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Abstract 

The quantification of abundance, size, and distribution of fish is critical to properly manage 
and protect marine ecosystems and regulate marine fisheries. Currently, fish surveys are 
conducted using fish tagging, scientific diving, and/or capture and release methods (i.e., net 
trawls), methods that are both costly and time consuming.  Therefore, providing an automated 
way to conduct fish surveys could provide a real benefit to marine managers. In order to 
provide automated fish counts and classification we propose an automated fish species 
classification system using computer vision. This computer vision system can count and 
classify fish found in underwater video images using a classification method known as Haar 
classification. We have partnered with the Birch Aquarium to obtain underwater images of a 
variety of fish species, and present in this paper the implementation of our vision system and 
its detection results for our first test species, the Scythe Butterfly fish, subject of the Birch 
Aquarium logo. 

Keywords: automated fish classification, Haar classifiers, FPGAs 

Introduction 

The quantification of abundance, size, and distribution of fish is critical to properly manage and 
protect marine ecosystems and regulate marine fisheries. Currently, fish surveys are conducted using 
fish tagging, scientific diving, and/or capture and release methods (i.e., net trawls). All of these 
methods require many man hours and ship time which is costly and time consuming. Therefore, 
providing an automated way to conduct fish surveys could provide a real benefit to marine managers. 

Automated fish surveys could be conducted using computer vision, where a computer can process 
underwater video images, counting and classifying fish species of interest. Some work on automatic 
fish classification using computer vision has already been done. These fish classification methods are 
based on shape (Cadieux et al., 2000; Tillett et al., 2000; Lee et al., 2003; Lee et al., 2004,) texture 
(Rova et al., 2007), or color (Strachan, 1993; Semani et al., 2002; Chambah et al., 2004) and are used 
for various applications such as guiding fisheries management, evaluating the ecological impact of 
dams, managing commercial fish farms, improving fish migration monitoring or enabling educational 
interactive displays for aquarium visitors. More recent methods focus on object detection to enhance 
the productivity of human annotators (Cline et al., 2008). However, none of these methods provide a 
framework for rapidly classifying 'any' fish species of interest.  

Therefore, to provide a framework that can classify 'any' fish species of interest rapidly in parallel, we 
have designed an automatic fish detection system based on the Viola and Jones Haar-like feature 
object detection method on a field programmable gate array (FPGA). Haar-like features can be 
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applied to any fish species of interest, and FPGAs are well known for their ability to process 
computations rapidly in parallel.  

In this paper we describe our method for generating fish classifiers as input to our FPGA framework 
and describe how the FPGA framework uses these classifiers to perform real-time fish detection. We 
present our detection results for our first test species, the Scythe Butterfly fish, and report the 
potential performance capabilities of our framework based on face detection experiments. We 
conclude with a discussion on future work. 

Methods 

This section describes the method we use to generate Haar classifiers for our FPGA framework and 
describes how the FPGA framework uses these classifiers to perform real-time fish detection. 

Generating Haar Classifiers 

Our method to generate Haar classifiers for different fish species makes use of OpenCV's (an open 
source computer vision library) Haar Training Code based on the Viola-Jones detection method 
(Viola and Jones, 2004). This code allows a user to generate a Haar classifier for any object that is 
consistently textured and mostly rigid (Bradsky and Kaehler, 2008). A good classifier only needs to 
be generated once and then can be loaded into a classification system whenever that object of interest 
needs detection. OpenCV's Haar Training technique has been successful for face (Viola and Jones, 
2004; Cho et al., 2008), car (Hakan, 2005), and pedestrian (Montiero et al., 2006) detection and we 
now extend this method to fish detection. 

NORMALIZE ADABOOST 

REJECTION 
CASCADE 

HAAR-LIKE 
FEATURES 

Positive    Negative 
  Images       Images

   TRAINING SET 

Figure 1. Haar Training Procedure 

Figure 1 shows OpenCV's Haar Training procedure. Haar Training takes in a set of positive and 
negative images as inputs – the positive images containing cropped images of the fish species of 
interest and the negative images containing images of the fish's environment and images of fish of 
other species. These images are then converted to gray-scale and normalized to a user-specified 
window size (in our case, 20 x 20 pixels). The training code calculates Haar-like features (sums and 
differences of 2-3 rectangular image regions denoted by the (x,y) coordinator of their upper left corner 
and their width and height) within the normalized images to find the Haar-like features that best 
distinguish between the positive and negative samples. Figure 2 shows an example of a Haar-like 
feature used for detection of the Scythe Butterfly fish. It consists of 2 rectangles (the white rectangle 
interpreted as "add that area" and the dark rectangle interpreted as "subtract that area"). 



 
 

 
 

 

 

 
 
      
  
 
 

 
 
 

 
 
  
 
 
 
 
 
 
 
 
 

 
 

 
 

 

 
 

   

         

   
  

  

Figure 2. Example of a 2-rectangle Haar-like feature used for detection of the Scythe Butterfly fish 

Once the Haar-like features have been calculated, the Haar Training procedure uses a form of 
AdaBoost (Freund and Schapire, 1997; Viola and Jones, 2004) to organize these features into a 
'rejection cascade' consisting of n stages as shown in Figure 3. The stages are ordered from least to 
most complex so that computations will be minimized (simple stages are tried first) when rejecting 
non-fish regions of a test image. A fish is only detected if the Fish candidate passes through all stages 
of the rejection cascade. 

… 
Stage 0 Stage 1 Stage n

PASS PASS FISH Detected 

FAIL FAIL FAIL 
Fish Candidate 

Figure 3. Rejection Cascade 

Each stage consists of an Alternating Decision Tree (ADTree) (Freund and Mason, 1999) that 
represents an AdaBoosted set of m features. Figure 4 shows an example of an ADTree for one stage.  

f1w1 < t1 f2w2 < t2 fmwn < tn 
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Figure 4. An Alternating Decision Tree (ADTree) representation of one stage of the Rejection Cascade 

For each stage, AdaBoost selects m features fi, feature weights, wi, feature thresholds, ti, left values, 
Li, right values, Ri, and the stage threshold T that achieve a user specified hit rate of 99% and false 
positive rate of 50% when all training images are applied to the tree. A training or test image passes 
the stage if the sum of its selected left or right values, (depending on the outcome of the feature 
threshold inequality) sum, is greater than the stage threshold T. 

OpenCV represents the rejection cascade, the resulting Haar Classifier, as an xml file that contains the 
features, feature weights, feature thresholds, left values, right values, and a stage threshold for each 



 

 

 

 

 
 

 

 

 

 
 

 
 

 

 
 
 

 

 
  

stage in the cascade. This Haar Classifier achieves an excellent overall hit rate of 0.99n and false 
alarm rate of 0.5n on the training data. We use the generated xml file as input to our FPGA framework 
to provide real-time fish detection (described in the next subsection). 

FPGA Framework 

An FPGA is a semiconductor device that can be configured by the designer after manufacturing – 
hence the name "field programmable." FPGAs can be programmed to perform an application specific 
task (such as fish classification) through using a hardware description language to specify how the 
chip will work. Because the designer can create dedicated hardware to perform a specific task and can 
create duplicate sets of the same hardware to perform operations in parallel, FPGAs often offer higher 
performance than a software solution. 

We implemented an FPGA framework for fish detection based on the Viola and Jones object 
detection method on a Xilinx Virtex-5 FPGA. Figure 5 shows the overview of this framework. 

Frame Grabber Image Store 

DVI InterfaceDisplay 

Haar Classifier 

Image Interface Image Scaler 

Underwater 
Video 

Monitor 

Rejection Cascade(s) 

Figure 5. FPGA Framework 

The underwater video is fed to the FPGA framework through an image interface which digitizes the 
analog image. The frame grabber module then grabs frames from the video to be processed 
individually. The image store module stores the image data arriving from the frame grabber module 
and transfers the image data to the Haar Classifier module based on the scale information from the 
image scaler module. The image scaler module scales the frame to various sizes to provide the 
capability for the framework to detect fish of various sizes within the video image. The Haar 
Classifier module performs the classification for the fish detection on each scaled frame based on the 
Haar Classifier Rejection Cascade generated as described in the previous subsection. The Haar 
Classifier module is the critical module of the whole fish detection system and thus will be described 
in more detail below. The display module stores the information of the detected fishes and displays 
white squares on the detected fish in the image sequence. The processed image is displayed on a 
monitor through the DVI interface.  

The Haar Classifier module begins by computing the integral image of the input scaled frame. The 
integral image is the summation of the pixel values of the original image. The value at any location 
(x,y) of the integral image is the sum of the original image's pixels above and to the left of location 
(x,y). Figure 6 illustrates the integral image generation. 



 
 

 
 
 

 

 

 
 

 
 
 

 

 

 
  

 

 

 
 

 

 
 

Figure 6. Integral Image Generation 

The integral image allows for rapid computation (constant time) of the Haar-like features. By using 
each corner for a Haar-like feature rectangle, the area of the rectangle can be computed quickly as 
shown in Figure 7. The area of the rectangle R can be computed using the integral image values in the 
positions L1, L2, L3, and L4 as L4-L3-L2+L1. Since the area of L1 is subtracted off twice by areas L2 and 
L4, it is added back on to get the correct area of the rectangle. 

Figure 7. Calculating the area of a rectangle R using the integral image values as L4-L3-L2+L1 

Once the integral image has been computed, the Haar Classifier module scans the integral image by a 
20x20 pixel window (a fish candidate), searching for a fish. Each fish candidate goes through the 
rejection cascade. Thus the Haar-like features in Stage0 are computed (using the integral image 
calculation), weighted and compared to the feature threshold (shown in Figure 4). If the sum of the 
selected left and right values, sum, is less than the stage threshold, T, the fish candidate is rejected and 
the Haar classifier module moves the scanning window over one pixel to process the next 20x20 fish 
candidate. If the sum is greater than the stage threshold, T, the fish candidate passes Stage0 and 
continues to Stage1, 2,…n until the fish candidate either fails at a stage or passes all stages. A fish 
candidate is only marked as containing a fish if the fish candidate passes all stages in the rejection 
cascade. To provide the ability to locate multiple fish in one frame, the Haar Classifier module 
processes the next scaled frame only after the entire integral image has been scanned. By processing 
frames of various scales, fish of various scales can be detected.  

Results 

Using the methods described in the previous section, we generated a 16 stage Haar classifier with 83 
features for the Scythe Butterfly fish using 1077 positive images and 2470 negatives images. All 
positive images were obtained by grabbing frames of a video of one Scythe Butterfly fish with a 
blank blue background (as shown in Figure 8). All positive images contained the fish's side profile 
while swimming left as earlier work has shown a separate classifier is needed for different profiles of 
the same object (Horton et al., personal communication). The negative images consisted of various 
gray scale underwater scenes of the Scythe Butterfly's natural environment. 



 
 

 
 
 

 
 

 

 

 
 

 

 

 

   

  
  
  

 
 

 
 

Figure 8. Frame of Scythe Butterfly video used to generated one positive image 

Using the OpenCV performance metric and 100 test images (also obtained from the Scythe Butterfly 
video), we obtained 92 hits, eight misses and three false positives with the generated 16 stage 
classifier. We were unable to obtain hit/miss results from the FPGA Framework at the time of this 
publication as OpenCV includes tilted Haar features in its rejection cascade that are currently not 
handled by our FPGA framework. 

Thus to obtain performance measurements of our FPGA framework, we used the OpenCV frontal 
face rejection cascade that consists of 22 stages and 2135 features (and no tilted features) (Bradski 
and Kaehler, 2008; OpenCV, 2008) and tested the performance of our framework for face detection 
on five images containing faces. Since the system performance of face detection depends on the 
number of faces in the images and the size of the image, we scaled the test images to two different 
sizes (320 x 240 and 640 x480) with the five test images of each size containing 1, 3, 6, 9, and 12 
faces respectively. Table 1 shows the average performance of the face detection system with varying 
levels of parallelism. The level of parallelism denotes how many Haar-features can be computed 
simultaneously within the framework. For a detailed description of the parallel implementations (Cho, 
personal communication). The table shows the performance improvement of using the FPGA 
framework over an equivalent software solution (written in C++) on a PC; in this case using an Intel 
Core 2 Quad CPU (2.4 GHz), 8 GB DDR2 SDRAM (800MHz), Microsoft Windows Vista Business 
(64-bit), and Microsoft Visual Studio. The table shows the face detection system on the FPGA 
framework has the performance improvement of up to 84.5 times the software solution with the 
320x240 resolution images and up to 37.39 times the software solution with the 640x480 resolution 
images. All faces in the five images of each image size were accurately detected with zero false 
positives. 

Table 1. Performance of FPGA Framework for Frontal Face Detection 

Level of 
Parallelism 320×240 images Improvement 640×480 images Improvement 

S/W 1 1,373ms (0.72 fps) 1.00 2,319 ms (0.43 fps) 1.00 
FPGA 1 54.735 ms (18.26 fps) 25.36 190.541 ms (5.24 fps) 12.18 
FPGA 2 38.997 ms (25.64 fps) 35.61 146.033 ms (6.84 fps) 15.90 
FPGA 4 24.405 ms (40.97 fps) 56.90 81.499 ms (12.27 fps) 25.20 
FPGA 6 21.053 ms (47.49 fps) 65.95 62.154 ms (16.08 fps) 28.53 
FPGA 8 16.387 ms (61.02 fps) 84.75 62.154 ms (16.08 fps) 37.39 

Discussion 

The hit/miss rate results of the Scythe Butterfly fish Haar Classifier and the performance results of the 
FPGA framework on face detection are encouraging. The results provide evidence that the FPGA 



  
 

 
 

 

 

 

 

 

 
 

 
 

 
 

 

 
 

 

 

 
 

 

 
 

based fish detection system we described may provide a good way to perform rapid fish classification 
in underwater images. However, a large amount of future work must be performed to evaluate the 
effectiveness of this method on fish detection and the improvement it may provide over other existing 
fish classification methods mentioned in the introduction. 

Future work includes modifying the OpenCV Haar Training code to generate Haar classifiers without 
titled features so that the classifier can be tested on our FPGA framework, obtaining images of the 
Scythe Butterfly fish in a natural background to see if the framework can accurately pick out the fish 
from the natural background, obtaining images of the Scythe Butterfly fish with other species of fish 
to see if the framework can accurate distinguish the Scythe Butterfly in the presence of other species, 
and generating classifiers for other profiles of the fish so that it can be detected in more than one 
position. If all of these future tests prove successful, we intend to develop a method or tool to allow 
scientists to generate their own classifiers of different fish species that can be added to a large 
database of classifiers and used in the FPGA framework for rapid detection of the scientist's species 
of interest. 
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