization in granular
rocks because the multi-scale Hessian fracture (MHF) fil-
ter has been incorporated to distinguish fractures from pores
in the rock matrix. Third, TILT wraps the thresholding and
fracture isolation steps in an optimized iterative routine for
binary segmentation, minimizing human intervention and
enabling automated processing of large 3D datasets. As an
illustrative example, we applied TILT to 3D xCT images
of reacted and unreacted fractured limestone cores. Other
segmentation methods were also applied to provide insights
regarding variability in image processing. The results show
that TILT significantly enhanced separability of grayscale
intensities, outperformed the other methods in automation,
and was successful in isolating fractures from the porous
rock matrix. Because the other methods are more likely
to misclassify fracture edges as void and/or have limited
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capacity in distinguishing fractures from pores, those meth-
ods estimated larger fracture volumes (up to 80 %), surface
areas (up to 60 %), and roughness (up to a factor of 2).
These differences in fracture geometry would lead to sig-
nificant disparities in hydraulic permeability predictions, as
determined by 2D flow simulations.
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1 Introduction

Over the past two decades, X-ray computed tomography
(xCT) has become a valuable tool for 3D visualization and
characterization of geological specimens [1–9], including
fracture geometries [10–21], pore networks [22–31], crys-
tal sizes [32, 33], and mineral phases [3, 34–39]. xCT
imaging is indispensable for non-destructive observation of
geometry of fractures, which is important because frac-
tures provide preferential flow conduits and often dominate
mass transfer in geological materials. xCT imaging has been
used to provide valuable insights in core-flow experiments
designed to investigate fractures in the context of geohy-
drological, geochemical, and geomechanical processes of
the deep subsurface, such as CO2 geological storage [20,
30, 40] and oil and gas operations [13–15, 17, 41–46].
Quantitative characterizations of fracture geometries have
advanced our understanding of fracture hydrodynamics [13,
17, 21, 47–49], reactivity [11, 24, 25, 35, 36, 47, 50–53],
and mechanics [16, 19, 37].

Fracture apertures are commonly small compared to the
two planar fracture dimensions, so in order to quantify frac-
ture apertures in experimental cores, fine imaging resolution
is needed. The latest developments in xCT instruments have
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enabled unprecedented resolution of fractures within geo-
logic media under a variety of in situ conditions [2, 9,
52]. For example, laboratory and synchrotron-based xCT
instruments that have adopted two-stage magnification can
achieve micron to submicron voxel sizes at source-sample-
detector separations that accommodate relatively small rock
cores (e.g., 4-mm-diameter cores) within vessels that allow
flow, temperature, and pressure control [52, 54]. In contrast,
advanced conventional xCT scanner designs, which rely
solely on geometric magnification, provide the X-ray flux
and source-detector spacing needed to image larger frac-
tured rock cores (e.g., 2 cm dia.) within larger and stronger
vessels [55]. The tradeoffs between voxel size, field of view,
sample size, and X-ray flux [2, 32, 33] suggest that both
types of instruments will continue to play important roles in
core-flow research for the foreseeable future, and regardless
of xCT design, larger datasets will continue to accompany
advances in instrumentation.

Once high-resolution reconstructed grayscale images
have been generated, the images are segmented, in which
voxels are classified into void space and mineral phases.
Segmentation techniques for images of porous media are
well established and generalized [2, 9, 56–59]. Often used
are histogram thresholding algorithms (e.g.,[18, 23, 60,
61]), which rely on identification of a single grayscale
value to partition intensities into different categories. These
“intensity-based” methods are typically computationally
efficient, automated, and repeatable, and can be very reli-
able when different features result in distinctive peaks on
the grayscale histograms. Another group of segmentation
algorithms, which includes edge detection and region-grow,
uses spatial information about local variation in grayscale
intensity. They are often regarded to be more reliable than
thresholding [52], but are computationally intensive and
time consuming partly due to the need for human super-
vision [56]. More sophisticated methods have also been
developed, by utilizing additional criteria or by coupling
more than one basic segmentation scheme, such as the active
contour method [56, 62] and the indicator kriging method
[63].

For fractured media, the algorithms commonly used
for segmentation of porous media are generally applica-
ble [11, 14, 19, 21, 52, 64]. For example, Karpyn et al.
[14] adopted a thresholding-based approach to differenti-
ate water and oil phase from rock matrix, and Deng et al.
[21] devised a ternary thresholding method to identify the
fracture, reaction-altered rock matrix, and unaltered rock
matrix, while Gouze et al. [11] and Noiriel et al. [52]
applied the region growing method. However, there are
challenges to direct application of those methods to frac-
ture segmentation. In particular, fracture apertures may be
smaller than or comparable to the achievable voxel sizes,
especially for fractures under confining pressure and around

fracture asperities. The voxels of fine fractures are affected
by boundary blurring of both fracture walls and therefore
are subject to misclassification due to the partial volume
effect [18, 29, 57, 65], making applications of threshold-
ing methods difficult. Several methods have been developed
to capture fractures that have fine apertures (e.g., [18, 66]).
One example is the multi-scale Hessian fracture (MHF) fil-
ter developed by Voorn et al. [66], which was inspired by
blood vessel detection techniques [67]. It is, however, prone
to overestimating the apertures of fine fractures when the
aperture sizes vary over a wide range, which is common in
natural fractures. A different type of challenge in fracture
image segmentation arises when the fracture is in granular
rock because of the need to distinguish fractures from the
void space in the porous matrix. This requires additional
post-processing of the binary segmented images, which can
be done by application of morphological filters (e.g., dila-
tion and erosion) and topological operators (e.g., the 3D
connectivity filter) [6]. For example, Landry and Karpyn
[64] used a series of erosion and dilation steps to isolate
fractures from porous media.

A final type of challenge is that the 3D image datasets
are often enormous because of the improvements in image
resolution that have resulted from recent advancements in
xCT scanning technology (as described above). Because
fractures have large planar dimensions relative to fracture
apertures, and fractures typically occur within rock matri-
ces with high spatial variability of mineral composition and
rock texture, it is often necessary to image the entire spec-
imen (plus its flow vessel). The resulting large datasets
limit the application of algorithms that are computationally
intensive and that require human intervention.

In this manuscript, a novel segmentation routine, the
Technique of Iterative Local Thresholding (TILT), is intro-
duced. TILT was devised for xCT image segmentation for
fractured rock with particular capabilities to address the
challenges of (i) segmenting very fine and highly variable
apertures, (ii) distinguishing fracture from pores, and (iii)
managing large 3D image datasets. TILT combines a novel
method for dilation-based masking for local thresholding
with a morphological filter for fracture isolation, in an auto-
mated and optimized iterative algorithm. We welcome and
encourage the scientific community to use TILT and have
made it available online.1 As a testbed for developing TILT,
we used two 3D image datasets that exemplify all three
challenges listed above. The datasets are from our recently
published investigation of fracture geometry alterations due
to mineral dissolution caused by reactions with flowing
CO2-acidified brine [55].

1TILT is available online as an open-source tool at http://TILT.
princeton.edu.

http://TILT.princeton.edu.
http://TILT.princeton.edu.
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Ultimately, the goal is to accurately and precisely charac-
terize the geometrical characteristics of fractures to enable
sound inferences from laboratory experiments. To examine
this, geometric quantities were determined from the binary
segmented images produced by TILT, including aperture
distribution, total void volume, surface area, and roughness.
For comparison, several other common segmentation meth-
ods were also applied to the same 3D images to gauge the
relative uncertainties in fracture characterization that can
be introduced during image processing. Finally, fracture
flow simulations were conducted on the fracture geometries
using a 2D numerical model. The simulation results provide
a quantitative understanding of how differences in image
processing methods can lead to differences in inferences
about important physical processes such as hydrodynamic
processes.

2 Methods

2.1 TILT

The complete workflow of the TILT routine is shown in
Fig. 1. The automated algorithm takes as input the grayscale
3D image and progresses through two stages—initialization
and segmentation optimization—to create a binary image of
the isolated fracture.

In the initialization stage, the grayscale 3D image under-
goes segmentation and post-processing for the purpose of
generating an initial isolated fracture to start the segmen-
tation optimization stage. This coarse segmentation is done
using a “global threshold” value that is determined based on
the histogram of the entire 3D grayscale image. The thresh-
olding is performed using Otsu’s method, a well-established

Fig. 1 Workflow of the Technique of Iterative Local Thresholding
(TILT). The blue box is the initialization stage, with the dotted arrows
illustrating the two steps of initialization: coarse segmentation using
global threshold and fracture isolation. The red box highlights the iter-
ative fracture segmentation stage. The red solid arrows illustrate three
procedures in a single iteration, and the red dashed arrows show the

conditions used to determine continuation or termination of the itera-
tions. In steps where more than one option is available, the options in
bold are used in the application for the testbed datasets. The gray box
and arrows represent the step for the generation of the fracture tem-
plate. The detailed procedures of the MHF filter are provided in the
workflow in the supplementary materials
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thresholding method which minimizes intra-class varia-
tions and maximizes inter-class variations, and has been
demonstrated to be a computationally efficient and robust
algorithm [59, 68, 69].

The resulting coarsely segmented image then undergoes
post-processing to distinguish the fracture from pores. Post-
processing for fracture isolation can be realized using two
approaches, depending on the properties of the specimen
being analyzed. In a porous rock matrix, a fracture tem-
plate is used, while for a rock matrix that is less porous, the
3D connectivity filter can be applied directly. If the frac-
ture template is used, void objects that intersect with the
template are classified as fracture, and the remaining void
objects are characterized as pores.

The fracture template is generated by employing the
MHF filter, which uses geometrical information in the
grayscale 3D image and assigns a “sheetness value” to
each voxel enabling differentiation of the pore void space
and the fracture void space. (Details about MHF are in
the next section and in the Supplementary Material(online
resource).) The MHF filter preserves void space that has a
planar shape, laying the ground for the fracture template.
The 3D connectivity filter is then applied to clean off small
and unconnected void spaces. In this way, a fracture tem-
plate is generated without human intervention. The template
is used for fracture isolation in the initialization stage and
is passed to the optimized segmentation stage. Therefore, it
needs to be generated only once.

Application of TILT to the testbed datasets used the
fracture template generated by the MHF filter for the post-
processing because of the porous nature of the Indiana
limestone. The MHF filter is computationally costly. The
computational time attributable to template generation aver-
aged out to approximately 2 h per 3D image. For the two
testbed datasets, i.e., before- and after-reaction xCT scans
of the same fractured core, the same fracture template was
used to locate the fracture.

In the segmentation optimization stage, a single itera-
tion in the algorithm consists of three procedures: mask
generation, image segmentation, and fracture isolation.
TILT generates custom masks to delineate a tight domain
for local thresholding. It is an alternative to the com-
mon approach of a moving window of regular geome-
try, which can introduce artifacts such as sharp corners.
In TILT, the masks are created by morphological dila-
tion of the fractures in binary 2D image slices. (For the
testbed application, we used a disk radius of ten times the
voxel size.)

Local thresholding in each iteration is accomplished
using Otsu’s method, which was described above. Thresh-
olding can be conducted in either 2D or 3D. In 2D,
the thresholds used for segmentation of each 2D image
are calculated based on the intensity histograms of each

2D mask, while for 3D processing, the threshold calcu-
lation uses the intensity histogram of the 3D image—
the stacked fracture masks. 2D image processing offers
computational advantages, but it may introduce bias in
segmentation by not including the surrounding pixels in
neighboring slices [59, 61]. On the other hand, selecting
a single threshold for a large stack of images may be
problematic because of variations in brightness and con-
trast over the whole domain. Comparing the 2D and 3D
segmentation results provides a way to gauge the mag-
nitude of such biases. Although 3D segmentation could
be done using a 3D mask (generated from dilation in
3D), in this analysis, we chose to conduct 3D segmenta-
tion using the stack of 2D masks because this approach
is more efficient and the stacked masks still preserve all
critical information from surrounding voxels at the fracture
boundaries.

Post-processing for fracture isolation is then conducted
using either the fracture template approach or the 3D con-
nectivity operator. In the application to the testbed dataset,
the fracture template generated by the MHF filter was used,
as it was used in the initialization stage. The fracture void
space identified at the end of an iteration is used as the basis
for new mask creation for the next iteration.

The iterative algorithm generates an optimized local
threshold, and this allows for practical application to large
datasets. Furthermore, this prevents biases and inefficien-
cies introduced by human selection of a pre-defined thresh-
old value. The iterations increment the threshold and con-
tinue until the volume difference of the fracture between two
consecutive iterations is smaller than a threshold specified
by the user. For the testbed datasets studied, the TILT rou-
tine usually required three iterations to converge on a 1 %
volume difference.

2.2 Other segmentation methods

Here, we present the comparative segmentation methods.
The simplest method isolates the fracture region by crop-
ping the images with bounding boxes defined by visual
examination of the fracture undulations. The second method
that was studied uses contrast enhancement. Here, the
contrast-limited adaptive histogram equalization (CLAHE)
algorithm [70] was used with an 8 × 8 × 8 kernel. Interpo-
lations were conducted to avoid artifacts at the boundaries.
In these two methods, the thresholds were calculated from
Otsu’s method, as in TILT. For both methods, segmentations
were performed in either slice-by-slice fashion, i.e., 2D, or
once for the entire 3D dataset.

Two spatial information-based segmentation methods
were also compared. One is the active contour (2D)/active
surface (3D) method [71, 72]. For this method, seeds must
be specified, which grow and deform to fill the target object.
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This process is user controlled by specifying geometri-
cal factors, which ultimately affect the smoothness of the
object’s surface [56, 72]. The user also has the choice of
either image intensity or intensity gradient as the basis for
object growth. In this study, 3D application of this method
was realized in ITK-SNAP [72]. Because of extremely high
time and computational costs [71], the application of inten-
sity gradient in this work was only for a sub-section of
the scans. Application of the intensity gradient-based active
surface method on 100 images of the fractured core took
more than 6 h on a workstation with a six-core proces-
sor and 48 GB of memory to produce reasonable results.
Segmenting the entire stack of images (˜1800) using the
intensity-based active surface method was completed within
2 h on the same workstation, although a threshold needed to
be pre-defined. By comparison, processing the entire core
using TILT, the iterations needed to generate the optimized
threshold and isolated fracture volume were achieved within
3 h.

The other spatial information-based method used was the
MHF filter. In this context, the goal was to explore its capa-
bility as a stand-alone method, not when used to generate
the fracture template that is used in the TILT iterations for
fracture isolation. The segmentation routine using the MHF
filter first calculates the Hessian matrix of the grayscale
intensity and determines the eigenvectors and eigenvalues,
which provide information of local principal direction and
magnitude of curvatures, respectively. Voorn et al. [66]
devised a sheetness parameter, As , for fracture identifica-
tion by using the eigenvalues to indicate a planar object.
The subscript s refers to the Gaussian scale used to derive
the Hessian matrix. For a fracture of aperture a, a Gaus-
sian scale of a

2 captures the aperture most efficiently. In
the MHF filter, multiple Gaussian scales that encompass
the range of fracture apertures should be applied. At each
voxel, As is calculated for a range of s values, normal-
ized to [0,1], and the value of As that is preserved is the
maximum value. Segmentation of the As matrix then gen-
erates a binary image. In the current study, a scheme with
the same concept as Otsu’s method was used to segment
the As matrix to generate a binary image of the fracture
(Supplementary Material(online resource).

One of the limitations of the MHF filter is that the range
of Gaussian scales used has a strong impact on the seg-
mentation results; small scales introduce more noise, while
large scales may broaden the features unrealistically. In the
testbed dataset for this study, with large variations in frac-
ture apertures, enlarging the range of Gaussian scales to
capture large apertures not only increases computational
burden but also results in unrealistic broadening of nar-
row apertures. For instance, processing the entire core of
approximately 1800 images took approximately 18 h, with
Gaussian scales ranging from 1 to 12, and approximately

24 h with a range of 1 to 16. Therefore, this technique was
applied for only the 3D image of the initial experimental
scan.

For fracture isolation, post-processing of the binary
images produced by the MHF filter was completed using the
3D connectivity operator, while the same post-processing
procedure as in TILT was applied on results of other seg-
mentation methods.

2.3 Data—acquisition, reconstruction, and
pre-processing

The xCT images used as a testbed for this study are recon-
structed from xCT scans of specimens of Indiana limestone,
which is very porous and comprised of carbonates that are
readily soluble in acidic solutions. The rock sample was
purchased from Kocurek Industries (product ID B-101a). It
was from the Bedford formation, with porosity of ˜14 %
and brine permeability of ˜3 mD. The experimental cores
were 5 cm long and 2.5 cm in diameter and were fractured
for the experiments using the modified Brazilian method.
During an experiment, the fractured core was placed in a
high-pressure carbon fiber core holder, and was exposed
to CO2-acidified brine with pH of 3.3. The fractured core
was scanned in this vessel at different stages of the flow-
through experiment. Details about core preparation and
experimental conditions are in Deng et al. [55].

The imaging was done using a conventional X-ray CT
scanner (North Star Imaging M-5000) at the National
Energy Technology Laboratory (NETL) in Morgan-
town, WV. The Supplementary Material (online resource)
describes data acquisition of the attenuated X-ray beam,
specimen rotation, and reconstruction of the 3D image. Each
3D image consisted of approximately 1800 image slices,
with a total of more than one billion voxels, with voxel
sizes of approximately 28 µm. Two 3D images were used
as a testbed for this study; these are the initial and final
scans from one of the core-flow experiments, the “low
PCO2” experiment, representing before- and after-reaction
geometries.

Figure 2 shows cross sections from the two reconstructed
grayscale 3D xCT images. The attenuation contrast between
the rock and the water is sufficient to visually distinguish
the fracture from the rock matrix. It is also visually evident
that before the experiment the fracture was relatively fine,
and after the reactive flow experiment, carbonate dissolution
had enlarged the fracture. However, the enlargement is not
uniform; there are preferential flow pathways separated by
regions where the fracture aperture remains very small, as
discussed by Deng et al. [55]. The close-up images reveal
the large variation in fracture aperture and the need for a
segmentation algorithm that can characterize both fine and
enlarged apertures.
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Fig. 2 a A cross section from
the reconstructed xCT image of
the core before reaction in
which black corresponds to void
space and gray corresponds to
mineral matter, b histogram of
grayscale intensities of the 3D
reconstructed xCT image of the
whole core before reaction, c the
same cross section after reaction,
and close-ups showing d fine
and e coarse fracture apertures

Figure 2b shows the histogram of the grayscale intensi-
ties from the entire reconstructed 3D xCT image from the
scan of the unreacted core. The distribution appears to be
uni-modal because the void space accounts for such a small
portion of the total volume that the intensities corresponding
to mineral matter dominate the histogram. This illustrates
that it is not feasible to segment the 3D image simply by
partitioning the histogram to determine a global threshold.

Grayscale images with ring artifacts required pre-
processing, for which we adopted the combined wavelet-
Fourier filtering method [73]. Details of the destripe and
denoise procedures can be found in the Supplementary
Material (online resource).

2.4 Geometrical characterizations and permeability
simulation

Fracture vertical aperture, which is the measure of the dis-
tance between two fracture walls, was calculated at each
location directly from the binary 3D image by counting
voxels, column by column. As a result, 2D aperture maps
and aperture histograms were generated. Fracture volume
was calculated by summing the voxels that are classified
as fracture. To quantify fracture surface area, we employed

the iso-surface method [23]. The iso-surfaces of the frac-
tures were generated from the binary 3D image using an
open-source 3D mesh generator iso2mesh with minimum
smoothing to preserve the roughness [74], and the sum of
the areas of the surface meshes provides an estimate of the
fracture surface area. Surface roughness was quantified by
the surface Z2 parameter, which has been used and docu-
mented in details in previous studies [21, 75]. The surface
Z2 parameter is the root mean square of the elemental sur-
face slope, and has a larger value for a rougher surface for
which the local surface slope varies substantially.

Flow modeling was performed on the 2D aperture maps
to estimate fracture permeability. The 2D steady-state local
cubic law model [21, 76] was selected for this purpose, and
the same numerical schemes as in Deng et al. [55] were
used. In the application, there was no smoothing; i.e., the
resolution of the flow simulation model was the same as the
resolution of the image.

3 Results and discussion

This section presents the results of identification and char-
acterization of the fractures of the two 3D images described
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in Section 2.1. Throughout, the segmentation results from
TILT are presented along with the results from the other
segmentation methods. In Section 3.1, we examine the
separability of rock and void peaks on the grayscale inten-
sity histogram for TILT and for the other methods. This
separability is key to minimizing error in grayscale thresh-
olding. In Section 3.2, we compare the different methods
through visual inspection of the fracture in binary seg-
mented images. This illustrates differences in the methods’
abilities to characterize fine features, aperture variation,
and surface roughness. In the remaining sections, we pro-
vide quantitative comparisons of geometrical properties. In
Section 3.3, we examine fracture geometries by evaluating
the distributions of the fracture aperture and the total void
volume of the fracture. Aperture distributions are relevant
because these distributions provide insights about perme-
ability evolution [20], channelization [55], geomechanical
strain [77], and fluid imbibition and drainage [78] in frac-
tured core experiments. As to the fracture void volume, it
provides insights about mineral dissolution in reactive flow
experiments [40]. In Section 3.4, we examine how segmen-
tation affects estimates of fracture surface area and surface
roughness. Fracture surface area is a key input parameter for
reactive transport modeling [79]. Fracture surface roughness
is important in flowmodeling because it leads to an effective
hydraulic aperture that is smaller than the actual mechanical
aperture, thus reducing fracture permeability [21]. Finally,
in Section 3.5, we examine the extent to which differences in
fracture geometry lead to differences in estimation of frac-
ture permeability, a key hydrodynamic variable. This gives
us a sense of the importance of the quantitative differences
observed in the fracture geometry estimates.

It must be emphasized that application of TILT to these
datasets is for purposes of illustration of the TILT routine
and its performance in comparison to other segmentation
methods. It is not an attempt at benchmarking.

3.1 Grayscale intensity histograms

The separability of features on the grayscale intensity his-
tograms provides valuable insights for evaluating the perfor-
mance of different segmentation methods. Figure 3a and b
are the histograms of the grayscale intensities of the entire
unprocessed 3D datasets from the initial and final scans of
the experiment. Neither histogram shows distinctive peaks
corresponding to rock matrix and void spaces and therefore
presents a segmentation challenge. For the scan after reac-
tion, in which the enlargement of the fracture has increased
the proportion of void space, a very small peak of smaller
intensities is present, but the signal is weak.

Figure 3c–h of are histograms resulting from applications
of the two comparative thresholding methods and TILT in
3D. Applying a rectangular bounding box to crop the images

amplifies the signal from void space, but the improvement
is not substantial. Similarly, contrast enhancement using
the CLAHE algorithm offers only limited improvement. In
contrast, TILT enhances the void signal substantially and
generates intensity histograms with a clear bimodal distri-
bution for subsequent thresholding. Even for the scan before
reaction, in which the fracture is very fine, TILT success-
fully improves the separability of intensities of rock matrix
and void spaces.

Thresholding algorithms (like Otsu’s method) are most
accurate when the intra-class variances are roughly equal.
When the two classes have imbalanced variances in their
intensity distributions, the calculated threshold is biased
such that intensities belonging to the class with larger vari-
ance are misclassified as the class with the smaller variance
[80]. Therefore, the type of error introduced in thresholding
histograms such as those in Fig. 3c–f is to misclassify rock
as void, i.e., to overestimate the void volume. In particular,
the voxels that will be misclassified are those with interme-
diate grayscales such as those at the fracture surface and in
sub-voxel apertures, which are subject to boundary blurring.
Because TILT amplifies the signal from the fracture voxels
and reduces the differences in the intra-class variances of
void space and rock, it alleviates this bias.

3.2 Segmented binary images

Figure 4 shows a fracture cross section of the 3D grayscale
xCT image before reaction and binary images of the isolated
fracture resulting from different segmentation methods. By
visual inspection, the isolated fractures determined by the
2D and 3D TILT routines match the grayscale image well,
as do several of the other methods. Unlike the segmenta-
tion results from the stand-alone MHF filter, TILT preserves
aperture variations. For each of the thresholding methods,
the isolated fractures from the 2D and 3D approaches are
in good agreement with each other. The active surface
method produces smoother fracture-rock surfaces, largely
because of the user-specified geometrical regulations. The
result from the edge-based active surface method reveals
evident distortions, which are attributable to the complex
geometry of the fractured porous media. With this method,
edge blurring and edge preservation are difficult to bal-
ance. Even with careful initiation of the seeds and large time
commitment to allow their slow growth, such distortions
are inevitable. Therefore, results of the edge-based active
surface method are not discussed further.

3.3 Fracture aperture distributions and volume

The distributions of fracture apertures resulting from the
different segmentation methods are shown in Fig. 5 for the
initial and final scans. While all the methods are effective
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Fig. 3 Grayscale intensity
histograms of the 3D (a), (b)
original xCT images, (c), (d)
rectangular-cropped images, (e),
(f) contrast-enhanced images,
and (g), (h) images in the masks
used for segmentation at the last
iteration of TILT with 3D
thresholding, for the initial and
final scans of the experiment.
The red dashed lines correspond
to the threshold values
determined from Otsu?s method

in capturing the difference between the apertures before and
after the reaction, it is the differences between the distribu-
tions resulting from the different methods that are discussed
here. The distributions of apertures resulting from applica-
tion of TILT (either 2D or 3D) peak at smaller values, and
aperture distributions determined by thresholding images
cropped by rectangular boxes and the CLAHE algorithm
peak at larger values. As described above, when there is
imbalance in the intra-class variances, thresholding is prone
to misclassify rock as void, especially for the voxels at

the fracture surface and in sub-voxel apertures (as was dis-
cussed in Section 3.1). Therefore, the aperture distributions
produced by TILT, which peak at smaller aperture values,
are expected to be more accurate.

Now we focus on identification of zero apertures, which
indicate fracture contact areas. These areas are critically
important in geomechanical modeling because contact areas
support normal stress and constrain fracture slip [77]. It is
observed that TILT consistently predicts a higher percent-
age of zero apertures than do the other two thresholding
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Fig. 4 a Cross section illustrating the isolated fracture before reac-
tion of the grayscale xCT image and binary images determined using
b multi-scale Hessian fracture (MHF) filtering, c edge-based and d
intensity-based active surface method, e 2D and f 3D thresholding

with rectangular cropping, g 2D and h 3D thresholding with contrast-
enhanced images, and i 2D and j 3D TILT, from the initial scan of the
experiment

methods. The reason is, as explained above, that TILT is not
inclined to misclassify intermediate grayscale values as void
as do the other thresholding methods.

Figure 5e compares the aperture distribution generated
by TILT for the initial experimental scan with those gener-
ated by the MHF filter and the intensity-based active surface
method. Both methods are highly sensitive to user-specified

parameters. Fracture apertures determined by the MHF fil-
ter are largely affected by the ranges of Gaussian scales
used (Supplementary Material(online resource)). Because
of the sensitivity of the fracture aperture to the value of s,
it is not unexpected that most of the resulting aperture val-
ues fall between zero and twice the largest value of s. It
implies that though the MHF filter provides a useful tool in

Fig. 5 Aperture distributions of
a, c 2D and b, d 3D thresholding
methods for the initial and final
scans, and e the MHF filter, the
TILT routine, and
intensity-based active surface
area method (ITKSNAP-int) for
before reaction scan (x-axis was
truncated at 60)
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fracture detection, and it has been used to distinguish frac-
ture and pores in the TILT routine and post-processing of
other segmentation schemes, it is not ideal for quantification
of apertures with substantial spatial variations. Large aper-
tures may be underestimated if the range of s values is not
large enough, while narrow apertures can be overestimated
when a large range is used, which is evident in Fig. 4b.

Results generated from the intensity-based active sur-
face method are, inevitably, affected by the user-specified
thresholding values. In this work, the threshold values used
were the same as the values generated by the TILT routine.
As a result, the aperture distributions of the two techniques
show good agreement for apertures above 4 voxels (Fig. 5e).
There are still some differences in small apertures, because
the user-specified parameters on geometrical regulations
tend to reduce curvatures that may be caused by fine fracture
apertures.

Figure 6a shows the estimates of fracture volume result-
ing from the different segmentation methods. The trends in
fracture volume are identical to the trends in fracture aper-
tures. The volumes estimated by the rectangular-cropped
and contrast-enhanced schemes are consistently larger than
those resulting from the 3D TILT routine by +77 and
+63 % for the initial scan, and by +16 and +36 % for
the final scan. The large range of volumes for the initial
scan derives from the large proportion of fine apertures,
which are more susceptible to overestimation, as discussed
in Section 3.1. After the reaction, in which the fracture had
enlarged apertures, the difference between the rectangular-
cropped method and the TILT routine is smaller, as the
masks used for TILT grow with the fractures and approach
the size of the bounding boxes from the rectangular-cropped
scheme.

Fracture volumes determined by the MHF filter and
intensity-based active surface method are more comparable
with the results of the TILT routine, showing a difference

of −18 and −8 % respectively. Comparing the fracture
volumes generated by 2D and 3D processing, the differ-
ences are smaller than those among different segmentation
schemes, within 10 % for the initial scan that has narrower
apertures and 3 % for the final scan.

3.4 Surface area and roughness parameters

Shown in Fig. 6b and c are the surface areas and roughness
parameters resulting from the different methods. For both,
the rectangular-cropped and CLAHEmethods generate esti-
mates that are larger than those from TILT. As was discussed
in Section 3.1, the rectangular-cropped and CLAHE meth-
ods are prone to overestimate void space. This not only leads
to larger fracture aperture estimates as shown in Section 3.3
but also increased connectivity between fracture and pores,
thereby larger surface area and roughness estimations.

For both surface area and roughness, the range of val-
ues is larger for the initial scan than that for the final scan
of the experiment. For instance, the surface area deter-
mined from the segmented 3D rectangular-cropped images
is 5.5 × 10−3 m2, which is more than 50 % higher than that
of the 3D TILT routine, while for the surface Z2 parame-
ter, the 3D CLAHE scheme estimate is larger than the 3D
TILT routine estimate by a factor of 2. This implies that
there is greater uncertainty in quantifying fracture surface
area and roughness for fractures with significant amounts of
fine apertures. It is because, as discussed in Section 3.1, for
these fractures, the signal from the void space is so weak
that the differences in variances of the classes are signifi-
cant, and the thresholding bias is stronger. Such uncertainty
may cloud subsequent interpretations, especially in the case
of surface area, which shows opposite trends among dif-
ferent methods. In addition, the uncertainty may be carried
into reactive transport modeling, where reaction rate is
proportionally related to surface area.

Fig. 6 (a) Fracture volumes,
(b) surface area, (c) surface Z2
parameter, and (d) fracture
permeability determined from all
segmentation methods for initial
and final scans of the experiment
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Fracture surface areas and roughness parameters derived
from the MHF filter are smaller than those of the TILT
routine. It is unsurprising given the smooth fracture-rock
interface and lack of aperture variations for fracture geome-
tries generated by the MHF filter (Fig. 4). Even though
the intensity-based active surface method used the same
threshold values as the TILT routine, unlike the aperture
distributions and volume estimates, the surface area and
roughness parameters are quite different. It is primarily
because such parameters are sensitive to local details that
are subject to modifications by the geometrical regulations
of the active surface method.

3.5 Fracture permeability

In this section, we examine the extent to which the dif-
ferences in geometry parameters derived from the different
segmentation methods would affect estimates of fracture
permeability. Figure 6d shows the estimated fracture per-
meabilities for the initial and final scans. The permeabil-
ities resulting from the rectangular-cropped and CLAHE
schemes are higher than those from TILT, by 155 and
122 % for the initial scan and 29 and 66 % higher for the
final scan in the case of 3D processing. The explanation
is not straightforward because the rectangular-cropped and
CLAHE schemes generate higher estimates for both fracture
volume and roughness. Larger fracture volumes translate
to larger fracture permeability, but higher roughness corre-
sponds to lower fracture permeability [21]. The two effects
counteract each other.

The estimated fracture permeability determined by the
intensity-based active surface method is in agreement with
those of the TILT routine, in contrast with the MHF filter.
For instance, fracture volume of the initial scan estimated
from the MHF filter is 18 % lower than that of the TILT rou-
tine, while the estimated permeability is 36 % higher. The
difference can be explained by the overestimation of narrow
apertures and underestimated roughness.

The estimated fracture permeabilities span a range of a
factor of 3 from the different segmentation methods. This
range is significant, as it is comparable to the range caused
by adopting different modeling approaches for the estima-
tion of hydrodynamic properties [21]. The differences in
permeability derived from the 2D and 3D approaches are
more significant than those in fracture volume. For exam-
ple, for the initial scan, the volume difference between 2D
and 3D approaches of TILT is ˜10 %, while the percentage
difference in permeability is ˜44 %. The findings indicate
that the fine features treated differently in the 2D and 3D
approaches could disproportionally affect the flow field in
the fractures. Therefore, when fracture geometry is to be
used for permeability determination, 3D segmentation is
recommended.

Among all the segmentation methods used, fine fracture
apertures of sub-voxel scale were not treated specially, and
therefore are subject to misclassifications as discussed in
Section 3.1. In order to understand the importance of quan-
tifying sub-voxel apertures in affecting flow, we conducted
additional simulations. Because of the lack of ground truth,
there is no way to differentiate whether the contact points
in the segmented images are real or results of misclassifica-
tion. As a worst case scenario, we assumed that the contact
areas in the current segmentation results are all mischar-
acterized fine apertures, and assigned an aperture value in
these areas. The values tested ranged from 0.1 to 30 μm,
which is the size of one voxel. An aperture of 0.1 μm gave
an effective permeability of 0.8 mD, which is on the same
order of magnitude as the permeability of the rock matrix.
Simulations using modified aperture maps gave hydrody-
namic properties in great agreement with one another, with
indiscernible differences (Supplementary Material (online
resource)). It implies that for fracture geometries in this
study, fine apertures play a very limited role in controlling
fluid flow.

4 Conclusions

In this study, a new automated routine has been devel-
oped for segmentation of 3D xCT images of fractures.
The method represents an advancement in three regards.
The use of dilation for custom-mask generation signifi-
cantly enhances separability of the grayscale intensities of
void space and rock matrix, and therefore reduces poten-
tial thresholding bias and enhances the confidence in the
classifications of the intermediate grayscale intensities. Sec-
ond, the combination of adaptive local thresholding with
post-processing algorithms for fracture isolation enables
characterization of highly variable fractures in rocks that
have a porous matrix. Finally, optimized iteration provides
an automated platform that minimizes human intervention
and enables processing of large image datasets.

TILT outperformed the other segmentation methods in
terms of classification accuracy, and therefore produced
fracture geometry estimates of higher confidence. The
rectangular-cropped and CLAHE methods result in larger
fracture apertures and higher fracture-pore connectivity. As
a result, the determined fracture volume, surface area, and
roughness parameters can be 80 % higher than those from
the TILT routine, which led to estimated fracture perme-
abilities as much as 150 % larger. The MHF filter provides
an effective tool in differentiating fractures from pores, but
as a stand-alone segmentation method, its quantification
capacity is poor in the case of fractures with varying aper-
tures. The results are sensitive to a range of user-specified
parameters, which is also true in the case of the active
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surface method. In our study, the 2D and 3D approaches
did not differ significantly in volume and aperture distri-
butions (within 10 %) but showed evident differences in
estimated fracture permeabilities, which can be as high as
44 %. This comparison highlights the importance of fine
features in permeability estimation, and therefore supports
the option of 3D segmentation as it preserves information in
all three dimensions. In comparison, sub-voxel scale aper-
tures, which are very challenging in image processing, have
very limited impacts on the flow field in fractures. How
much the estimated values vary among different segmenta-
tion schemes largely depends on the parameters of interest
and the geometries of the fractures. For fractures with larger
regions of fine apertures, the geometrical quantifications
have larger uncertainties. Geometrical parameters such as
surface area and roughness are in general more sensitive to
segmentation uncertainties, and so is fracture permeability
estimation.

Supplementary Material (online resource) The supple-
mentary material provides details on four subjects. The first
section documents data acquisition and reconstruction in
detail, and includes a graphical presentation of the xCT sys-
tem used to collect the image data for this study. In the
second section, we present the pre-processing procedures
for ring artifacts reduction and noise removal. Third, we
demonstrate the workflow of the MHF filter with exam-
ples, and discuss the sensitivity of the results of the MHF
filter to the range of Gaussian scales. Lastly, we present
the permeability estimates for different sub-voxel aperture
values.
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