Quasi-Extended Asymptotic Functions®
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The class F of “quasi-extended asymptotic functions” introduced in the present pa
contains all extended asymptotic functions [8, (3.1)] (in particular, all examples constrye
ed in [9, Sec. 1]). But F contains also some new asymptotic functions very similar to the
Schwartz distributions, On the other hand, every two quasi-exiended asymptotic fug

tions can be multiplied as opposed to the Schwartz distributions; in particular, the
5% of an asymptotic function 4 similar to Dirac’s delta-function is constructed
example. The connection with the asymptotic functions introduced in [2] and [4] is
lished.

I. The Class of Quasi-Extended Asymptotic Functions

The class of the quasi-extended asymptotic functions F we are going
introduce in this paper contains all extended asymptotic functions [8,
but it contains also some new asymptotic functions, which cannot be obtai
as an extension of any ordinary function. The important thing is that the ¢l
F is closed with respect to the addition and multiplication, which is essentis
for the further applications.

(1.1) Definition (Quasi-Extended Functions). An asymptotic function

(1.2) f:D—A*,

where DC A will be called a quasi-extended asymptotic function (or
quasi-extended function) if it can be represented as

(1 '3) f(a} = ‘pls(a! b) + 079, ac D:

where »(a) is the order of f(a), ¢ is some continuous ordinary function o t
real variables and & is a tixed asymptotic number. In other words, there
a continuous function ¢ of the type

(1.4) @: XX Y—C,

where X and Y are two open subsets of R, such that (see [8, (2.1)]
(1.5) XD X

and there exists an asymptotic number
(16) b Yo

for which the asymptotic extension g¢u(a, b) [8, (3.1)] exists for all a ¢ D and
(1.3) holds. The set of all quasi-extended asymptotic functions will be dent
ed by F.

* Some of the results of this paper were reported by the author at the conference *Op!
ratoren-Distributionen und Verwandte Non-Standard Methoden™, Oberwolfach, Federal R
public of Germany, 2—8 July, 1978



(1.7) Definition (Generating Couples). If f ¢ F and (1.3) holds, we will call
the couple (¢, &) a generating couple of f. We shall say also that f is gene-
sated from (@, b). The set of all generating couples of f will be denoted by

(1.8) Genf={(p, b): (1.3) holds}.

(1.9) Definition (Regular aud Singular Functions). A quasi-extended func-
tion of the type (1.2) will be called regular if there exists a continuous ordinary
function of one real variable:

(1.10) @: X—C,
where X is an open subset of R such that (1.5) holds and
(1.11) f(a) = gas(@) + 07(@), acD,

js valid, where »(a) is the order of f(a). The quasi-extended functions which
are not regular will be called singular.

~ (1.12) Remark: We have just defined the quasi-extended functions of one
vyariable by means of ordinary functions of two variables. However, Defini-
tion (1.1) (together with Definition (1.7) and Definition (1.9)) can be naturally
generalized in order to introduce quasi-extended functions of n variables. In-
stead of (1.3) the representation

BB Rty RS Gaelllysey B By, e ... )ED,

must be used, where ¢ is on ardinary function of n+1 variables of the type
discussed in [8, Definition (3.1), (i)} We are going to consider the case n=1
pnly, but all results in this section can be easily generalized to the case n>1.
(1.14) Remark: Every extended asymptotic function [8, Definition (3.1)]
is a regular quasi-extended function. Indeed, the representation

(1.15) f(@) = @u(@) = pas(@) + 0"

' where »(a) is the order of f(a)=qas(a), corresponding to [5, Theorem 6]
(here ¢.. is an asymptotic extension of ¢ [8, (3.1)]).
(1.16) Remark: Every asymptotic function of the type

(1.17) fl@)=ou(a,b),  aeD,

where @ is a continuous ordinary function and & is a fixed asymptotic num-
ber, is also a quasi-extended function. However, if (1.17) is a singular func-
tion, then it is not an extended-asymptotic function, i e. it is not an asymp-
fotic extension of any ordinary function of one real variable. We see that F
s richer of functions than the set of the extended functions is.

ih (1.18) Remark: The O-valued function, i.e. the asymptotic function of
the type

o~a), a¢D,

as well as the [valued functions, i. e. the functions of the type
] Ha), aecD

‘where » and i are mappings of the type
v: D—ZU{oo}

i: D—-NU{oo}



respectively, are also quasi-extended functions. In fact, they are regular asym.
totic functions. '
(1.19) Remark : Finally, the asymptotic functions of the type

(1.20) fla)=c+0"™, acD,

where ¢ ¢ C. are also regular quasi-extended asymptotic functions. We gj,
call them quasi-constant asymptotic functions (because, strictiy speaking, the
are not constant functions). F

(121) Lema. The constant asymptotic function

(1.22) fla)=b, a¢D,

where b¢ A* is a quasi-extended function if and only if the number & ig
the type

(1.23) b=c+07,

where ¢ ¢ C and v ¢ ZU{o}. By the way, f is a special type of a quasi-cop.
stant function (see (1.20)) in this case.
Proof : The important fact here is that

(1.24) (const)ss = const.

The following three lemmas follow directly from the fact that the v
of any quasi-extended asymptotic functions are asymptotic numbers (just |
the values of any asymptotic function). More precisely, these three le
follow directly from [5, Theorem 4] That is why we are not going to
their proofs.

(1.25) Lemma: Let f be a quasi-extended asymptotic function and let (1.3
hold. Then

(1.26) f(a)= 149, (a, b), a¢ D,
fs valid, where
(1.27) Dy={a: a¢ D, f(a)¢ 0]

and i(a) is the relative order of f(a) |5, Definition 5 (iii)}
Proof: The lemma follows directly from [5, Theorem 25].
(1.28) Definition (Additive and Multiplicative Forms). Let 7 be a quasi

extended function and let (1.3) and (1.26) hold. Then (1.3) will be called an

additive form of f and (1.26) will be called a multiplicative form of f.
(1.29) Remark: We would like to stress that »(a) in any additive

(1.3) of f is the order of f(a) and A(a) in any multiplicative form (1.26) ol

is the relative order of f(a). :
(1.30) Lemma: The asymptotic function of the type

(1.31) f(@)=qas(a, b)+o0"?, ae D,

where ¢ is a continuous ordinary functionof two real variables, 6¢ A (is '
ed) and O49), a¢ D, is an arbitrary O-valued function, is a quasi-extend

function. Let »(a) be the order of ¢a(a, b). Then
(1.32) v(@)=min [»(a), »(a)|

is the order of f(a) and consequently, (1.3) for »(a) determined by (1.32) is an.
additive form of f. '



(1.33) Remark: (1.31) is not (in general) an additive form of f because
yola) is not (in general) the order of f(a).

 (1.34) Lemma. Let f be a quasi-extended function and let (1.3) be its
additive form. Then the formulae

(1.35) w(a)+i(a)=»(a), a €D,

(1.36) u(a)+i(a)-»a), a¢D,

(1.37) w(@)=min[ua), wa)l,  acD,
gs well as the inequalities:

(1.38) wla)=u(a), a¢ D,

(1.39) wa)=»a), a¢ D,

(1.40) a)<i(a), ac D,

are valid, where u(a), »(a) and i(a) are the power, the order and the relative
r of f(a) respectively and u(a), »(a) and i(a) are the power, the order
nd the relative order of gu(a, &) respectively (b is fixed).

~ Proof: An immediate consequence from [5, Theorem 4]. We are going to
the inequalities (1.38)—(1.40) very often in future and in particular during
e proof of Theorem (4.1).

2. The generating set

~ In the theory of quasi-extended functions it is important to know the con-
pection which may exist between two couples (¢, 6) and (y, ¢), which gene-
the same quasi-extended function f, i. e. (¢, &), (v, c)€ Genf (see (1.8)).
ther words, we must describe somehow the generating set Genf of any f
ded one of its elements is known. The following two theorems deal with
question.

(2.1) Theorem: Let f be a quasi-extended asymptotic function and let
(1.6) hold for some generating couple (¢, b) of f, i. e. (¢, b) ¢ Genf.
»(a) be the order of f(a) (i. e. (1.3) be the additive form of f). Let, finally,
‘be } continuous ordinary function defined on X<V and c¢ Ya. Then (y,¢)
Jen/, L e.

(2.2) fla)=vyula, ¢)+0"",  aeD,

only if the following condition (denoted by (X)) is valid: (X) For each
each at a, each g ¢ b and each y¢ ¢

(23) lim s~rf(afs), AS)) —w(als), HsN=0

or all 7 ¢ Z such that n<v(a).
.(2.:) Remark : In the cases »(a) ¢ Z (but not »(@)=o0) (2.3) could be re-
.‘_ (] y

(2.5) lim 5@ [g(a(s), A(s))—wlals), AsPI=0

ving out the expression “for all # ¢ Z such that n<»(@)" We would like to
that the proof of the theorem is based on the inequalities (1.38)—(1.40),
1l as on some results of |5] and [6].
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Proof: Let w(a), v/(a) and vy(a) be the orders of ¢ala, b), was(a, b) ang
ras(@ b)—was(a@, ¢) resp. Then (1.3) implies

(2.6) a)<»(a), at¢D,

corresponding to Lemma (1.34). Let (2.2) hold (together with (1.3)—(1.6),
course). If we subtract (1.3) and (2.2), we shall obtain

(2.7) 0" = @ya, b)—vusla, ¢)+0"?, acD,
which is equivalent to

(2.8) Pas(@, b)—vyas(a, )0, a¢ D.
On the other hand, (2.8) implies:

(2.9) l'%s*‘"[w(a(s), B(8))=w(ay(s), 7(s)]=0

for all a¢ D, all @, a;€a, all B¢ b, all yécandallneZ such that n<v(a). By
(2.9) reduces to () in the case a,=a; (if) Let &) hold (together with (1.3)-
(1.6)). We must show that (2.2) holds, too. First of all (X) implies 3

(2.10) r(a)<wvy(a) a¢D.

Indeed, if we assume »(ap)>»,(a,) for some a, ¢ D, we shall obtain (bearing i
mind (2.6)) ‘

2.11) lim s~ fo{a(s), A(s)—yla(s) 7)]+0
for some a ¢ a,, some B ¢b, some y¢ ¢ and all 7 ¢ Z, such that ».(a,)<n< {ag),
which contradicts () But (2.10) is equivalent to i
(2.12) 0"1@) - grd@ — gr(a), a€D,
corresponding to [5, (10). Moreover, (2.6) and (2.10) implies
(2.13) y(a)=<ry(a), a¢cD,
which is equivalent to A
(@l 4) 0@ + grela) = grla), aeD,
since
(2.15) vo(@)=min [v(a), v(a)l, aeD,
corresponding to [5, (10)]. On the other hand, () means
(2.16) wa, f)—w(a, ) €0"?,  ateD,
for all a¢a, all B¢ b and all y ¢ c. Consequently,
(217) as{p (o, B)—vla NS0@,  a€D,

corresponding to [5, Lema 1]. Adding 0% to both sides of (2.17), bearing iﬂ'-:._
[6, Theorem 14], we obtain - .

(2.18) 0 +-as{gpla, B)—yla, y);=0"", a¢D,

for all a¢a, all B¢ b and all y¢éc. On the other hand (on the ground of |
Lemma (3.22]) we have !

(2.19) @@, f)—vausla, b)=as{e(a B)—yla 7)}+0?, a¢e D,



for any afa, any §¢ b and any y ¢ ¢. Let us add 0% to both sides of (2.19),
pearing in mind (2.14) and (2.18):

(2.20) gas(a, b)—yasla, ¢)+o0*@) =", a€ D.
- Adding was(a, ¢) to both sides of (2.20), bearing in mind (2.12), we obtain
(2.21) ¢as(@, b)—I—O"{") ="Pas(a, c)+ orta), a¢ D,

which coincides with (2.2). The proof is finished.

The next theorem is quite similar to the above ome. It deals with the same
question in the special case b=c. We shall often use this theorem instead of
the previous one because of its simplicity.

(2.22) Theorem: Let f be a quasi-extended function, let »(a) be the order
of f(a) and let (1.3)—(1.6) hold for some generating couple (g, ), i. e. (p, &)
¢ Gen f. Let y be another continuous ordinary function defined on XX Y. Then
(p, b) € Genf, i. e.

(2.23) f@)=vyada, b)+0"@,  a¢D,

if and only if the following condition (denoted by =) is wvalid: = = For each
a€ D, each aca and each g¢ b

(2.24) l"_g s~"[g(als), B(s)—wlals), B(s)]=0

for all 7 ¢ Z such that n=»(a).
(2.25) Remark: If »(a)¢ Z (but not »(a)=cc) (2.24) could be replaced by

(2.26) gig; s p(a(s), £(s))—y(a(s), B(s))]=0

leaving out the expression “for all n¢ Z.. . etc.”.
~ (2.27) Remark. The above theorem could be formulated as follows: (y, &)
f, i e. (2.23) is valid, if and only if v can be represented in the form

(2.28) wix, Y)=@(x, y)+4(x, y), XEX, yeY,
where 4 has the property: For each a ¢ D, each a¢ a and each g¢ b
(2.29) lir:; s~ A(a(s), B(s))=0

all n ¢ Z such that n<»(a), where »(a) be the order of f(a).
~ Proof: The proof is quite analogous to the proof of Theorem (2.1); in
fact, it coincides almost with it. We omit it.

3. Standard asymptotic number

Let f and g be two quasi-extended asymptotic functions. The following question
ses: In which cases can f and g be represented in their additive or multi-
cative forms for the same asymptotic number b2 Inother words, in which cases
§ there (the same) & ¢ A for which (¢, &) € Genf and (y, b) ¢ Geng for some
appropriately chosen) ordinary functions ¢ and y? The answer-is “In all ca-
", Moreover, it turns out that there exists a standard asymptotic number b,
nely, b=s [8, (3.26)] such that every quasi-extended function can be gene-
d by a couple (¢, s) for some ordinary function . The following theorem
Is with that question.



(3.1) Theorem: Let f be a quasi-extended function, »(a) be the o
fla) and let (1.3)—(1.6) hold for some generating couple (g, b)(Gen-f-,
(y, s)¢€ Genf, too, i. e,

(3.2) fla)=vas(a, s)+0"?, a¢D,
where
(3.3) vix, v)=olx, f(y)), xeX, yeo, )

for some (sufficiently small) ¢ ¢ R, e>0 and any (arbitrarily chosen and f
BEb.
Proof : The theorem is an immediate consequence of [8, Lemma (3.22) gy
Corollary (3.24)]. T
(34) Remark: Corresponding to Lemma (1.25), (3.2) implies ]

(35) fla)=1Vy(a, 5),  acD,

where i(a) is the relative order of f(a) and D, is given by (1.27). In
words, (3.5) is a multiplicative form of f(a) [Definition (1.28)].

(3.6) Corollary: Every two quasi-extended functions f, and f,
represented in the forms (their additive forms)

(3.7) f1(a) = puas(a, b)+0m@, aeD,
(3.8) [a)=wusa, b)+o0?, a¢ D,

respectively, for the same asymptotic number b and some ordinary fu
¢, and @, In other words, for every f,, f, ¢ F there exist the same b ¢
that (¢,, &) ¢ Genf, as well as (¢, 0) ¢ Gen f, for some @, and @,.

Proof : Indeed, (3.7) and (3.8) are valid (at least) for 4=s correspon
to Theorem (3.1.) _

(3.9) Remark: The abovetheorem suggests the following question
we did not fix »=s at the very beginning of our approach (in Definition
but used different (in general) & for the different quasi-extended asymp
functions? The answer is: “For the sake of covenience”. We mean th
some cases the choice of the ordinary function ¢ (which together with
asymptotic number & generates a given quasi-extended function f) can be
more easily if “b” is different from “s”. For instance, in all examples
tended asymptotic functions constructed in [9, Sec. 1] (which are, at the
time, quasi-extended functions) the number & was chosen as b=s--o0' (but
b=s). Otherwise, the definition [9, (1.24)]:

d(a)=4ds(a, s+0'), acQ,

of the asymptotic function 4 where 4 is given in [9, (1.20)] (and b=s.+-:'
must be replaced by the more complicated one (by b=s):

d(a) = dss(a, s)+o0"@, ac¢ 0,
where the values of »(a) are given in [9, (1.23)].

4. Algebraic operations in F

(4.1) Theorem (Algebraic Operations in F). (i) The class of all quasi-e
ed asymptotic functions F is closed with respect to the addition (subtrac
and multiplication. Namely, if fy, fo ¢ F and



(4.2) (@1, b) € Genf,; (94 0) € Genf,
‘then

(4.3) (@, +@q b) € Gen(fy=f2)
(44) (91 .92 D)€ Gen(f,.fs)
‘are valid; (i) Moreover, let
(4.5) fi(@)=quasla, b)+ o0, ac Dy,
(46) fAa)=wusla, b)+07®,  a¢D,

be additive forms of f, ang f, respectively (for the same &, corresponding
Corollary (3.6)) and let

(4.7) fi(@)=14 . p,q(a, b), a¢D,
(4.8) f Q(a) =@ Pras(@, b), acD,,

be multiplicative forms of f, and f,, respectively. Then:
‘a) The representation

(4.9) fil@)£fs(@)= (91 = @a)as(a, b)+0"9, at D,
is an additive form of f,1f, where

(4.10) D=D,nD,,

(4.11) (@) = min[»,(a), »s(a)), a¢D;
b) The representations

(4.12) f1(a) . fAa) = (@, . 92)usla, b)+ 0", a¢D,

(4°] 3) fl(a) 'f?(a) — lﬁ.,(a) L ('pl » Q’?)“(as b)r a E D:

gre the additive and multiplicative forms of f,.f, respectively. The order v,(a)
and the relative order 7y(a) of f(a).f.(a) are given by

(4.14) vo(@)=min [113(a) + »,(a), () +v,(a))
= min[u(@)+,(a), /(@) +(a), vi(a)+rla), atD,

(4.15) ho(@) = min [4,(a), iy(a)], atD,

ectively, where u,(a) and us(a) are the powers of f(a) and f.(a) and
a) and p.(a) are the powers of @@, b) and ¢.aa@, b) respectively;

The representations
(4.16) [(@fs@)= 14N g, /@)@, b),  a€DyNDY,

are additive and multiplicative forms of the ratio f,/f, respectively. Here
(4.17) Dy={a¢ D,:fa) ¢ O},

corresponding to [8, Definition (1.7)].

_ Proof : The proof of this theorem is quite analogous to the proof of [9],
torem (2.9)]. In fact, this theorem is a consequence of [9, Theorem (2.9)

Lemma (1.34). Let us add (and subtract) (4.5) and (4.6):


http:fz(a)=P.I.al

fl(a) Tk:fﬂ(a): P1as(dy b).{_ov.{ﬁ)j:q”.s(a’ b)-—l-ﬂ':(‘z)
= wlls(a: b) i?’ﬂaa(d, b)'{"ﬂ'(a)= {q”! -+ q72}as(a, b) 4 0‘:(:2]_1_0,(“]
z(‘?’li‘l‘g)as(a, b)—|-ov(ai’ atD

where »(@) is the order of g,.s(@, b)+ @usla, b), corresponding to [9, Theorem
(2.9)), »(a) is given by (4.11) and D is the set (4.10). We have just used the
identity |

(4.18) 0¥(@) 1 g(a) — gr(a), a¢D,

which is equivalent to
(4.19) wa)<wa), a¢D.

On its part, the latter inequality follows directly from Lemma (1.34). The case
of multiplication is treated exactly in the same way bearing in mind |9, Theo-
rem (2.9)] as well as Lema (1.4). That is all.

Now let us remind the comments of the beginning of Sec. 20f [9] and espe~
cially [9, (2.5), (2.6), Example (1.9), (1.26). We see that the n-th power of the
asymptotic function 8 defined by [9, (1.24)] is a quasi-extended function, i e

(4.20) ¢ F, n=1, 2, 3,:3
That follows directly from the theorem just proved. Moreover,
(4.21) 8"(a)=(4")s(a, s+0")+ 0", atA

is an additive form of 47, where the ordinary function A is defined in [9, (1.20)
A7 is the n-th power of A, (4% is the asymptotic extension of A" and '

—n, a=sx+sh, x€R, h€Q,
(4-22) "o(a) = _2ﬂl a= 00,
n, a=x+h XER, x50, x€Q,

is the order of 8%a), correspondipg to [9, (1.26)]. i
We kindly suggest the reader to remind [9, Example (1.19)] and to keep in
mind (4.20)—(4.22).
(4.23) Definition: Let V be a class of continuous ordinary functions of
two real variables of the type '

(4.24) p: XXY-C,

where X and Y are two open subsets of ®, which are the same for all fune-
tions from V. Let b be an asymptotic number from Yas, i. €. b¢ Yas. Then th
set of all quasi-extended asymptotic functions f for which there exists a
nerating couple (g, b) ¢ Genf such that ¢ ¢ V' will be denoted by Vas(b). In
other words, f ¢ Vas(b) if f can be represented in the form

(4.25) fl@)=gusa, b)+ 0", a¢D,

for some ¢ ¢ V.

(4.26) Theorem. Let V be a set of ordinary functions described in Deli-
nition (4.23) and let b be an asymptotic number from Y, 1. €. b € Y, Thens
(i) Vas(b) is closed with respect to the addition if and only if V is clos
with respect to the addition; (i) Va(b) is closed with respect to the multi
cation if and only if V is closed with respect to multiplication; (i) In. the



cases when V3(8) is closed with respect to the algebraic operations (addition
or multiplication or addition and multiplication) V,{b) has the same algebraic
roperties as A and A* have (we¢ mean that the identities [5, Theorem 6] are
yalid in V() with respect to the corresponding algebraic operations.
Proof: (i) and (ii) follow directly from Theorem (4.1) and (iii) follows from
(8, Lemma (1.13)].
(4.27) Corollary: let C*, n=0, 1,..., oo, D and S be the well-known
classes of ordinary functions (defined on ®R). Thenthe corresponding (accord-
' to (4.23)) classes of quasi-extended asymptotic functions (C%).(s), n=0,
1,..-, o0, Das(s) and Sy(s) are closed with respect to the addition and multi-
plication. Moreover, these classes have the same algebraic structure as A
and A%
~ Notice that the extended asymplotic functions givenin [9,(1.15), (1.12)] which
‘are, a the same time, quasi-extended functions, are examples of functions from
(C=)as(S), Das(s) and Si(s), respectively.
(4.28) Remark (The Role of V,(b)): The classes of quasi-extended asym-
plotic functions of the type Vii(b) where V is some (arbitrarily chosen) class
‘of ordinary functions [Definition (4.23)]will play an important role in our ap-
proach inthe future. In the next section we shallset V=~F(x, y) where F(x, y)
js the class of ordinary functions defined in [4, 1, Sec. 3]. The corresponding
class of quasi-extended asymptotic functions [F(x, y)ls(s) turns out to be iso-
morphic {o the class F(x) of asymptotic functions introduced in [4]. In the
pext paper of our series we shall set V- @ where @ is another class of ordi-
nary functions closely connected with the analytic functions. The asymptotic
functions from the corresponding class @,(s) will be called quasi-distributions
because they are realizations, in a cerfain sense, of Schwartz distributions.
. (4.29) Change of a notation: Instead of the notation “F(x, y)” just used
fhe notation “F(x, s)” is used in [4, 1]. Recall as well [5, Definition 12] that
¥s” is the short notiation for the asymplotic number “s--0=", i. e. s=5+0"
{see (5.3)).
(4.30) Theorem (Composition): Let f(a), a ¢ D, be aquasi-extended asymp-
fotic function, i. e. f¢F, and let g(a), a¢ D,, be a regular gquasi-extended
function. If the condition

(4.31) fgla): a¢D)CD
holds, then the composition
(4.32) (fog)(a)=f(g(a)), a¢D,

is also a quasi-extended asymptotic function. Moreover, if (1.2)—(1.6) hold for
ome (¢, &) ¢ Genf and

(4.33) g(a)=y,(a)+o”ta), atc D,

holds for some continuous ordinary function y of the type

(4.34) w: X=X

(where XX Y is the domain of ¢ corresponding to (1.2)—(1.6)), then
(4.35) (fog)(a) = (woy)s(a, b)+01?), at D,

5 valid where

(4.36) (row)(x M =ol(x) 3),  xCX yebl,



(4.37) v(a)=»g(), ach,
is the order of (fog)(a)-

Proof: The prooi is analogous to this of Theorem (4.1) and we shaj
omit it.

5. The connection with the asymptotic functions introduced -;-;f.;

The notion of “asymptotic function” was introduced for the first time in [9
and a series of works [4] has appeared based on this notion. The definiti
the asymptotic functions given in [4,1] is different from the one used
[8, (1.1)}. Namely, the asymptotic functions in [4] are not mappings from
set oi the asymptotic numbers A info itself; they are equivalence classes
sequences of ordinary smooth functions of a particular type [4, I, Sec. 3]
asymptotic function 4, similar, in a certain sense, to Dirac’s delia-functios
constructed in the framework ot this approach [2], [4]. What is more inter
ing, it was shown that every two asymptotic functions of this type can
multiplied; in particular, several expressions for 4* were established in [2
[4, Illl. The following question arises: Is there any connection between
asymptotic functions as defined in [4], on one hand, and the asymptotic fu
tions considered in the present paper (together with [8] and [9], of course)
the other. The answer is “yes” and we are going to discuss briefly this ¢
nection:

(i) Let F(x, y) be the class of ordinary functions defined in [4, ], Sec
(see (4.29)). In this reference the reader may find the exact definition of
class. We shall notice only that F(x, y) is a class of complex-valued smi
(respect to “x”) functions of two real variables of the type

(5']) f(xl J')» X é :'Rl J-’ E (03 sl)s

where s, is an arbitrarily fixed real positive number. Besides, F(x, y) is
ed with respect to the addition and multiplication (F(x, y) is a ring of
tions). About the other definipg properties of F(x, y) we refer the reader f¢

(4, 1];
(ii) Let us consider the class
det
(5.2) Fo=[F(x, ¥)as(s)

of quasi-extended asymptotic functions obtained according to Definition (4
for V=F(x, y) and b=s. Recall [8, (3.26)] that s is the following asymptol
number :

(5.3) s=s+o=={s+4: d¢ A limdA(s)/s"=for all n¢ Z}.
F==)

According to Theorem (4.26), F, is closed with respect to the addition and
multiplication and has the same algebraic structure as A and A*;
(iii) 1t is easy to see that

(5.4) Das(s)C Suls) = F,y

where Das(s) and S.c(s) are discussed in (4.27); o
(iv) Integration in F,: Let f¢ F, and let 1 be a Lebesgue measurable
subset of @ (an interval of @&, for example). Let us set



(5.5) ff:{ f o5, Dae: (90 W EGenf, g Fx, 9), k€ (0, S z&k}.

The asymptotic cover [5, Definition 7] as J/* of J* (which is an asymptotic num-
ber, i. €. asJ*t A%) will be called the integral of / on | and the following
otatlons will be used:

(5.6) Jeas o= j flxdx.

It can be proved that every asymiptotic function 4 f from F, is locally inte-
.:':.g: i. €.

5.7) J'}(x)dx

exists (and belongs to A% for every fc F, and every X, X, €¢®R. The other
lytic operations (differentiation, Fourier-transformation, convolution, etc.)
be introduced in an analogous way.

(v) Example of Dirac’s delta function: Let o€ S and

(5.8) f o(x)dx=1.
'-j_. consider the function

(5.9) @(x, y)= +Jy 0 ( y—), XER, ye(o, s)

ich belongs to F(x, y). The asymplotic extension ¢ua, &) of ¢ exists for
ty ac A and every b¢(0,8)ss [8, (2.15)]. Let us put (for b=s=s+0%)
(5.10) da)=p.(a, s), atA

he values of & are given by o

(s7'+0"No(x), a=sx+sh, x¢R, heQ,
(5.11) a)=! 073, ag¢fo*: n=0,1...},
0, for all other a ¢ A.

t is clear that & ¢ F,, Moreover,

(5.12) J‘ S(X)dx=1-+0"=1°,

(5.13) f M p ) = p(0) + 0°

every wt Dasls) (or w S.,(s)). Bearing in mind the isomorphism RaoRO
eorem 20], we see that 4§ is a realisation of the Dirac’s delta-function.
alues of the square o* (every two fur-‘ions from F, can be multiplied)
are given by



I (524 07%%(X), a=sx+sh, X¢R, hel,,
o

(5.14) d*a)= gt fo: m=1, 2;..%

0, for all other a¢ A,
Moreover, we obtain
(5.15) f E(xyp(x)dx=Myp0), v € Dus(S),
where
(5.16) M=" 407, m-— f $(x)dx.

Notice that M is an infinitely large asymptotic number (constant) [6, De
tion 8], i. e. r<<M for any real number r. Moreover, M does not depend
choice of y;- i
(i) It can be shown that the class F, of quasi-extended asymptotic
tions is isomorphic to the class F(x) of asymptotic functions defined in
Sec. 4], i. e.
(5.17) FoxoF(x)
and the isomorphism preserves also the analytic operations (differentiation, ins
tegration and so on).
The class F,, respectively F(x), has several interesting properties which are
discussed in detail in the series [4].
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stov for proposing the subject of this work and for his critical remarks,
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