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Abstract With the exception of the sunflower, little informa-
tion concerning the micropyle ultrastructure of the family
Asteraceae is available. The aim of our study was to compare
the micropyle structure in amphimictic and apomictic dande-
lions. Ultrastructural studies using buds and flowers during
anthesis have been done on the micropyle of the sexual and
apomictic Taraxacum. In all of the species that were exam-
ined, the micropylar canal was completely filled with ovule
transmitting tissue and the matrix that was produced by these
cells. The ovule transmitting tissue was connected to the ovar-
ian transmitting tissue. The micropyle was asymmetrical be-
cause the integument epidermis that forms the transmitting

tissue was only on the funicular side. There was a cuticle
between the obturator cells and epidermal cells on the other
side of integument. The micropylar transmitting tissue cells
and theirs matrix reached the synergid apex. The cytoplasm of
the transmitting tissue cells was especially rich in rough endo-
plasmic reticulum (ER), dictyosomes, and mitochondria. No
major differences were detected between the micropyle struc-
ture of the amphimictic and apomictic species; thus, a struc-
tural reduction of obturator does not exist. The ovule transmit-
ting tissue is still active in apomictic dandelions despite the
presence of the embryo and endosperm. Differences and sim-
ilarities between the micropyle structure in the Asteraceae that
have been studied to date are discussed.
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Introduction

The Asteraceae family in which there are 12 subfamilies ac-
cording to Funk et al. (2009) is one of the largest Angiosperm
families. Surprisingly, to date, only a few studies have de-
scribed the micropyle structure in only a few members of this
family—in the barnadesioid Arnaldoa macbrideana (Erbar
and Leins 2000), the asteroids Buphthalmum salicifolium
(Erbar 2003) and Helianthus annuus (Yan et al. 1991), and
the cichorioids Cichorium intybus (Erbar and Enghofer 2001)
and Chondrilla juncea (Kościńska-Pająk et al 2005;
Kościńska-Pająk 2006). According to Erbar (2003 and
references therein), the ovarian transmitting tissue in
A. macbrideana (a member of Barnadesioideae, which has
a basal position in Asteraceae) comes into close contact with
the transmitting tissue on the long funiculus. The funicular
transmitting tissue consists of two lines which are fused
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beneath the entrance of the micropyle and later enter the mi-
cropyle. In more advanced members of Asteraceae, the funic-
ulus is shorter; however, a similar course of the transmitting
tissue has been described (Erbar 2003).

The ultrastructure of the micropylar transmitting tissue has
only been examined in two species of Asteraceae—the aster-
oid H. annuus (Yan et al. 1991) and the cichorioid C. juncea
(Kościńska-Pająk et al. 2005; Kościńska-Pająk 2006). Yan
et al. (1991) showed that the micropyle in the sunflower was
asymmetrical. The cells were on the funicular side forming
transmitting tissue. The cells that were distal to the funicle
were rich in rough endoplasmic reticulum (ER) and lipid
bodies but lacked large intercellular spaces. According
to Kościńska-Pająk (2006), a part of the funiculus tissue
protruded toward the ovule micropyle and formed a mi-
cropylar transmitting tissue in the obligatory apomictic
C. juncea. Moreover, at the stage of embryo sac maturation,
the space of the micropylar canal was filled with an extracel-
lular matrix substance that was produced during the secretory
activity and lysis of the transmitting tissue cells. The ultra-
structure of the transmitting tissue was only shown by
Kościńska-Pająk (2006) on Tab XXXII 2; however, there
was no description of the cell details.

The giant TaraxacumWigg. genus., which comprises about
3,000 species as well as some new species, is still being de-
scribed, e.g., Taraxacum pomposum Štěpánek & Kirschner
(Štěpánek and Kirschner 2013), Taraxacum riparium
Štěpánek, Kirschner, Kirchmeier & Meierott (Štěpánek et al.
2013), Taraxacum palmeriWalter Scott & T.C.G. Rich (Scott
and Rich 2013), and Taraxacum zajacii J. & P. Marciniuk
(Marciniuk et al. 2012). There is a correlation between the
ploidy level and the mode of reproduction in this genus be-
cause diploid, and very rarely, also tetraploid (Kirschner and
Štěpánek 1998) species are amphimictic, whereas polyploids
are obligate apomicts (Richards 1973; den Nijs and Menken
1996; den Nijs 1997; Hörandl 2010). Apomixis within the
genus Taraxacum is a type of meiotic diplospory, and the
development of both the embryo and the endosperm does
not require double fertilization. The development of the prog-
eny is fully independent of the male gametophyte (Asker and
Jerling 1992). Recently, Hieracium (e.g., Tucker et al. 2012;
Okada et al. 2013; Ogawa et al. 2013) and Taraxacum have
been the most important models for studies of apomictic re-
production in the Asteraceae family (e.g., Van der Hulst et al.
2000, 2003; Van Dijk 2003; Majeský et al. 2012). We recently
studied the ovule anatomy and egg apparatus structure in sex-
ual and apomictic dandelions (Musiał et al. 2013; Płachno
et al. 2014a). Since both endosperm and embryo development
are independent of pollination, it seemed desirable to check
whether this is reflected in the micropyle/ovule transmitting
tissue structure.

We consider our study to be a preliminary step for a future
study of micropyle activity and pollen tube growth in the

apomictic Taraxacum species. However, some basic knowl-
edge about the micropyle in sexual and apomictic Taraxacum
species is strongly needed before any analyses of apomicts.
We would like to test the hypothesis that there is a structural
reduction of the micropylar transmitting tissue in apomictic
dandelions in comparison with their sexual counterparts.
Since embryo and endosperm development does not require
fertilization, a reduction of the transmitting tissue can be ex-
pected. The second aim is to check whether there are any
major differences between the micropyle structures in the
members of different Taraxacum sections (Palustria versus
Taraxacum).

Our paper not only presents the preliminary studies of the
micropyle structure in the genus Taraxacum but also shows
that even the ovule of apomicts that has an endosperm and
embryo has vital transmitting tissue cells; thus, there is no
barrier for the pollen tube to reach the ovule. Therefore, apo-
mictic dandelions did not reduce some of the structural and
developmental characters that are not effectively used by apo-
mictic individuals.

Materials and methods

Plant material

We studied and compared the micropyle structure among sev-
eral sexual and apomictic Taraxacum species. Sexual species
were represented by two diploid species—Taraxacum
tenuifolium (Hoppe & Hornsch.) Koch (T. sect. Palustria)
and Taraxacum linearisquameum Soest [T. sect. Taraxacum;
syn T. sect. Ruderalia (Kirschner and Štěpánek 2011)]. The
apomictic sample was represented by various apomictic
taxa from the T. sect. Taraxacum (Taraxacum officinale
agg., from Palacký University, Olomouc, Czech Republic
and specimens that were collected in Kraków-Podgórze,
Poland). Studies were carried out on flowers before and dur-
ing anthesis.

Vouchers of the taxa that were examined were deposited in
the herbarium of Jagiellonian University in Kraków (KRA),
with the exception of T. officinale s.l. (clone SA-B), which
was deposited in the herbarium of Department of Botany,
Palacký University.

Light and electron microscopy studies

The preparation of the samples for transmission electron mi-
croscopy (TEM) followed the procedure described by Płachno
and Świątek (2009) and Płachno (2011). Briefly, ovaries were
fixed in 2.5 % formaldehyde and 2.5 % glutaraldehyde in a
0.05 M cacodylate buffer (pH 7.0) for 2 days for the electron
microscopy studies. The material was postfixed in 1 % OsO4

in a cacodylate buffer for 24 h at ~4 °C, rinsed in the same
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buffer, treated with 1 % uranyl acetate in distilled water for
1 h, dehydrated with acetone, and embedded in an Epoxy
Embedding Medium Kit (Fluka) or in Spurr's resin. Semithin
sections were stained with methylene blue and examined using
an Olympus BX60 microscope. The periodic acid-Schiff (PAS)
reaction was used to visualize the total carbohydrates of
insoluble polysaccharides (Wędzony 1996). Additionally,
the material that had been embedded in Technovit 7100
(Kulzer, Germany; for procedure, see Płachno et al. 2014b;
Kolczyk et al. 2014) was also used for the PAS reaction. All of
the results were the same—the total carbohydrates of insolu-
ble polysaccharides stained magenta to purplish red.

Ultrathin sections were cut on a Leica ultracut UCT ultra-
microtome. After contrasting with uranyl acetate and lead cit-
rate, the sections were examined using a Hitachi H500 elec-
tron microscope at 75 kV.

Results

Micropyle ultrastructure in sexual species

The ovule transmitting tissue was connected to the ovarian
transmitting tissue (Fig. 1a), which runs in the region of the
two reduced septal ledges (Fig. 1a).

The micropyle was asymmetrical. The part of the integu-
ment that was on the side that was proximal to the funicle had
a differently developed epidermis than the one on the side that
was distal to the funicle. The epidermis of the part that was
adjacent to the micropyle on the funicle side formed the
transmitting tissue (Fig. 1a, b), except at the level that
was closest to the embryo sac (Fig. 1b). The micropylar
canal was completely filled with the ovule transmitting
tissue (obturator) and the matrix that was produced by these

Fig. 1 Transmitting tissue
structure in sexual dandelions. a
T. linearisquameum semithin
(longitudinal) section through an
ovule (Ov) and part of an ovary
showing the transmitting tissue:
micropylar transmitting tissue
(Mtt, black arrow) and ovary
transmitting tissue (Ovt), bar=
20 μm. b T. tenuifolium semithin
section through the micropylar
part of an ovule; integument (Int),
micropylar transmitting tissue
(Mtt), funicular side (Fs),
synergids (ss), and filiform
apparatus (white arrow). Bar=
20 μm. c T. linearisquameum
Electron micrograph showing
micropylar transmitting tissue
cells (Mtt); extracellular matrix
(exm) and endoplasmic reticulum
(Er). Bar=1.1 μm. d
T. tenuifolium Electron
micrograph showing micropylar
transmitting tissue cells (Mtt);
extracellular matrix (exm) and
subepidermal cells (sub).
Bar=2.5 μm
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cells (Fig. 1c, d), and therefore, the micropyle was closed. The
cells of the ovule transmitting tissue were elongated in the
synergid direction (Fig. 1b). The transmitting tissue cells and
their matrix reached to the apex of the synergids (Fig. 1b).
There was a well-developed rough endoplasmic reticulum in
the cytoplasm, which formed parallel stacks. Mitochondria
were frequent and had well-developed cristae. Dictyosomes
were also frequent (Fig. 2a, b). The exocytosis of small vesi-
cles was observed (Fig. 2a). Plastids had electron-dense stro-
ma and weakly developed internal membranes. The nucleus
had an elongated shape. Myelin bodies, spherosomes, lipid
bodies, and multivesicular bodies, which primarily occurred
in the micropylar transmitting tissue cells that were near
synergids, also occurred in the cytoplasm (Fig. 2c).
There were branched plasmodesmata between the

subepidermal cells and ovule transmitting tissue cells
(Fig. 2d). Like the micropylar transmitting tissue cells,
the subepidermal cells had a well-developed rough en-
doplasmic reticulum (Fig. 2d). The extracellular matrix
had a positive reaction for insoluble polysaccharides
(positive PAS reaction).

The epidermal cells of the integument part on the side that
was distal to the funicle had a rectangular shape in that section.
In contrast to the transmitting tissue cells, they were in close
contact. There was no intercellular space that was filled with
the extracellular matrix (Fig. 2c). The cuticle layer occurred
between these cells and the micropylar transmitting tissue
cells (Fig. 3a, b). The exocytosis of various vesicles that
contained electron-dense material or smaller vesicles was also
observed (Fig. 3a, b).

Fig. 2 Ultrastructure of
transmitting tissue in
T. tenuifolium. a Exocytose of
small vesicles (white arrows) in
the transmitting tissue cells; ER
cisternae (Er), dictyosomes (D),
and extracellular matrix (exm).
Bar=0.6 μm. b Transverse
section through an micropylar
transmitting tissue cell; ER
cisternae (Er), mitochondrion
(m), nucleus (N), bar=0.6 μm. c
A part of a section through a
micropyle near synergids;
multivesicular bodies (MvB),
micropylar transmitting tissue cell
(Mtt), micropylar canal cell (mcc),
bar=1 μm. d A part of a section
through subepidermal (sub) and
micropylar transmitting tissue
cells; plasmodesmata (black
arrow), dictyosomes (D),
ER cisternae (Er), nucleus (N),
plastid (P), bar=0.6 μm
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Micropyle ultrastructure in apomictic species

The micropyle had a similar structure to that in amphimictic
dandelions. The micropylar canal was completely filled with
the micropylar transmitting tissue and the matrix that was pro-
duced by these cells (Fig. 4a, b). Transmitting tissue cells and
their matrix reached to the apex of the synergids (Fig. 4a), which
had a filiform apparatus. Like amphimictic dandelions, the mi-
cropylar transmitting tissue cells seemed to be active and had
well-developed mitochondria, rough endoplasmic reticulum,
and numerous dictyosomes (Fig. 4b, c). Plastids occurred but
they hadweakly developed internal membranes. Therewere also
multivesicular bodies. The extracellular matrix had a positive
reaction for insoluble polysaccharides (positive PAS reaction).

Developed embryos and endosperm tissue were observed
in the ovules that were taken from the flowers of apomicts
during anthesis (Fig. 5a). The transmitting tissue cells still
had contact with synergids (Fig. 5b, c), which persisted for a
long time without any degeneration in spite of the presence of
an embryo and endosperm. Transmitting tissue cells were still
alive in this stage with an ultrastructure that was similar to the
one that was observed in the sexual species.

Discussion

The general structure of the pollen transmitting tissue in
Taraxacum is similar to that of other members of the
Asteraceae family, e.g., from the genera: Arnaldoa,
Buphthalmum, Cichorium, and Helianthus (Yan et al. 1991;

Erbar and Leins 2000; Erbar and Enghofer 2001; Erbar 2003;
Gotelli et al. 2010). The ovules in Taraxacum are more similar
to the ovules of C. intybus and B. salicifolium, which have a
shorter funiculus, than to Arnaldoa (Erbar 2003). Moreover, a
Helianthus ovule has a very short funicle (Yan et al. 1991).
However, as was mentioned above, detailed data about the
ultrastructure of ovular transmitting tissue in Asteraceae are
quite scarce.

Kościńska-Pająk (2006) suggested that the Chondrilla ob-
turator cells lyses thus forming the extracellular matrix sub-
stance that filled the micropylar canal. However, in neither
Helianthus (Yan et al. 1991) nor Taraxacum was the lyses of
the micropylar transmitting tissue cells observed. An extracel-
lular matrix substance was actively produced by the ovule
transmitting tissue cells. Micropylar transmitting tissue cells
still persisted in Taraxacum, despite the presence of an em-
bryo (see also Fig. 4 in Płachno et al. 2014a). The micropylar
transmitting tissue cell ultrastructure in Taraxacum is similar
to that described forHelianthus (Yan et al. 1991) as well as for
species from families other than Asteraceae (Tilton and
Horner 1980; Tilton et al. 1984; Vardar et al. 2012). We did
not find any major differences between the micropyle struc-
tures in members of different Taraxacum sections (Palustria
versus Taraxacum).

The ultrastructure of the transmitting tissue has been stud-
ied in many species of angiosperms. Most of these studies
have only been concerned with the stylar part (e.g., Gawlik
1984; Hu and Zhu 1990; Sage et al. 2009). However, studies
on the ovule transmitting tissue have been limited to a very
few taxa, e.g.,Helianthus (Yan et al. 1991), Lilium (Singh and

Fig. 3 a, b Ultrastructure of
micropylar canal cells in
T. tenuifolium. Note the
extracellular matrix (Exm) of
micropylar transmitting tissue
cells, cuticle (star), exocytose of
small vesicles (white arrows),
nucleus (N), and plastid (P).
Bar=0.75 μm
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Walles 1995), and Gagea (Vardar et al. 2012). The stylar and
ovarian transmitting tissues are anatomically and histochemi-
cally similar to the stigma. Our present observations con-
firmed that the micropylar canal is filled by ovule transmitting
tissue and its extracellular matrix in both sexual and apomictic
dandelions. The occurrence of an extracellular matrix was also
described in another species from Asteraceae family,
H. annuus, (Yan et al. 1991), and other angiosperms (e.g.,
Hristova et al. 2005; Sage et al. 2009 and literature cited there-
in). Some extracellular matrix molecules contain calcium,
pectins, lipids, arabinogalactans/arabinogalactan proteins
(AGs/AGPs), as well as other proteins, e.g., cysteine-rich ad-
hesion (SCA), a lipid-like transfer protein (Mollet et al. 2000;
Park and Lord 2003; Wu et al. 2000; Khosravi et al. 2003).
According to our cytochemical results, the extracellular matrix
consists of polysaccharides. Similar observations have been
reported in the sunflower (Yan et al. 1991). Our present

observations confirmed that the micropylar transmitting tissue
cells in dandelions are rich in mitochondria, profiles of endo-
plasmic reticulum, plastids, and dictyosomes, multivesicular
bodies, and lipid bodies, and these agree with the observation
that was made in the sunflower (Yan et al. 1991). In addition,
Vardar et al. (2012) showed that the transmitting tissue cells
were rich in RER, dictyosomes, ribosomes, plastids, and mi-
tochondria in Gagea. According to Raghavan (1997), cells
with abundant ribosomes, mitochondria, endoplasmic reticu-
lum, dictyosomes, and plastids are very active metabolically.
Therefore, the ovule transmitting tissue is still active in apo-
mictic dandelions despite the presence of an embryo and
endosperm.

What are the evolutionary benefits of the presence of mi-
cropylar transmitting tissue cells in the ovules of autonomous
apomictic dandelions (despite the fact that both endosperm
and embryo development is independent of fertilization)?

Fig. 4 Transmitting tissue
structure in apomictic dandelion
T. officinale s.l. (clone SA-B). a
Semithin section through an ovule
and a part of an ovary showing the
transmitting tissue (Mtt, black
arrow), egg cell (eg), synergids
(ss), and filiform apparatus (white
arrow). Bar=20 μm. b, c
Ultrastructure of micropylar
transmitting tissue cells,
dictyosomes (D), ER cisternae
(RER), plastid (P), and
mitochondrion (m). Bar=0.75
and 0.5 μm
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One answer might be none. The hazy evolutionary history
of the genus Taraxacum does not allow for the dating of the
emergence of apomixis in the genus. Nevertheless, the major-
ity of apomictic dandelions are considered to be young evo-
lutionarily (Richards 1973). Richards (1973) suggested that
the first apomictic dandelion species may have emerged early
in the evolutionary history of the genus, although the main
expansion of apomictic species is undoubtedly connected with
the glacial ages, especially with the Pleistocene period
(Richards 1973). From an evolutionary point of view, this
may be a short time span for the development of strong archi-
tectural differences between the sexuals and apomicts. Thus,
apomictic species have not had enough time to develop an
evolutionary trend to reduce the Bunnecessary costs^ that are
associated with sexual reproduction. For example, the major-
ity of apomictic dandelions produce pollen, although it has no
function for seed production, or the presence of synergids that
have a similar ultrastructure and that have a filiform apparatus
in both sexual and apomictic Taraxacum species (Płachno
et al. 2014a). Recent research in another well-documented

apomictic species group Ranunculus auricomus agg. in the
genus Ranunculus placed the date of the divergence of the
apomictic lineages of the Ranunculus carpaticola ×
cussubicifolius from its sexual progenitor approximately
80 kyr ago (Pellino et al. 2013), while its sexual progenitors
(Ranunculus cassubicifolius and R. carpaticola) diverged ca
317 kyr ago (Hörandl 2004). The transcriptomic data
from the RNAseq showed that apomictic lineages were
under divergent selection after the divergence from the
sexual lineages. A comparison of the ratio of synonymous
versus nonsynonymous mutations between sexual and apo-
mictic species only identified some outlying loci in the apo-
mictic lineages that were under divergent selection. These loci
are mainly connected with the cell cycle and reproduction
(Pellino et al. 2013). This suggests that divergent selection
may favor some genes during the evolution process; however,
it is questionable whether a selection may be strong enough to
rebuild the ovule structure in apomictic species.

The second answer might be different—there are some
evolutionary benefits of retaining the functionality of all of

Fig. 5 a−c Semithin section through a young seed of an apomictic
dandelion T. officinale s.l. (clone Kraków-Podgórze) showing the
micropylar transmitting tissue (Mtt, black arrow), cellular endosperm
(En), globular embryo (eb), synergids (s), and filiform apparatus (white
arrow). a Bar=50 μm. b, c Bar=20 μm. d Ultrastructure of micropylar

transmitting tissue cells, note contact of micropylar transmitting tissue
cells (Mtt) with synergids (s), filiform apparatus (white arrow), ER
cisternae (ER), multivesicular bodies (MvB), extracellular matrix (exm),
and mitochondrion (m). Bar=1.8 and 0.4 μm
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the necessary structures that are connected with pollination
and fertilization for apomicts. This makes sense in the light
of a possible hybridization among sexuals and apomicts and
the formation of new apomictic clones (van Dijk 2003). Gene
flow among apomictic and sexual dandelions has been docu-
mented repeatedly not only in the case in which apomicts
represent pollen donors for the sexuals (Menken et al. 1995;
van Dijk et al. 1999; van der Hulst et al. 2003; Mártonfiová
2006; Mártonfiová et al. 2007) but also vice versa.
Fertilization of an unreduced egg cell (origin of BIII hybrids)
in apomictic dandelions has been observed and documented
repeatedly in Taraxacum (Małecka 1973; van Baarlen et al.
2002; Mártonfiová 2006). This means that gene flow can
be bidirectional. Although fertilization of an unreduced
egg cell of apomicts is a rather rare event, it may be an
important process in generating new apomictic lineages
that have higher ploidy levels. Such a process can be
seen as one of the important processes of diversification with-
in apomictic genera (e.g., Kirschner and Štěpánek 1996). It is
questionable whether this is due to fact that the benefits are
connected with gene flow, which are larger than the energy
benefits that are connected with the reduction of unnecessary
costs, or whether this is due to the young evolutionary age of
apomictic dandelions. Apomictic dandelions did not reduce
some of the structural and developmental characters that are
not effectively used by apomictic individuals. Our results
show that even the ovule of apomicts that has an endosperm
and embryo has vital transmitting tissue cells; thus, there is no
barrier for the pollen tube to reach the ovule. The main differ-
ence is in the timing of the embryo development. While in
apomicts the majority of embryos are already developed be-
fore the anthesis (van Baarlen et al. 2002), in sexual species,
embryos develop only after fertilization.

In conclusion, we think that this is the first time in the
literature that the micropyle ultrastructure in sexual and apo-
mictic taxa from one genus is presented. The results of our
comparative observations did not reveal any differences in the
micropyle anatomy and ultrastructure of the ovules between
sexual and apomictic species within the genus Taraxacum.
However, the presence of vital micropylar transmitting tissue
cells makes it possible for an unreduced egg cell of apomicts
to be fertilized. Such a process may be an important in gener-
ating new apomictic lineages.
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