
Quasi-Extended Asymptotic Functions* 

T. D. Todorov 

The class F of •quasi-extended asymptotic functions" introduced in the present paper 
contains all extended asymptotic functions [8, (3.1)] (in particular, all examples construct. 
ed in [9, Sec. 1 ]). But F contains also some new asymptotic functions very similar to tht 
Schwartz distributions. On the other hand , every two quasi-extended asymptotic func. 
tions can be multiplied as opposed to the Schwartz distributions; in particular, the square 
,)2 of an asymptotic function ,) similar to Dirac's delta-function is constructed as 
example. The connection with the asymptotic functions introduced in [2] and [4} is csta1bo11 

lished. 

1. The Class of Quasi-Extended Asymptotic Functions 

The class of the quasi-extended asymptotic functions F we are going to 
introduce in this paper contains all extended asymptotic functions [8, Sec. 3J
but it contains also some new asymptotic functions, which cannot be obtained 
as an extension of any ordinary function. The important thing is that the class 
F is closed with respect to the addition and multiplication, which is essential 
for the further applications. 

(1.1) Definition (Quasi-Extended Functions). An asymptotic function 

(1.2) I: D-)A*, 

where DCA will be called a quasi-extended asymptotic function (or simply, a 
quasi-extended function) if it can be represented as 

(1.3) f(a)=cp•.,(a, b)+ o•Ca>, a ED, 

where v(a) is the order of f(a) , <1' is some continuous ordinary function of two 
real variables and b is a fixed asymptotic number. In other words, there exists 
a continuous function rp of the type 

(1.4) rp:Xxr~c, 

where X and Y are two open subsets of R, such that (see [8, (2.l)D 

(1.5) XCDcXas 

and there exists an asymptotic number 

(1.6) bEYas 

for which the asymptotic extension fPas(a, b) [8, (3.1)J exists for all a ED and 
(1.3) holds. The set of all quasi-extended asymptotic functions will be denot· 
ed by F. 

* Some of the results of this paper were reported by the author at the conference •Ope 
ratoren-Distributionen und Verwandte Non-Standard Methoden " , Oberwolfach, Federal Re
public of Germany, 2-8 July, 1978. 
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(1.7) Definition (Generating Couples). Iff EF and (1.3) holds, we will call 
the couple (cp, b) a generating couple of f. We shall say also that f is gene
rated from (cp, b). The set of all generating couples of f will be denoted by 
Oen f, i. e. 

(1.8) Genf= {(9', 	 b): (1.3) holds}. 

(1 .9) Definition (Regular and Singular Functions). A quasi-extended func
tion of the type ( 1.2) will be called regular if there exists a continuous ordinary 
function of one real variable: 

(LIO) 	 cp : x~c. 

where X is an open subset of R such that (1.5) holds and 

(1.11) 	 f(a) = q'as(a)+ o.,.<a>, a ED, 

is valid, where v(a) is the order of f(a). The quasi-extended functions which 
are not regular will be called singular. 

(1.12) Remark: We have just defined the quasi-extended functions of one 
variable by means of ordinary functions of two variables. However, Defini
tion (1.1) (together with Definition (1.7) and Definition (1.9)) can be naturally 
generalized in order to introduce quasi-extended functions of n variables. In
stead of (1.3) the representation 

(1.13) f(a1, ••• ,an)=9'as(a 11 ••• , a"' b) + ol'(a., .... an), (a 11 • • • ,an)ED, 

must be used, where cp is on ardinary function of n+ 1 variables of the type 
discussed in [8, Definition (3.1), (ii)]. We are going to consider the case n= l 
only, but all results in this section can be easily generalized to the case n> 1. 

(1.14) Remark: Every extended asymptotic function [8, Definition (3.1)] 
is a regular quasi-extended function. Indeed, the representation 

(1.15) 	 !(a) =9'u(a) = cp15(a)+ o"(a) 

holds, where ~·(a) is the order of f(a) = (/Jas(a), corresponding to [5, Theorem 6] 
(here <Pas is an asymptotic extension of 9' [8, (3.1 )]). 

(1.16} Remark: Every asymptotic function of the type 

(1.17) 	 f(a)=~p.,(a,b), aED, 

where cp is a continuous ordinary function and b is a fixed asymptotic num
ber, is also a quasi-extended function. However, if (1.17) is a singular func
tion, then it is not an extended-asymptotic function, i. e. it is not an asymp
totic extension of any ordinary function of one real variable. We see that F 
is richer of functions than the set of the extended functions is. 

(1 .18) Remark: The e>-valued 	function, i.e. the asymptotic function of 
the 	 type 

o·Ca>, a ED, 

as well as the !-valued functions, i. e. the functions of the type 

)Hal, aED 

where v and ). are mappings of the type 

,, : o~zu{oo} 



respectively, are also quasi-extended functions. In fact, they are regular asy1n" 
totic functions. ,p 

(1.19) Remark: Finally, the asymptotic functions of the type 

(1.20) 	 f(a) = c+ o•<a>, a ED, 

where c E C. are also regular quasi-extended asymptotic functions. We shaU 
call them quasi-constant asymptotic functions (because, strictiy speaking, tbty 
are not constant functions). 

(121) Lema: The constant asymptotic function 

(1.22) 	 f(a) - b, a E D, 

where b E A* is a quasi-extended function if and only if the number b is 01 
the type 

(1.23) 	 b ~ c+o•, 

where c E C and v EZU{oo}. By the way, f is a special type of a quasi-con. 
stant function (see (1.20)) in this case. 

Proof: The important tact here is that 

(1.24) 	 ( const)as = canst. 

The following three lemmas follow directly from the fact that the values 
of any quasi-extended asymptotic functions are asymptotic numbers (just likt 
the values of any aeymptotic function). More precisely, these three lemmas 
follow directly from [5, Theorem 4). That is why we are not going to give 
their proofs. 

(1.25) Lemma: Let f be a quasi-extended asymptotic function and let (1.3) 
hold. Then 

(1.26) 

fs valid, where 

(1.27) 	 D0 = {a: a ( D, f(a) ~ C:'>} 

and 	l(a) is the relative order of f(a) [5, Definition 5 (iii)]. 
Proof: The lemma follows directly from [5, Theorem 25]. 
(1.28) Definition (Additive and Multiplicative Forms). Let f be a quasi

extended function and let ( 1.3) and (1.26) hold. Then ( 1.3) will be called an 
additive form of f and (1.26) will be called a multiplicative form of f. 

(1.29) Remark: We would like to stress that v(a) in any additive form 
(1.3) off is the order of f(a) and J.(a) in any multiplicative fo rm (1.26) off 
is the relative order of f(a). 

(1.30) Lemma: The asymptotic function of the type 

(1.31) f(a) - rr3s(a, b)+o•<aJ, a E 0, 

where fP is a continuous ordinary function of two real variables, bE A (is fix
ed) and o.-.<aJ, a ED, is an arbitrary {'}-valued funct ion, is a quasi-extended 
function. Let ; (a) be the order of fJJas(a, b). Then 

(1.32) 

is the order of f(a) and consequently, (1.3) for v(a) determined by ( 1.32) is an 
additive form of f. 
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(1.34) Lemma: Let j be a quasi-extended fu nction and let ( 1.3) be its 

additive form. Then the formulae 

(1.3fi) ,n(a) -t- J.(a) v(a), a ED, 

(1.36) p(a),I(a) - ;(a), aE D, 

(1.37) ,u(a) - min It;(a), v(a)J, aED, 


as well as the inequalities: 


(1.38) ,u(a) :;o; ;7(a), aE D, 

(I .39) v(a) :$;;(a), aE D , 

(1.40) J(a)~l(a), a E D , 

are valid, where .v(a), v(a) and J.(a) are the power, the order and the relative 
order of f(a) respectively and p(a), ;{a) and I(a) are the power, the order 
and the relative order of <TJas(a, b) respectively (b is fixed). 

Proof: An immediate consequence from [5, Theorem 4]. We are going to 
use the inequalities ( 1.38)-(1.40) very often in future and in particular during 
the proof of Theorem ( 4.1 ). 

2. The generating set 

In the theory of quasi-extended functions it is important to know the con
nection which may exist between two couples (q;, b) and {tp, c), which gene
rate the same quasi-extended function j, i. e. (q;, b), (tp, c) EGenj (see (1.8)). 
In other words, we must describe somehow the generating set Genj of any j 
provided one of its elements is known. The following two theorems deal with 
this question. 

(2.1) Theorem: Let f be a qu(lsi-extended asymptotic function and let 
(1.2)-(1.6) hold for some generating couple (q;, b) of j, i. e. (q;, b) EGenj. 
Let v(a) be the order of j(a) (i. e. (1.3) be tbe additive form of f). Let, finally, 
'P be a continuous ordinary function defined on XX Y and c E Yas· Then (tp, c) 
EGen/, i. e. 

(2.2) a ED, 

if and only if the following condition (denoted by @) is valid: ® For each 
a ED, each a ~ a, each P Eb and each y E c 

(2.3) lim s-n[cp(a(s), ,B(s)) -tp(a(s), y(s))] = O 
s->0 

for all n EZ such that n<v(a). 
(2.4) Remark: In the cases v(a) E Z (but not v(a) = oo) (2.3) could be re· 

placed by 

(2.5) lim s-•(a) !cp(a(s), ,B{s)) -tp(a(s), y(s))] =0 
s-o'l 

leaving ou t the expression wfor all n EZ such that n~v(a)"· We would like to 
notify that the proof of the theorem is based on the inequalities ( i .38)-(1.40), 
IS well as on some results of 151 and [6]. 

http:1.38)-(1.40


Proof: Let v1(a), v2(a) and v0 (a) be the orders of ?"as(a, b), VJas(a, b) alld 
r as(a, b)  vJas(a, c) resp. Then ( 1.3) implies 

(2.6) v(a) =:;; v1(a), a ED, 

corresponding to Lemma ( 1.34). Let (2.2) hold (together with ( 1.3)·-(1.6), 01 
course). If we subtract ( 1.3) and (2.2), we shall obtain 

(2.7) o•<a> =<Pas(a, b) - v•as(a, c)+ o•<a>, a ED, 

which is equivalent to 

(2.8) 17Jas(a, b) - tpas(a, c)Co•<a>, a ED. 

On the other hand, (2.8) implies: 

(2.9) lims-n[qJ{a(s), P(s))=tp{a1(s), r(s))] = O 
s....O 

for all a ED, all a, a1 Ea, all PEb, all y Ec ami all n EZ ~uch that n:=;v(a). But 
(2.9) reduces to @ in the case a1  a; (it) Let ® hold (together with (1.3)
(1.6)). We must show that (2.2) holds, too. First of all ® implies 

{2.10) v(a) =:;; v2(a), a ED. 

Indeed, if we assume v(a0)> v2(a0) for some a0 ED, we shall obtain (bE:aring in 
mind (2.6)) 

(2.11) lim s-1[11J{a(s), {J(s))-tp(a(s), y(s)))±O 
S->0 

for some a Ea0, some PEb, some y Ec and all n EZ, such that Y2(a0)<n~v(a0), 
which contradicts @ But (2.10) is equivalent to 

(2.12) o•la>+o•.<a> = o•<a>, a E D, 

corresponding to [5, (10)]. Moreover, (2.6) and (2.10) implies 

(2.13) v(a) =:;; v0(a), a ED, 

which is equivalent to 

(2.1 4) 
since 

aE D, 

(2.15) aE D, 

corresponding to [5, (10)]. On the other band, ® means 

(2.16) qJ{a, /3)-tp(a, y) Eo•<a>, a ED, 

for all a Ea, all {3 Eb and all y Ec. Consequently, 

(2.17) as {~p (a, P) tp{a, y)}Co•<a>, a ED, 
corresponding to [5, Lema 1]. Adding o•<a> to both sides of (2.17), bearing in mind 
[6, Theorem 14}, we obtain 

(2. 18) o•<a>+asf<P(a, P) - tp(a, y) }= o•<a>, aE D, 

for all a Ea, all PEb and all y Ec. On the other band (on the ground of 18. 
Lemma (3.22]) we have 

{2.19) Q'as(a, fJ)-tpa5(a, b) = aS{<P(a, fJ)  'I•(a, y)}+o".<al, aE D, 

Ad 

wb 

qt.t 
th• 

of 
E ( 
(VI 

le 



-

a ED, 
rated by a couple (~p, s) for some ordinary function q>. The following theorem 
deals with that question. · 

orders or ?'a•(a, b), tp3,(a, b) and 

ED, 
ld (together wi th (1.3)--(1.6), of 
11 obtain 

O"(a), a ED, 

a>, aE D. 

1(s), y(s))] =- 0 

JQ all n EZ ~uch that ns v(a). But 
et ® hold (together with (1.3)
:rst of all ® implies 

ED. 

0 E D, we shall obtain (bt aring in 

~s), y(s))J::LO 

l n EZ, such that v2(a0)<n:s; v(a0) , 

to 

aE D, 

l (2.10) implies 

aE D, 

aE D, 

a ED, 

, ®means 

aE D, 

ntly, 


·, a E0, 


Joth sides of (2. 17), bearing in mind 


o•lal, a ED, 


other hand (on the ground of IS. 


tor any a Ea, any PEb and any y Ec. Let us add o•<al to both sides of (2.19), 
bearing in mind (2.1 4) and (2.18) : 

(2.20) q.Js{a, b) -v,a.(a, c)+o•(a)=- o•<al, a ED. 

Adding 'Pas{a, c) to both sides of (2.20), bearing in mind (2.12), we obtain 

(2.21) Q"as(a, b) + o•·(a)="Pas{a, c)+o~<a>, a E D, 

which coincides with (2.2). The proof is finished. 
The next theorem is quite similar to the above one. It deals with the same 

question in the special case b= c. We shall often use this theorem instead of 
the previous one because of its simplicity. 

(2.22) Theorem: Let f be a quasi-extended function, let v(a) be the order 
of f(a) and let ( 1.3)- {1.6) hold for some generating couple (~p, b), i. e. (~p, h) 
EGen f. Let "P be another continuous ordinary funct ion defined on X X Y. Then 
(1J1, h) EGen /, i. e. 

(2.23) /{a) = tpas(a, b)+o•<a>, aED, 

if and only if the following condition (denoted by * *) is valid: * * For each 
a ED, each a Ea and each PEb 

(2.24) lim s-11[?'(a(s), P(s) - tp(a(s), P(s))) = O 
.r-tO 

for all n EZ such that n :::;; v(a). 
(225) Remark: If v(a) EZ (but not v(a)= oo) (2.24) could be replaced by 

(2.26) lim s--<aJ[Q"{a(s), P(s))-tp{a(s), P(s))J = 0 
S--tO 

leaving out the expression ~for all n EZ ... etc.". 
(2.27) Remark: The above theorem could be fo rmulated as fo llows: (tp, b) 

EGen/ , i. e. (2.23) is valid, if and only if 1/1 can be represented in the form 

(2.28) 'II'(X , y ) = ~p(x, y ) +LJ(x, y), xE X.y EY, 

where Ll has the property: For each a ED, each a E a and each {J Eb 

(2.29) lim s-nLJ(a(s), P(s)) = 0 
s~:l 

for all n EZ such that ns v(a), where v(a) be the order of f(a). 
Proof: The proof is quite analogous to the proof of Theorem (2.1); in 

fact, it coincides almost with it. We omit it. 

3. Standard asymptotic number 

Letf and g be two quasi-extended asymptotic funct ions. The following question 
arises: In which cases can f and g be r_epresented in their additive or multi 
plicative forms for the same asymptotic number b? In other words, in which cases 
is there (tbe same) b E A for which (q>, b) E Gen f and (tp, b) EGeng for some 
(appropriately chosen) ordinary functions q> and tp? The answer-is "In all ca
ses··. Moreover, it turns out that there exists a standard asymptot ic number b, 
namely, b= s [8, (3.26)] such that every quasi-extended fu nction . can be gene



(3.1) Theorem: Let f be a quasi-extended function, v(a) be the order 
0f(a) and let ( 1.3)-f! .6) hold for some generating couple (cp, b) EGen f. The~ 

(1p, s) EGenf, too, 1. e~ 

(3.2) f(a) = tl'as(a, s)+o.(n), a ED, 

where 

(3.3) v·(x, y) = cp(x, {J(y)), x EX, y EO, e) 

for some (sufficiently small) e Effi., e>O and any (arbitrarily chosen and fixed) 
/3 Eb. 

Proof: The theorem is an immediate consequence of [8, Lemma (3.22) and 
Corollary (3.24)]. 

(3.4) Remark: Corresponding to Lemma ( 1.25), (3.2) implies 

(3.5) f(a) = p<a>'Pas(a, s), a ED, 

where J.(a) is the relative order of f(a) and D0 is given by (1.27). In other 
words, (3.5) is a multiplicative form of f(a) [Definition (I .28)]. 

(3.6) Corollary: Every two quasi-extended functions / 1 and / 2 can be 
represented in the forms (their additive forms) 

(3.7) / 1(a) =<p1as{a, b)+ o••<a>, 

(3.8) /2(a) = 9'2as(a, b)+ o••<a>, 

respectively, for the same asymptotic number b and some- ordinary functions 
9't and qJ2• In other words, for every / 11 / 2 EF there exist the same b EA such 
that (<p1, b) EGen/1 as well as (9'2, b) EGen / 2 for some <p1 and <p2• 

Proof: Indeed, (3.7) and (3.8) are valid (at least) for h= s corresponding 
to Theorem (3.1.) 

(3.9) Remark: The above theorem suggests the following question : Why 
we did not fix b=s at the very beginning of our approach (in Definition (1.1}) 
but used different (in general) b for the different quasi-extended asymptotic 
functions? The answer is: "For the sake of covenience". We mean that in 
some cases the choice of the ordinary function cp (which together with the 
asymptotic number b generates a given quasi-extended fun ction f ) can be done 
more easily if "b" is different from "s". For instance, in all examples of ex
tended asymptotic functions constructed in (9, Sec. 1] (which are, at the same 
time, quasi-extended functions) the number b was chosen as b=s+o1 (but not 
b=s). Otherwise, the definition (9, (1.24)]: 

b(a)= Lfas(a, s+o1), a EQ , 

of the asymptotic function ~ where Lf is given in (9, (1.20)] (and b= s+o1
) 

must be replaced by the more complicated one (by b= s): 

~(a) = Lfas(a, s)+o•<a>, a ED, 

where the values of v(a) are given in (9. (1.23)]. 

4. Algebraic operations in F 

(4.1) Theorem (Algebraic Operations in F). (i) The class of all quasi-extend· 
ed asymptotic func tions F is closed with respect to the addition (subtraction) 
and multiplication. Namely, if / 1, / 2 EF and 

be 
a) 

is 
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(i) The class of all quasi-ext~nd· 
ct to the addition (subtrachon) 

(4.2) 

then 

(4.3) (cpl±cp2, b) E Gen(ft± fz) 

(4.4) (cpl. cp2, b) EGen (/1./2) 

are valid; (ii) Moreover, let 

(4.5) a ED" 
(4.6) / 2(a) =cp2as(a, b)+o,..(a), a ED1, 

be additive forms of / 1 ang / 2 respectively (for the same b, corresponding 
Corollary (3.6)) and let 

(4.7) /1(a) = F•C~t). cp1as(a, b), a ED •. 

(4.8) /2(a) =- J1 (a) • cp2as(a, b), a ED2, 

be multiplicative forms of / 1 and {2, respectively. Then: 
a) The representation 

(4.9) / 1(a)±/2(a)= (cp1±cpz)as(a, b)+o•<al, a ED, 

is an additive form of / 1 ±/2, where 

( 4.1 0) D= D1 nD2, 
(4.11) v(a) = min[v1(a), ' 'z(a)J, a ED ; 

b) The representations 

(4.12) / 1(a) .f:!(a) = (<r1 • cp2)as(a, b)+ o·.<a>, a ED, 

(4.1 3) / 1(a) .fz(a)=P.I.al.(cp1 . cp2)as(a, b), aE D, 

are the additive and multiplicative forms of / 1./ 2 respectively. The order vll(a) 
and the relative order J.0(a) of / 1(a) .j2(a) are given by 

(4.14) v0(a) = min [.u1(a) ..1. v2(a), ,u2(a) +v1(a)] 

= min[:;:;1(a)+v2(a), p2(a)+ v1(a) , v1(a)+v2(a}], aED, 

and 
(4.15) aE D, 

respectively, where ,u1(a) and ,u2(a) are the powers of f 1(a) and f 2(a) and 
; 1(a) and ~(a) are the powers of cp1as(a, b) and (]'2as(a, b) respectively; 
c) The representations 

{4.16) / 1(a)//2(a) = J4(a>(cp1/(]'2)as(a, b), a ED1 nD~, 

are additive and multiplicative forms of the ratio f J/2, respectively. Here 

(4.17) Dg={a E D2 :/2(a) ~ <9}, 

corresponding to [8, Definition (1.7)). 
Proof: The proof of this theorem is quite analogous to the proof of [9], 

Theorem (2.9)]. In fact, this theorem is a consequence of [9, Theorem (2.9) 
and Lemma (1.34). Let us add (and subtract) (4.5) and (4.6): 

http:fz(a)=P.I.al


/ 1(a)±/2(a)=Q'1as(a, b) +o••<a>±Q?2as(a, b)+o••<a> 

= Q'Jtas(a, b) ±Q?~as(a, b)+ o•<a) = (Q'd" Q'Jz)as(a, b)+ o';(a)+o•(a) 

= (Q?1 ±Q'2)as(a, b)+o•<al, a ED 

where ~a) is the order of Q? 1a5(a, b) :i:-Q?2as(a, b), corresponding to 19, Theoretn 
(2.9 l), v(a) is given by (4.11 ) and D is the set ( 4.1 0). We have just used the 
identity 

(4.18) 	 o:Ca>+o.(a) = o•(a)' a ED, 

which is equivalent to 

a ED.(4.19) 

On its part, the latter inequality follows directly from Lemma (1.34). The case 
of multiplication is treated exactly in the same way bearing in mind [9, Theo
rem (2.9)] as well as Lema (1.4). That is all. 

Now let us remind the comments of the beginning of Sec. 2 of [9] and espe. 
cially [9, (2.5), (2.6), Example (1.9), (1.26)j. We see that the n-th power of the 
asymptotic function ~ defined by [9, (1.24)] is a quasi-extended function, i. e 

(4.20) 	 ~n E F, n= 1, 2, 3, .. 

That follows directly from the theorem just proved. Moreover, 

(4.21) ~n(a) =(Jn),5(a, s+o1)+o••<a>, a EA 

is an additive form of Jn, where the ordinary function _,, is defined in [9 , (1.20) 
Jn is the n-th power of A, (Lln)as is the asymptotic extension of .d" and 

- n, a = sx+sh, x E!Jl, hE !2o, 
(4.22) 	 v0(a)= - 2n, a= o0, 


n, a= x + h, x Effi., x =FO, x EQ 0,
1 
is the order of ~n(a), correspondipg to [9, (1.26)1. 

We kLndly suggest the reader to remind [9, Example ( 1.19)] and to keep in 
mind ( 4.20)- (4.22).

(4.23) Definition: Let V be a class of continuous ordinary fu nctions of 
two real variables of the type 

(4.24) 	 cp: XX Y-?C, 

where X and Y are two open subsets of ffi., which are the same for all func· 
tions from V. Let b be an asymptotic number from Yas. i. e. b E Yas· Then the 
set of all quasi-extended asymptotic functions f lor which there exists a ge· 
nerating couple (cp, b) EG?.n/ such that Q'J E V will be denoted by Vas(b). In 
other words, f E Vas(b) if f can be represented in the form 

(4.25) j(a)=Q'Jas(a, b)+o~<a>, a ED, 

for some Q'J E V. 
(4.26) Theorem: Let V be a set of ordinary functions described in Defi

nition ( 4.23) and let b be an asymptotic number from Ya.s, i. e. b E Yas· Then: 
(t} Vas(b) is closed with respect to the addition if and only if V is closed 
with respect to the addition; (it} Vas(b) is closed with respect to the multipli
cation if and only if V is closed with respect to multiplication; (lit} In the 
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cases when Vas(h) is closed with respect to the algebraic operations (addition 
or multiplication or addition and multiplication) V. s(bJ has the same algebraic 
properties as A an::l A* have (W\! mean that the identities [5, Theorem 6] are 
valid in Vas(b)) with respect to the corresponding algebraic operations. 

Proof: (i) and (ii ) follow directly from Theorem (4.1 ) and (iii) follows from 
[8, Lemma (1.13J]. 

(4.27) Corollary: Let C", n 0, I, .... oo, ~ and S be the well-known 
classes of ordinary functions (defined on t~1). Then the corresponding (accord· 
ing to ( 4.23)) classes of quasi-extended asymptotic functions (C")as(s), n= O, 
I, .. . , oo, ~as(s) and Sas(s) are closed with respect to the addition and multi
plication. Moreover, these classes have the same algebraic structure as A 
an d A-ll. 

Notice that the extended asymptotic fu r.ctions given in (9, (1.15), ( 1.12)] which 
are, a! the same t ime, quasi-extended functions, are examples of functions from 
(C"")a.(s), ~as(s) and Sa5(s), respectively. 

(4.28) Remark (The Role of Vas(b)) : The classes of quasi-extended asym
ptotic functions of the type Vas(b) where V is some (arbitrarily chosen) class 
of ordinary functions [Definition (4.23)] will play an important role in our ap
proach in the futu re. In the next section we shall set V= F(x, y) where F(x,y) 
is the class of ordinary functions defined in [4, 1, Sec. 3]. The corresponding 
class of quasi-extended asymptotic functions [F(x, y )las(S) turns out to be iso
Jnorphic to the class F(x) of asymptotic functions introduced in (4]. In the 
next paper of our series we shall se t V f/J where <P is another class of ordi
nary functions closely connected with the analytic func tions. The asymptotic 
func tions from the corresponding class W1 5(s) will be called quasi-distributions 
because they are realizations, in a certain sense, of Schwartz distributions. 

(4.29) Clulnge of a notation: Instead of the notation " F(x, y)" just used 
the notation "F(x, s)" is used in [4, 1]. Recall as well [5, Definition 12] that 
's'' is the short notation for the asymptotic number "s--o""'", i. e. s ==.. s ~o"" 
(see (5.3)). 

(4.30) Theorem (Composition): Let f(a), a ED, be a quasi-extended asymp· 
totic function, i. e. f EF, and let g(a), a E D1, be a regular qu asi-extended 
function. If the condition 

(4 .~1) fg(a): a ED }CD 

holds, then the composition 

(4.32) (fof!)(a)=f(g(a)), a E D 1, 

is also a quasi-extended asymptotic function. Moreover, if ( 1.2)-(1.6) hold for 
some (QJ, b) E Genf and 

(4.33) g(a)= tpas(a) + o•,<a>, a ( D1, 

holds for some continuous ordinary function VJ of the type 

(4.34) VJ : Xc.. X 

(where XX Y i!' the domain of fT' corresponding to (1.2)-(1.6)), then 

(4.35) (fog)(a)- (~poll')u(a, b) +- ovo<al, a E Dt> 

is valid wher e 

(4.36) (? 01p)(x, y ) = <t('l{x), y), X ( .\11 y E Y, 
and 



(4.37) ,,0(a) = v(g(a)), 

is the order of (/og)(a). 

Proof: The proof is analogous to this of Theorem (4. 1) and we shall 
omit it. 

5. The connection with the asymptotic funct ions introduced in [4J 

The notion of "asymptotic function" was introduced for the first time in [21 
aud a series of works [41 has appeared based on this notion. The definition ot 
the asympto tic funct ions given in [4, I] is different from the one used here 
[8, (1.1)]. Namely, the asymptotic functions in [4] are not mappings from the 
se t oi the asymptotic numbers A into itself; they are equivalence classes of 
sequences of ordinary smooth functions of a particular type [4, I, Sec. 3]. An 
asymptotic function d, similar, in a certain sense, to Dirac's delta-function is 
constructed in the framework ot this approach [2], [4]. What is more interest
ing, it was shown that every two asymptotic functions of this type can be 
multiplied; in particular, several expressions for ~2 were established in [2] and 
[4, Ill]. The foUowing question arises: Is there any connection between the 
asymptotic functions as defined in [4], on one hand, and the asymptotic func
tions considered in the present paper (together with [8] and [9], of course), on 
the other. The answer is "yes" and we are going to discuss brietly this con
nection: 

(i) Let F(x, y ) be the class of ordinary functions defined in [4, I, Sec. 3] 
(see (4.29)). In this reference the reader may find the exact definition of this 
class. We shall notice only that F(x, y) is a class of complex·valued smoo th 
(respect to " x") functions of two real variables of the type 

(5.1) f(x, y ), x E,Jl, y E(o, S 1) , 

where s 1 is an arbitrarily fixed real positive number. Besides, F(x, y) is clos
ed with respect to the addition and multiplication (F(x, y ) is a ring of func
tions). About the other defini9g properties of F(x, y) we refer the reader to 
[4, I]; 

(ii) Let us consider the class 
dd 

(5.2) Fo = [F(x, y)]as(SJ 

of quasi·extended asymptotic functions obtained according to Definition ( 4.23) 
for V = F(x, y) and b = s. Recall [8, (3.26)] that s is the following asymptotic 
number: 

(5.3) s=- s+O""= {s + 1: I EA1, lim t l(s)j sn= for all nEZ}. 
s-ll 

According to Theorem ( 4.26), P0 is closed with respec t to the addition and 
multiplication and has the same algebraic structure as A and A'-< ; 

(iii) It is easy to see that 

(5.4) SDas(s) C Sa,(s) C F0 

where ~as(s) and Sa.(S) are discussed in (4.27); 
(iv) Integration in F0 : Let f EF0 and let J be a Lebesgue measurable 

subset of ffi (an interval of !"R, for example). Let us set 
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(5.5) 1*= {.fq·(x, r.)t~t: (q , lz)t Gen f, cr EF (x, y), h E ( o, s1)a<, X ~ h }· 
J 

The asymptotic cover [5, Definitioo 7] as f " of 1* {which is an asymptotic num
ber, i. e. asP E: A'* J will be called the integral of f on I and the following 
notations will be used: 

(5.6) 1 a~ P =j f(x)dx. 

" 
It can be proved that every asympto tic function Ll f from F0 is locally inte
grable, i. e. 

(5.7) J f(x)dx 

exists (and belongs to N) for t\'ery f EF0 and every xJ> x 2 Efit. The other 
analytic operations {differen tiation, Fourier-transformation, convolution, etc.) 
can be introduced in an analogous way. 

(v) Example of Dirac's delta f unction: Let oES and 

"" 
(5.8) rl.>(x):lx=]. 

To consider the func tion 

1
(5.9) q;(x, y )=- ~,lr u( ~-), x Effi, y E(o, s1), 

which belongs to F(x, y ). The asymptotic extension <ras(a, b) of cp exists for 
every a EA and every b E (o,s,)a, [8, (2.15)]. Let us put {fo r b =s~s+ ooo) 

(5.1 0) Ma)= 'P1 ~(a, s), a EA. 

The values of o are given by 

I (s-1 +o- 1)o(x ), a = sx+ sk, x E111, h E il0, 

(5.1 1) o(a)= ) o-2, a E{o-n: n= O,l ... }, 

l o, for all other a EA. 


It is clear that oE F0 . Moreover, 

(5.12) Jb(x)dx= 1_J_ oo = 1o, 
- oo 

and 
... 

(5.13) Jb(x }lJ!(x)dx = lJl(O) + oo 
-oo 

for every tp E~as(S) (or rp E S15(S)). Bearing in mind the isomorphism fit~$0 

15, Theorem 20], we see that o is a realisation of the Dirac's delta-function. 
The values of the square t)l (every two furr'ions from can be multiplied) F0 
are given by 



(s-2+o-2)e2(x), a -= sx+sh, x Effi., h E 0 0, 


(5.14} b2(a)= J o-t, a ~ {o-n: n= I, 2, ... },


I o. for all other a EA. 


Moreover, we obtain 
00 

(5.15) Jd2(x)tp(x)dx = MVJ(O), tp Emas(S), 

where 
00 

(5.16) m = J~2(x)dx. 

;.iotice that M is an infinitely large asymptotic number (constant) [6, Defini
tion 8], i. e. r < M for any real number r. Moreover, M does not depend on 
choice of V' ;· 

(vi) It can be shown that lbe class F0 of quasi·e}itended asymptotic func. 
lions is isomorphic to the class F(x) of asymptotic functions defined in [4, I, 
Sec. 4], i. e. 

(5.17) F0':'JF(x) 
and the isomorphism preserves also the analytic operations (differentiation, in· 
tegration and so on). 

The class F0, respectively F(x), bas several interesting properties which are 
discussed in detail in the series (4). 

Acknowledgment: I 'l;.JOuld like to thank Academician C hr. Y a. C h r i
s to v for proposin~ the su.bject of this work and for his critical remarks. 
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