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Abstract Weak values are average quantities, therefore investigating their associated
variance is crucial in understanding their place in quantum mechanics. We develop
the concept of a position-postselected weak variance of momentum as cohesively as
possible, building primarily on material from Moyal (Mathematical Proceedings of
the Cambridge Philosophical Society, Cambridge University Press, Cambridge, 1949)
and Sonego (Found Phys 21(10):1135, 1991) . The weak variance is defined in terms of
the Wigner function, using a standard construction from probability theory. We show
this corresponds to a measurable quantity, which is not itself a weak value. It also leads
naturally to a connection between the imaginary part of the weak value of momentum
and the quantum potential. We study how the negativity of the Wigner function causes
negative weak variances, and the implications this has on a class of ‘subquantum’
theories. We also discuss the role of weak variances in studying determinism, deriving
the classical limit from a variational principle.

Keywords Weak value · Variance · Postselection · Thermodynamics · Determinism

1 Weak Values and Variances

1.1 Weak Values

1.1.1 Introduction

In the two state vector formalism, a weak value is equal to the transition amplitude
between a prepared initial state and a postselection state [1]. We focus in this study
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on the weak value and the “weak variance” of the momentum operator p̂ postselected
by position 〈x |,

x p̂ψ = 〈x | p̂ |ψ〉
〈x |ψ〉 , x p̂ψ ∈ C.

A number of the following results should generalise to any pair of canonically non-
commuting variables, although a general definition of the weak variance is not the
objective of this study. The weak value x p̂ψ ∈ C can be split into real and imaginary
parts [2] as

x p̂ψ = 〈x | p̂ |ψ〉
〈x |ψ〉 = h̄∂x (argψ)− i

(
h̄

2

∂x |ψ |2
|ψ |2

)
. (1)

One might naively attempt to define a weak variance as the second central moment out
of weak values x p̂2

ψ − x p̂ψ
2. However, the fact that weak values are complex requires

one to take real parts of this naive construction—and it makes a difference whether one
squares the second term before or after taking real parts: Re(x p̂ψ

2
) �= (Re x p̂ψ)2. This

ambiguity motivates the search for a more ‘fundamental’ approach to these statistical
quantities, which this first section will attempt to describe.

This study is organised as follows. We begin by reviewing the relation between
the real parts of weak values and the phase space formalism of quantum mechanics.
The quasistatistical interpretation of this formalism suggests a natural and unique
definition for the “weak variance” in terms of the Wigner function. In Sect. 2, the
embedding of configuration space formalisms into the phase space formalism then
allows the weak variance to be related to the thermodynamics of the Madelung fluid,
to the de Broglie–Bohm quantum potential Q, and to an experimentally measurable
combination Re(x p̂2

ψ − x p̂ψ
2
) of weak values.

In Sect. 3 we discuss the titular problem, that the negativity of the Wigner function
can result in a negative weak variance. The weak variance therefore does not define a
standard deviation of weak measurements from the weak value. The sign of the weak
variance is shown to be related to the local extrema of the probability amplitude. The
relation between weak variances and determinism paves the way for a detailed study of
the classical limit in Sect. 4. We derive the classical limit from a variational principle
involving the average stochastic contribution to the total momentum variance, and
demonstrate the existence of a semiclassical limit where particle motion occurs, on
average, classically.

1.1.2 The Importance of the Measurement Apparatus

It is important to note [3] that weak values are not measured independently of an
interaction Hamiltonian or a meter system. The real part of a weak value is well known
to be the conditional average one would measure in the ideal limit of zero disturbance
form the measuring apparatus [4–6]. The imaginary part of a weak measurement
is unrelated to observables, it arises from the disturbance due to coupling with a
measurement apparatus [4]. As such, it is not uniquely defined and not intrinsic to the
measured system [3].
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Since only the real part informs us about our operator as an observable, we opt to
describe the variance of only the real part of the weak value in this study. However, the
imaginary part in (1) will emerge naturally during our investigation of weak variances
for the real part, without reference to a specific interaction Hamiltonian or meter
system. In principle the ‘ideal’ decomposition (1) would be measured as [3,7]

x p̂ψ = Re

( 〈x | p̂ |ψ〉
〈x |ψ〉

)
+ η Im

( 〈x | p̂ |ψ〉
〈x |ψ〉

)
, (2)

such that the theoretically natural imaginary part in (1) is arbitrarily scaled in experi-
ments by adjusting the value of η. This parameter depends on meter states and observ-
ables, as well as the interaction strength with the apparatus [3].

We shall therefore discuss the imaginary part as if it were intrinsic to the system,
absorbing all dependence on the measurement protocol into the parameter η. This
has the disadvantage of illusorily disconnecting these results from the experimental
setups that give rise to them, which comes hand in hand with the hidden advantage
of being a more universal treatment than that derived from any specific experimental
setup. As such, the weak variance we define is related to the stochastic nature of
quantum theory; it is not the experimental variance of any apparatus (although it may
manifest itself as such in a measurement setting). Not without irony, this apparatus-
agnostic treatment will suggest multiple possible experimental setups to study the
weak variance (Sect. 2.3).

1.1.3 Weak Values as Conditional Expectations

In the quasistatistical interpretation [8–10] of the phase space formalism [11–14], the
canonical observables x, p ∈ R are treated as random variables. Since these observ-
ables are incompatible, no joint probability distribution can reasonably be given for
them—the phase space distributions are understood to be bivariate pseudoprobability
distributions. For example, the Wigner function W (x, p) is not positive definite. For
a review of extended probability we refer the reader to [10].

Our choice of the Wigner function to define the weak variance is motivated by
this quasidistribution’s special status amongst physically equivalent representations of
the phase space formalism (which correspond to different choices of operator order-
ing, [x̂, p̂] �= 0). Indeed, only the Wigner function produces the correct marginals
and observable averages by direct integration [13]; other quasidistributions require
explicit convolutions over noncommutativity terms. As such, the Wigner function is
uniquely singled out by the quasistatistical outlook, where such noncommutativity
terms would interfere with the interpretation of observable averages as moments of
the pseudodistribution.

The real part of a weak value is a conditional average [5,6,15]. Hence, to obtain
weak values of momentum, one must consider not the momentum p, but instead the
mean value of p at a given position, for a statistical ensemble. One may consequently
express the experimental protocol of postselection with conditional random variables:
the quantity p|x (p conditioned by x) is also a random variable. To find the distribution
of p|x , we need to consider the conditional distribution W (p|x). The Wigner function
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has a marginal distribution

W (x) =
∫

W (x, p) dp = |ψ(x)|2 , (3)

and so the conditional distribution for the random variable p|x is simply

W (p|x) = W (x, p)

W (x)
. (4)

These observables p, x are incompatible: in what sense can we condition one on
the other if they are not meaningful simultaneously? A random variable is defined
by its distribution. Individual realisations of x and p are meaningful positions and
momenta only because their distributions (the marginals of the Wigner quasidistribu-
tion) are proper distributions. The random variable p|x is defined by the conditional
quasidistribution W (p|x), which from (4) is clearly not nonnegative. Hence individ-
ual realisations of p|x may occur with negative probability. This follows the same
logic as stating that joint realisations (x, p) may occur with negative probability as
realisations of the full Wigner function.

However, the fact that individual realisations of p|x can occur with negative prob-
abilities does not preclude the use of this conditional variable as an intermediate step
in a calculation of a physical quantity [10]. Furthermore, the mean or the variance of
p|x need not be confined to intermediate steps in this way, since they are not random
variables but instead contribute to the description of the physical state of an ensem-
ble (i.e. they describe the Wigner function as a whole rather than the outcome of a
measurement).

The mean value of p|x ,
Ep (p|x) ≡ p̃, (5)

can be thought of as a function of x [9]. This mean value p̃ will in Sect. 1.2.1 be shown
to equal the real part of the weak value x p̂ψ . One may then express the conditional
mean momentum in terms of W as the first conditional moment [8], i.e. the first
moment of the conditional distribution:

p̃ =
∫

pW (p|x) dp (6)

= 1

W (x)

∫
pW (x, p) dp. (7)

It is possible to formulate complex weak values of arbitrary observables directly
in the phase space formalism using cross-Wigner functions [16], but as noted earlier
our focus is currently limited to the variance of the real part of position-postselected
weak momentum measurements.

1.2 Weak Variance as the Second Conditional Cumulant

Through the statistical Wigner–Moyal formalism described above and in [8], the weak
value p̃ takes on the role of a statistical average. However, an average is scientifically
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worthless unless one can provide an associated spread. It is well established that
the variance, i.e. the second central moment of a distribution, is equal to the second
cumulant of that distribution. With some effort, the same can be shown of conditional
variances and conditional cumulants [17], and extended to those of pseudodistributions
like the Wigner function [8].

1.2.1 Derivation

Using the characteristic function associated to W (x, p) and the polar decomposition
ψ = √

ρei S , the conditional cumulants of this distribution can be written for even
cumulants (n = 2, 4, . . .) as [8]

κn|x =
(

h̄

2i

)n (
∂

∂x

)n

ln ρ (x) , (8)

and for odd cumulants (n = 1, 3, . . .) as

κn|x =
(

h̄

2i

)n−1 (
∂

∂x

)n

h̄S (x) . (9)

The derivation of this result has been reproduced in full as an Appendix.
By definition, the first two conditional cumulants n = 1, 2 are also the first two

conditional moments, and one finds a simple relation [8],

p̃ = ∂ (h̄S)

∂x
,

for the (n = 1) average p̃ = Ep (p|x). Simple comparison of this expression with
(1) should confirm that p̃ = Re

(
x p̂ψ

)
. The n = 2 expression then defines the weak

variance of the random variable p|x :

Vp (p|x) = − h̄2

4

(
∂

∂x

)2

ln ρ (x) . (10)

Dimensional analysis confirms that this quantity has units of [momentum]2, as
expected of a (conditional) momentum variance. Because of the clean splitting between
phase-dependent odd cumulants and amplitude-dependent even cumulants, the weak
variance does not depend on the wavefunction phase, except indirectly (via the time
evolution of the amplitude).

1.2.2 Other Expressions for the Weak Variance

This second conditional cumulant is also expressible directly as the second central
conditional moment of the conditional distribution W (p|x):

Vp (p|x) =
∫

W (p|x) (p|x − Ep (p|x))2 dp. (11)
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Furthermore, as we shall demonstrate in Sect. 2.1.2, the weak variance also takes
the following form, more readily related to weak values:

Vp (p|x) = 1

2
Re

(
〈x | p̂2 |ψ〉

〈x |ψ〉 −
( 〈x | p̂ |ψ〉

〈x |ψ〉
)2
)
.

This last expression shows that despite our use of unphysical conditional random
variables p|x in its derivation, the weak variance is indeed related to the intuitive form
〈p2〉 − 〈p〉2 of a variance. It also shows that the weak variance is measurable in an
experimental setting.

1.3 The Uncertainty Principle

It is possible to relate the conditional variance Vp (p|x) to the unconditional variance
V (p) that appears in the uncertainty relations.

1.3.1 The Law of Total Variance

One may readily verify that the law of total expectation,

E (p) = Ex
(
Ep (p|x)) = Ex ( p̃) , (12)

reads in our quantum setting

〈ψ | p̂ |ψ〉 =
∫

|ψ |2 p̃dx . (13)

In the same way that one derives the law of total expectation, one may derive the
Law of Total Variance:

V (p) = Ex
(
Vp (p|x))+ Vx

(
Ep (p|x))

= Ex
(
Vp (p|x))+ Vx ( p̃) , (14)

where Vx ( p̃) is the variance of the weak value p̃ as a function of x , and where
Ex (V (p|x)) is the average value of the weak variance (as a function of x). Vx ( p̃)
can be simply given by the marginal variance

Vx ( p̃) =
∫

W (x) ( p̃ − Ex ( p̃))
2 dx, (15)

where the law of iterated expectation (13) gives Ex ( p̃) = 〈ψ | p̂ |ψ〉. Hence, Vx ( p̃)
measures the standard deviation of the weak value p̃ from the usual expectation value〈
p̂
〉

as the postselection position x changes. Particularly, it does not measure the vari-
ance of p|x (or of any other random variable): the variable p̃ in the variance Vx is
deterministically defined by (15). The nonweak variance Vx ( p̃) contributes to the
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total variance of p̂ of the uncertainty principle, but it is not itself a manifestation of
quantum randomness.

By contrast the conditional variance,

Vp (p|x) =
∫

W (p|x) (p|x − Ep (p|x))2 dp,

is truly the variance of a random variable: it says how far from the mean Ep (p|x) = p̃
one may expect to find the random variable p|x . Unlike the total variance or the
variance of p̃, this “scedastic function” depends on the postselection x . It is in this
sense that we identify it as the weak variance.

These two parts of the total variance allow interesting limits where their contri-
butions are negligible one with respect to the other. For example, in stationary states
there is no variability in p̃(x) by construction, and the total variance of the state is
supported entirely by the weak variance. A more detailed discussion of these limits,
and their relevance to the classical limit, is postponed until the relevant properties of
the weak variance Vp (p|x) are introduced (Sect. 4.1).

1.3.2 Apparatus versus Fundamental Weak Variances

This connection between the weak variance and the momentum variance reconfirms
that the weak variance is central to understand the predictions of QM. Oddly, we find
that the weak variance is related to the fundamental momentum variance V(p) of a
state (as described in the Robertson uncertainty relations) rather than the momentum
change �p when a state is disturbed (as originally described by Heisenberg).

Since Vp (p|x) is given by differentiation of the wavefunction amplitude (10), it
depends only on the values of the wavefunction amplitude in the neighbourhood of the
postselection point x . This choice of postselection point is not apparatus-dependent,
although issues such as pointer variance for the postselection variable will certainly
affect the analysis of any experimental study.

The weak variance is further distinguished from an ‘apparatus quantity’ by the fact
that it is not an ‘observable’, in the sense that it does not correspond to a Hermitean
operator (cf Sect. 2.1.3) or equivalently (in the presentation adopted above) to a real
random variable. Instead, as a cumulant of the Wigner function, it describes the state
of the system, irrespective of how it is measured.

2 Connection to Other Formalisms

One can recognise [18] the probability flux density
∫

pW (x, p) dp = mj in (7), and
re-express this equation using the marginal (3), as

p̃

m
= j (x, t)

|ψ |2 . (16)

The trajectories of the Hydrodynamical and Bohmian pictures are generated from
(16), by setting a velocity ẋ = p̃/m and solving the resulting ODE for x (t). We
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will present only those elements of these formalisms that are of interest to our weak
variance study; a more detailed account of this ‘embedding’ of configuration space
descriptions of QM into phase space is given in [9].

The derivation of the real part of the momentum

p̃ = ∂x (h̄S) (17)

from the Schrödinger Equation is present in almost every work related to the Hydrody-
namical or de Broglie–Bohm formalisms since 1927 [19], therefore no detail will be
given here: The wavefunction is polar-decomposed, derivatives of the components split
the Schrödinger equation into real and imaginary parts, from which (17) is obtained
by either appealing to an analogy between the resulting equations and the Euler equa-
tions (in the hydrodynamical setting) or to an analogy between these equations and
the Hamilton–Jacobi equation (in the Bohmian setting).

2.1 Bohmian Approach to the Weak Variance

2.1.1 Prelude

In the quantum Hamilton–Jacobi formalism [20–23], Hamilton’s Principal Function
is S (x, t) = h̄S (x, t) + const., such that the polar decomposition (17) becomes the
Hamilton–Jacobi definition of a canonical momentum

p̃ = ∂xS. (18)

Since p̃ is not the classical canonical momentum, but an average, the theory remains
fully quantum mechanical [24]. Particularly, the Hamiltonian

HBohm = −∂S
∂t

= p̃2

2m
+ V + Q (19)

has a quantum potential Q [20,21]:

Q = − h̄2

2m

∂2
x |ψ |
|ψ | . (20)

The form (10) can be re-expressed (using R = |ψ | = √
ρ) as:

Vp (p|x) = − h̄2

4

∂

∂x

(
∂xρ

ρ

)
= − h̄2

2

∂

∂x

(
∂x R

R

)
. (21)

The imaginary part of the weak value (1) is

Im
[

x p̂ψ
] = − h̄

2

∂xρ

ρ
= −h̄

∂x R

R
, (22)
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where the experimental η term from (2) is suppressed. Equation (21) then indicates that
the weak variance is proportional (with a dimensionful factor of h̄/2) to the divergence
of this imaginary part.

Applying the divergence operator in (21) gives

Vp (p|x) = − h̄2

4

(
∂2

xρ

ρ
− (∂xρ)

2

ρ2

)
= − h̄2

2

(
∂2

x R

R
−
(
∂x R

R

)2
)
, (23)

and by recognising each term above (with (20) and (22)), we find

Vp (p|x) =
[
Imx p̂ψ

]2
2

+ m Q. (24)

This nontrivially relates the weak variance to the quantum potential of the
Hamilton–Jacobi picture, providing further evidence of the physical importance of
Vp. The imaginary part of the weak value also appears in the expression above. By
combining (21), (22), and (24) we obtain a nonlinear differential (Riccati) equation
fixing the form of Imx p̂ψ at any given time,

d Imx p̂ψ
dx

− 1

h̄

[
Imx p̂ψ

]2 = 2m

h̄
Q(x) (25)

This will be an important element in our discussion of the classical limit (Sect. 4.1).

2.1.2 An Expression for Vp (p|x) in Terms of Weak Values

Consider the weak value of momentum squared. Substituting once again the polar
form ψ = |ψ |ei S and p̂2 = −h̄2∂2

x gives

Re

( 〈x | p̂2 |ψ〉
〈x |ψ〉

)
= −h̄2Re

(
∂2

xψ

ψ

)
= (h̄∂x S)2 + 2m Q. (26)

Recognising h̄∂x S as the real part of the weak value of momentum, we can re-express
the quantum potential Q in a well-known variance-like form (up to a scaling by 2m):

Q = 1

2m

(
Re

( 〈x | p̂2 |ψ〉
〈x |ψ〉

)
−
[

Re

( 〈x | p̂ |ψ〉
〈x |ψ〉

)]2
)
. (27)

Now consider the weak value of momentum, squared:

Re

(( 〈x | p̂ |ψ〉
〈x |ψ〉

)2
)

= Re(x p̂ψ)
2 − Im(x p̂ψ)

2 = (h̄∂x S)2 − Im(x p̂ψ)
2.
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Clearly, we can subtract this from (26) above to obtain

2

(
m Q + Im(x p̂ψ)2

2

)
= Re

( 〈x | p̂2 |ψ〉
〈x |ψ〉

)
− Re

(( 〈x | p̂ |ψ〉
〈x |ψ〉

)2
)

(28)

Vp (p|x) = 1

2
Re

(
〈x | p̂2 |ψ〉

〈x |ψ〉 −
( 〈x | p̂ |ψ〉

〈x |ψ〉
)2
)
, (29)

by use of (24) and linearity of Re (· · · ). This expression depends on both the first
order (x p̂ψ ) and second order (x p̂2

ψ ) weak values, and resolves the ordering ambiguity,
discussed in the Introduction, between taking the real part and taking the square of the
first order weak value (compare (27) and (29)).

2.1.3 The Weak Variance is Not a Weak Value

We have reached an expression for Vp (p|x) which superficially has the form
〈p2〉 − 〈p〉2. Let it be noted, however, that this is not a construction in terms of
moments of a distribution: the complex weak value x p̂ψ is not a moment, it is the real
part p̃ = Re(x p̂ψ) that plays this role.

Consider, now, expanding the square in (11) to obtain

Vp (p|x) =
(∫

p2W(p|x)dp

)
− E(p)2 = Ep(p

2|x)− E(p)2.

This also almost looks like 〈p2〉 − 〈p〉2, however the two expectations belong to
different (pseudo)distributions (W(p|x) and W(x, p) respectively). Using the law of
total expectation, we could write both terms using Ep:

Vp (p|x) = Ep(p
2|x)− Ep(Ey(y|p))2,

where y|p is (formally) a position postselected on momentum. This averaging over
all positions y shows that despite being locally valued (in terms of the postselection
x), Vp (p|x) encompasses information from the entire configuration space. This is not
surprising if one remembers that the wavefunction solves a Schrödinger equation over
this same space.

Quantum mechanical expectations are calculated in the Wigner formalism as inte-
grals over the entire phase space,

〈 Â〉 =
∫

dx
∫

dp A(x, p)W(x, p), (30)

where A(x, p) is the classical observable and Weyl operator ordering is assumed [13].
One may then define configuration space densities

Acs =
∫

dp A(x, p)W(x, p), (31)
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which give the expectation 〈 Â〉 by direct integration, and ‘local densities’ [18,25,26]

Aloc = |ψ |−2 Acs =
∫

dp A(x, p)W(p|x) = Re

(
〈x | Â |ψ〉

〈x |ψ〉

)
, (32)

which give the expectation by weighting the integration by the probability distribution
|ψ |2. By writing our classical observable as a polynomial A(x, p) =∑n fn(x)pn , we
find that these local densities are nothing more than linear combinations of conditional
moments / weak values of pn . We have already seen (29) that the weak variance is
quadratic in the weak value x p̂ψ , therefore it is not a local density and no classical
observable associated to it exists. Furthermore this suggests (since classical observ-
ables are quantum observables too) that there is no weak variance operator V̂p, as
argued on interpretational grounds in Sect. 1.3.2. Therefore, the weak variance is not
a weak value.

2.2 Hydrodynamical Approach to the Weak Variance

The real part p̃ of the weak value is the (Euler-picture) momentum of the Madelung
fluid at position x . Classically, the fluid momentum is the (local) average momentum
of a particle in the fluid; quantum mechanically, p̃ retains this qualitative feature of
being a local average as discussed above.

In the Hydrodynamical picture, one can derive [9,18] a pressure tensor using the
same logic [19] from which one derives the fluid momentum (17). We obtain in one
dimension (cf. [18, Appendix C]):

P = 1

m

∫
(p − p̃)2W(x, p)d p = ρ

m

(
− h̄2

4
∂2

x ln(ρ)

)
. (33)

Combining the pressure above and the equation of state of the Madelung fluid
P = ρkB T gives a definition for the thermal energy [18]:

kB T = − h̄2

4m
∂2

x ln ρ = Vp (p|x)
m

. (34)

There is an intuitive picture relating fluid temperatures to momentum variances:
In the kinetic theory of gases, a higher temperature corresponds to a wider Maxwell–
Boltzmann distribution of momenta, according to σ 2 ∝ mkB T . The corresponding
quantum relation (34) preserves this intuition at the fluid level, for a temperature
distribution T = T (x) over postselection x .

This expression (33) should be compared with the independently motivated expres-
sion (10) for the weak variance. In this light, the equation of state may be justified
(rather than postulated) by writing the Wigner function from (33) in terms of its mar-
ginal, using (10) to find the solution P = ρ

m Vp (p|x), and then invoking this analogy
to kinetic theory to link P , ρ and T by an equation of state.
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Physical potentials tend to arise from interactions (mediated by gauge fields in the
Standard Model or the metric field in General Relativity), but the quantum ‘potential’
Q puzzlingly appears to pop out of the Schrödinger equation. Interpreting the weak
variance as a thermal quantity pushes the ‘interactions’ which give rise to Q into
a hypothetical microstate description from which postselected quantum mechanics
emerges thermodynamically, potentially resolving this philosophical worry.

We purposefully do not propose at this time any underlying statistical thermody-
namical picture, instead pointing the reader to the discussion of “subquantum theory”
in [18], which suggests that one should analyse the properties of the Wigner Function
(such as, in this study, its weak variance) in order to gather some information about
such a theory (cf. Sect. 3.4). It is a strength of thermodynamics that it does not formally
require any model for microstates.

2.3 Measurement of the Weak Variance

We have shown that the weak variance can be described without reference to the prop-
erties of a specific apparatus, using only the description of the system’s state through
the Wigner quasidistribution or the wavefunctionψ = Rei S . However, combining the
many equivalent expressions developed in this section with the η parameterisation of
the imaginary part (2), shows that this quantity should in fact be easy to measure in a
number of experimental settings.

Unsurprisingly, the weak variance of momentum can be measured using weak
measurements of momentum. The form (29) is available if one has access to the
second-order weak value x p̂2

ψ . With a good calibration of the apparatus’ η and a good
resolution over x , (21) can also be used.

More interestingly, weak measurements of momentum are not necessary to quantify
the weak momentum variance. Given the probability density ρ (x) determined from a
series of position measurements, one may simply use the −∂2

x ln (ρ) form to find the
weak variance at any position, without performing a single momentum measurement,
weak or otherwise. A combination of weak momentum measurements and projective
position measurements (possibly the same measurements used for postselection) can
be used to cross-check the previous two measurements using a single dataset.

One might also verify experimentally the law of total variance (14): for example, one
can measure the total variance V (p) from projective momentum measurements, and
one can measure each of the partial variances from weak momentum measurements.

Having these many experimentally independent ways to measure Vp (p|x) should
allow this formalism to be stringently tested by contemporary instruments (modulo a
calibration or model for the apparatus parameter η).

3 Negative Weak Variances

Quantum Mechanics predicts that in some regions, Vp (p|x) < 0; this odd behaviour is
known to the literature, but often glossed over (cf. e.g. the footnote to the Appendices of
our primary source [8]). The Bohmian and hydrodynamical formalisms even allow the
‘weak trajectories’ x (t) to cross from regions where Vp (p|x) is positive to regions
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where it is negative. It is not sufficient to say ‘weak values can lie outside of the
eigenspectrum’ to explain why a variance can turn out to be negative.

Furthermore, this is not just an odd but unmeasurable feature of the theory, like the
negative probabilities of realisations of p|x [8,10,12]. The second cumulant may, as
we have just argued, be measurably negative.

3.1 Explaining Vp (p|x) < 0

The reason we identify Vp (p|x) as a (conditional) variance is that it appears as the
second term in the expansion of the (conditional) characteristic function into cumu-
lants (8). We therefore consider to what extent such an interpretation for this quantity
is warranted beyond the (experimentally successful [27]) identification of the first
cumulant as a conditional average.

The conditional variance is given by the second central conditional moment of W
(11):

Vp (p|x) =
∫

W (p|x) (p − Ep (p|x))2 dp, (35)

which may be contrasted with the marginal moment (15). The term (p|x − p̃)2 is
the square of a real quantity, so it must be positive. Any negativity in Vp (p|x) must
therefore come from the distribution W (p|x); and indeed, the conditional Wigner
function can take negative values [8]. This should be contrasted with Vx ( p̃), which
depends on the marginal distribution W(x) = |ψ |2 ≥ 0 and thus remains positive.

3.2 Wigner Negativity and Standard Deviations

Even though the conditional variance may be negative, allowing imaginary standard
deviations of p|x would violate the requirement that p, x ∈ R (i.e. the requirement
that realisations of a real random variable cannot be complex). A standard deviation
defined using an ad hoc extension to negative values,

σp|x =
√

abs
(
Vp (p|x)), (36)

satisfies σp|x ∈ R
+, such that all our random variables are real, as required. This

extension manifestly reproduces the usual standard deviation when Vp (p|x) ≥ 0. This
last point is necessary not only for mathematical consistency, but also for consistency
of the thermodynamical picture (34): The standard deviations of momentum in kinetic
theory are obtained from the Maxwell–Boltzmann distribution σ ∝ √

mkB T .
However, the conditional distribution is a pseudodistribution, invalidating the sim-

ple expression (36). Consider the integral form (35) of the weak variance: even when
Vp (p|x) = 0, there can be a spread of p|x away from the weak value, since the
negative and positive parts of the pseudodistribution W (p|x) may cancel under the
integral defining a cumulative distribution, without any information given about the
squared-term (p|x− p̃)2. Expressed more formally, deviation-bounding theorems such
as the Chebyschev inequality do not apply to quasidistributions. This possibility for
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stochasticity at zero variance is further emphasised by the fact that higher n ≥ 2 cumu-
lants (8,9) are generally nonzero, indicating that the pseudoprobability distribution is
generally nontrivial.

One might then attempt to push the absolute value inside the integral that defines
Vp (p|x) to take care of this problem, defining instead our standard deviation with

σ 2
p|x =

∫
abs(W (p|x)) (p|x − Ep (p|x))2 dp. (37)

By virtue of the triangle inequality
∣∣∫ Adx

∣∣ ≤ ∫ |A| dx , this standard deviation
gives at least as large a spread in p|x as (36). Furthermore, it clearly reproduces (36)
whenever W (p|x) ≥ 0, and so inherits all the desirable properties discussed above.

However, this approach is similarly unacceptable. The expectation Ep is also an
integral over p, yet if we want to consider deviations away from p̃ then we cannot
replace the conditional distribution by its absolute value in this expectation integral:
changing the distribution changes the random variable of which we consider the mean!
Furthermore, the correct normalisation of the quasidistribution

∫
dpW (p|x) = 1

guarantees that abs(W (p|x)) is not normalised, and so it is not a proper probability
distribution either.

In light of these failures, it is even possible to dispute whether a standard deviation
is a sensible quantity for quasidistributions. Unlike the variance, which pertains to the
distribution, the standard deviation is a deviation of realisations of a random variable
from their mean. As discussed previously, realisations of p|x can occur with negative
probability: building a sample standard deviation from these phantasmagoric realisa-
tions would be meaningless as the final step of a calculation, even in a quasistatistical
outlook.

3.3 Shape of ψ

In the description of Bose–Einstein superfluids, a quantum-potential-like term appears
in the polar decomposition of the Gross–Pitayevski equation. In this context, Q is
interpreted as the kinetic energy cost of curvature of the condensate wavefunction—it
costs energy to squeeze a wavepacket.

Given that the weak variance depends in part on the quantum potential (24), one
might wonder whether (by analogy) Vp (p|x) is related to the curvature of the wave-
function.

We now consider how the curvature of the wavefunction amplitude, R = |ψ |,
determines the sign of the weak variance. The relevant quantity is the convexity ∂2

x R
of the amplitude, which is positive for convex intervals of |ψ | and negative for concave
intervals.

3.3.1 Non-nodal Points

We use the decomposition (23) to solve the inequality Vp (p|x) ≥ 0. We note that R
is nonnegative by definition: for non-nodal points (i.e. points x such that R(x) �= 0)
the weak variance is nonnegative whenever the convexity satisfies
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(∂x R)2

R
≥ ∂2

x R. (38)

The left-hand side of (38) is positive, so concave regions (0 > ∂2
x R) always have

positive weak variances (independently of the system under consideration). Regions
that have a very small concavity are also very likely to satisfy (38).

Maxima of the wavefunction amplitude are concave so Vp (p|x) > 0. Near local
minima of R(x), the left-hand side of (38) vanishes and the inequality is never sat-
isfied (since ∂2

x R > 0): Hence we expect Vp (p|x) ≤ 0 near local minima (again,
independently of the specific system under consideration).

In the extremal case, piecewise exponential amplitudes R (x) = exp(±kx) always
give Vp (p|x) = 0. These amplitudes are observed e.g. for particles tunnelling into a
constant potential barrier.

Since the position-dependence of the amplitude R(x) is easy to measure with pro-
jective position measurements alone, this inequality can serve as a test for the sign
of Vp (p|x) even in an experiment not optimised to calculate the weak variance. We
recommend that experimental probes into negative variances should occur near non-
nodal minima of the probability density, since the convexity in other regions may not
support negative weak variances.

3.3.2 Nodal Points

A slight complication arises around nodal points R → 0 of the wavefunction: The
weak variance at the node itself is infinite, given the logarithmic singularity at ln(0)
that appears in (10).

To show this, we note that continuous differentiability of ψ and ψ∗ enforces
∂x R → 0 around nodes. The expansion of the amplitude R about a node at any
fixed time is then

R(x) = ax2 + O(x3),

where the condition ∇2 R > 0 (that a node is a minimum of the amplitude) gives
a > 0. Around this node, the weak variance (10) tends to:

− h̄2

2
∂2

x ln ax2 = −h̄2∂2
x ln x = −h̄2

(
− 1

x2

)
→ +∞. (39)

It is simple to see that this asymptotic result generalises even to pathological expansions
R = 0+· · ·+0+O(xn). Interestingly, this behaviour for the weak variance is always
strictly positive, excluding Vp (p|x) ≤ 0 very close to the node. This will be illustrated
in the following section in a number of systems.

3.3.3 Illustration in Toy Systems

The study of coherent states in the context of negativity of the Wigner function is
motivated by the result [28] that only these states are nonnegative everywhere.
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Consider the coherent states of the quantum harmonic oscillator. We must check
(for consistency) that Vp (p|x) > 0 (strictly) in these states. The weak variance is

Vp (p|x) = − h̄2

4
∂2

x

⎡
⎣ln

((
mω

h̄π

) 1
4

e− mω
2h̄ (x−〈x̂(t)〉)2

)2
⎤
⎦ ,

and, after many cancellations, one obtains the simple expression

Vp (p|x) = +m
h̄ω

2
.

This is indeed positive for all x , as expected, and manifestly has the required
dimensions for a momentum variance:

[mass] × [energy
] = [momentum]2 .

We note that Vp (p|x) /m is equal to the zero-point energy h̄ω/2 in this minimum-
uncertainty state. In fact, for any energy eigenstate of the harmonic oscillator, we find
a zero-point contribution to the variance:

Vp (p|x)
m

= + h̄ω

2
− h̄ω

2

[(
∂

∂y

)2

ln Hn (y)

]
, y =

√
mω

h̄
x, (40)

and this contribution remains even for arbitrary superpositions thereof.
For an energy eigenfunction of a particle in a box (respectively in a −α/ |x | poten-

tial), we obtain

Vp (p|x)
m

= +En

[
csc2(

nπ

L
[x − x0])

]
(41)

(resp.) = h̄2

2m

1

x2 + En

[(
∂

∂y

)2

ln L(1)n−1 (y)

]
, (42)

in terms of the energy levels En, n ≥ 1 of these two systems. The eigenstate in a box
or a harmonic oscillator is clearly not in a coherent state; yet we find that Vp (p|x) > 0
for all x for these toy models, because each x lies in the vicinity of a maximum or a
nodal point.

We note in passing that the weak variance becomes positively infinite at the nodal
points of these systems, as expected from the discussion in the previous section. More
interestingly, the weak variance tends (at certain postselections x) to the zero-point
energy when the system is in its ground state. We purposefully do not propose at this
time an interpretation of this finding.
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3.4 Negative Temperatures

If the weak variance is the temperature distribution (34) of the Madelung fluid, then the
Madelung fluid can have negative temperatures. Negative temperatures may be surpris-
ing, although their study is theoretically well-established [29] and the concept has suc-
cessfully been applied to several experimental systems exhibiting population inversion.
Some interesting prerequisites for negative temperatures are that the internal energy of
the system must be bounded from above as well as below, and that T = 0 requires the
energy to be extremised to one of these bounds. The ideal gas law P = ρkB T shows
that the pressure also becomes negative, precisely when the temperature is negative.

One further consequence of weak variances on the thermodynamics of the hydro-
dynamical formalism is interpretational. Recall that the hydrodynamic momentum
p̃ = E(p|x) is interpreted [18] as the local average momentum of the fluid particles at
a position x . Yet, we have seen (Sect. 3.2) that negative weak variances do not provide
a standard deviation or a Chebyschev inequality for the random variable p|x . In the
hydrodynamic language, the peculiar momentum of a Madelung fluid particle is not
required to be zero, even at zero temperature! Also note that the temperature of a nodal
point in the fluid (where we expect to find no fluid particles) is +∞.

These are the sort of features any “subquantum theory” [18] should exhibit, if such
a theory admits the Madelung hydrodynamics as its thermodynamic limit.

4 Nondeterminism in Quantum Mechanics

We have already discussed (Sect. 3.2) how a null weak variance still allows stochas-
ticity and nonzero standard deviations. Although Vp (p|x) = 0 does not imply deter-
minism, one might nonetheless consider whether a relation between the weak variance
and determinism exists. For example, the highly nonlinear form of the weak variance
makes it unlikely that a null weak variance would emerge for superposition states (or, a
fortiori, for entangled states). These conditions correspond exactly to the nonclassical
regime, where we expect nondeterminism.

4.1 The Classical Limit

4.1.1 Consistency of the Classical Limit

It should not be surprising to find that these worrisome negative variances disappear
in the classical limit. Heuristically considering the classical limit as the limit of infi-
nitely thin coherent states similarly guarantees Vp (p|x) ≥ 0 since the conditional
distribution is nonnegative [28].

However, a stronger statement is also true: weak variances should disappear com-
pletely in the classical limit, since classical observables are well-defined and motion
is deterministic. We have even shown (Sect. 2.1.3) that there is no classical observable
associated to it. The quantum potential behaves like Q → 0 in the classical limit.1

1 One must strictly take the limit of the quantum potential for the entangled state of the system and the
measurement apparatus [22], but Q → 0 for the system alone is not seen as problematic in the literature.
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When Q = 0, the Riccati equation (25) admits a trivial solution Imx p̂ψ = 0 since the
weak momentum (∈ C) tends to the classical momentum (∈ R). Hence, using (24),
Vp (p|x) → 0 classically.

4.1.2 Deriving the Classical Limit

Another approach to the classical limit would be to minimise the contribution of the
scedastic function Vp (p|x) in the total variance (14) by our choice of wavefunction,
in order to mimic determinism. Since the weak variance does not depend on the
wavefunction phase, only the probability density ρ = |ψ |2 is relevant. We can express
this extremisation problem in the language of calculus of variations as

δ J [ρ] = δ
(
Ex
(
Vp (p|x)))

= δ

∫
dxρ(x) ∂2

x log(ρ(x))

= δ

∫
dx

[
ρ′′ − (ρ′)2

ρ

]

=
∫

dx δL(ρ, ρ′, ρ′′)

= 0, (43)

where unimportant constant factors are suppressed. The resulting Euler–Lagrange
equation depends (albeit trivially given our specific L) on the second derivative
ρ′′ = ∂2

xρ of the probability density:

∂L
∂ρ

− ∂

∂x

∂L
∂ρ′ + ∂2

∂x2

∂L
∂ρ′′ = ρ′′

ρ
− 1

2

(
ρ′

ρ

)2

= 0. (44)

We notice that the terms of (23) are similar to those of the Euler–Lagrange equation
(44). Consequently we find that in this limit, a term of our choice cancels out of (23)
to give

Vp (p|x) = (Im [x p̂ψ
])2 = −m Q.

However, reinserting this into (24) results in Vp (p|x) = +m Q; this is uniquely
possible for Vp (p|x) = Q = Im

[
x p̂ψ

] = 0. We have therefore derived that the
minimum average contribution of the weak variance to the total variance is zero:
negative weak variances do not allow the nonweak variance Vx ( p̃) to exceed the total
variance in (14).

In summary, by minimising the stochastic part of the total variance we can derive
the classical limit Q → 0 of the Hamilton–Jacobi formalism.

4.2 Vp (p|x) → 0 as a Semiclassical Limit

Equation (21) states that Vp (p|x) is the divergence of the imaginary part of the weak
value: when this variance is zero, Im(x p̂ψ) is a function of time only. In this case,
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either (24) or the Ricatti equation (25), gives that Q(x, t) = Q(t only) < 0. Hence
the quantum force ∂Q/∂x = 0: this is [23] the condition that Bohmian trajectories
coincide with their classical counterparts. Vp (p|x) → 0 therefore yields classical
particle dynamics (on average), occurring at nonclassical energies. Of course, these
semiclassical dynamics are localised to specific postselections x : if Vp (p|x) = 0, ∀x
then the average weak variance is also zero and we recover the classical limit as derived
above.

Consider a particle tunnelling through a constant barrier: The exponential wave-
function amplitude guarantees that Vp (p|x) = 0 inside the barrier, therefore the
tunnelling particle lives in this semiclassical limit and will (on average) follow the
path of a classical particle with a higher energy: it will go over the barrier. The fact
that tunnelling particles behave semiclassically is indeed why tunnelling problems are
successfully visualised and formulated in terms of particles.

4.3 Weak Variances Do Not ‘Measure’ a Deterministic Particle Ontology

It is sometimes claimed that the weak value Re(x p̂ψ) ‘measures’ the Bohmian momen-
tum [15,27]. A naive Bohmian might expect that the weak variance would vanish, being
the variance of the nonstochastic Bohmian momenta. In this section we argue against
one possible misinterpretation of these quantities: weak values (and their associated
weak variances) do not measure the properties of a Bohmian particle.

The only hidden variable of a Bohmian particle is position—it does not even have
an energy or even a momentum independently of what the mathematical formalism
predicts we should measure [22,30]. This is of course a reflection of the fact that
nonposition measurements in Bohmian mechanics are contextual [22]. As such, a
measurement of the weak value, although equal to the Bohmian momentum ∂xS,
is not a measurement of the “particle’s momentum”; similarly, the weak variance
does not measure the standard deviation of Bohmian particles’ momentum (both on
interpretational and quasistatistical grounds).

With the above caveat in mind, the weak variance allows a deterministic particle
interpretation of the ‘semiclassical’ limit Vp (p|x) → 0: such a (localised) Bohmian
interpretation has already been shown to apply at postselection points x where it is at
its strongest (particles tunnelling and in the classical limit), and is guaranteed to not
apply where the global Bohmian interpretation is known to break down [22,23,31,32]
(since Vp (p|x) → +∞ �= 0 at nodal points). We emphasise that a semiclassically
emergent Bohmian ontology is neither supported nor precluded by the absence of
a sensible notion of standard deviation for quasidistributions, nor can it be of any
instrumental relevance.

5 Conclusions

The weak variance can be defined naturally and uniquely in terms of the Wigner
function, singled out by insisting on a (quasi)statistical interpretation of quantum
phase space. A weak variance does not define the standard deviation of individual
realisations of p|x , which may occur with negative probability, but instead describes
the system’s state.
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The weak variance Vp (p|x) contributes to the momentum variance of the uncer-
tainty principle, justifies the ‘ideal gas’ equation of state of the hydrodynamical formal-
ism, and appears to be related to the ground state energy of a few analytically soluble
systems. An expression Re(x p̂2

ψ − x p̂ψ
2
) in terms of weak values was derived, which

we used to argue that the weak variance is not itself a weak value.
We show that the sign of the weak variance is predetermined for local extrema of the

probability density: Vp (p|x) is positive for nodal points and maxima, and negative for
non-nodal extrema. We also derive some features that any hypothetical “subquantum
theory” (from which quantum mechanics emerges as a thermodynamic limit) must
satisfy.

We show that the weak variance is not only consistent with the classical limit, but can
be used to derive the classical limit from a variational principle where the expectation
of the weak variance controls the emergence of determinism. This construction also
shows that the variability Vx ( p̃) of the weak value cannot exceed the total variance of
the state. A semiclassical limit is derived and discussed.

Most importantly, we note that Vp (p|x) should be measurable by a number of
experimental setups (Sect. 2.3).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix: Derivation

The characteristic function of a distribution is its Fourier transform. For the Wigner
function we can write the conditional characteristic function [8,17] as follows:

M(τ |x) =
∫

dpW(p|x)eiτp/h̄ = ψ∗(x − h̄
2 τ)ψ(x + h̄

2 τ)

ψ∗ψ(x)
. (45)

The cumulant-generating function is the logarithm of the characteristic function. This
gives

ln(M(τ |x)) = ln

(
ψ∗(x−)ψ(x+)

ρ(x)

)
= ln(ψ∗(x−))+ ln(ψ(x+))− ln(ρ(x)) (46)

= 1

2

[
ln(ρ(x−))+ ln(ρ(x+))

]+ i
[
S(x+)− S(x−)

]− ln(ρ(x)), (47)

which we can then Taylor expand to obtain the cumulants [8].
By inspecting (10), we expect final factors of (h̄/2i)n and an expansion in (iτ)n/n!,

so we consider series of the form:

f (x ± h̄

2i
(iτ)) =

∞∑
n=0

[(
± h̄

2i

)n

(∂n f )(x)

]
(iτ)n

n! ,
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where the (h̄/2i)n come from the chain rule.
From the i(S+ − S−) term we obtain a contribution to cumulants of

i

[(
+ h̄

2i

)n

−
(

− h̄

2i

)n]
∂n S =

{( h̄
2i

)n−1
∂n(h̄S) if n odd

0 if n even

and from the ln ρ terms we obtain:

[
1

2

(
+ h̄

2i

)n

+ 1

2

(
− h̄

2i

)n

− δ0n

]
∂n ln ρ =

⎧⎪⎨
⎪⎩

0 if n = 0( h̄
2i

)n
∂n ln ρ if n even

0 if n odd
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