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Abstract A simple method for the computation of carrier concentration in n-type doped

Hg1−xCdxTe (MCT) structures is proposed. The method is based on the postulate of the

existence of donor bands. In our model the donor bands are postulated to have a Gaussian

distribution of density of states characterized by two parameters only (mean energy for this

distribution and standard deviation). These parameters could be obtained with experi-

mental data, which were comprised of a wide range of doping levels for various kinds of

dopants.

Keywords Donor bands · Electron concentration · HgCdTe n-type structures

1 Introduction

It is commonly known that for strongly n-type doped MCT structures there are large

differences between the experimental data of electron concentration and the numerical

results obtained by using the Kane’s model of band structure (Kane 1957). Usually the

numerical results are over one order of magnitude smaller than those obtained
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experimentally. This is the reason for the discrepancies between the values of the detec-

tor’s performances measured experimentally and those calculated numerically. To omit

this issue some simple procedures are used to increase the values of the electron con-

centration. Sometimes the values of the electron effective mass are assumed to be much

higher than the real values to increase the density of states in the conduction band (Wenus

et al. 2001), or instead of Kane’s model, a hyperbolic model is applied (Chang et al. 2006).

In this model the wave vector dependence of the conduction band energy differs signifi-

cantly from Kane’s results (Kane 1957). Those “tricks” have no physical interpretation,

and the corrections of the discrepancies should be found in another way. If we use these

values of effective electron mass in calculations of electron mobility or tunneling current,

we would get results of at least one order of magnitude lower than the experimental data. In

this work we aim to find a correct and possibly simple way for the numerical calculation of

the charge carrier concentration in doped structures (primarily those doped with donors). If

we apply classical methods [see for example Schmit (1970) and Ariel-Altschul et al.

(1992)] based on the assumption that isolated donor levels exist, this leads to results which

are very much underrated in relation to the experimental results and it is impossible to

explain why. On the other hand, the assumption in this case that the total ionization of

donors takes place gives the incorrect values of the Fermi energy. In p-type materials, these

difficulties can occur in practice only at the very high concentrations of acceptors. How-

ever, for MCT structures applied in long wavelength infrared radiation (LWIR) and mid

wavelength infrared radiation (MWIR) detectors full activity of Indium being the donor

can be achieved over a range from 3 9 1014 cm−3 to 1018 cm−3 (Mynbayev and Ivanov-

Omskii 2006). In this work we try to solve the above problem by making the following

assumptions:

● It is possible to create a dopant bands in the MCT if the dopant concentration is high

enough so that the interaction between the dopant atoms could be seen. Due to the

considerably lower effective mass of conduction electrons than that of heavy holes,

donor bands are still created at considerably lower dopant concentrations than acceptor

bands are. One can find important and plentiful information about this issue in the

monograph of (Shklovskii and Efros 1984).

● The number of energy levels in the dopant bands depends on the kind of outer orbitals

determining the energy states in the doping atoms.

● We have assumed that the density of states in the dopant bands has a Gaussian

distribution with standard deviation being the function of the dopant’s concentration.

● It is possible to create the donor bands connected both with the hydrogen-like donor

ground states as well as with donor excess states.

2 Numerical results and experimental verification

Schmit (1970) has calculated the intrinsic carrier concentration by determining the value of

the reduced Fermi energy for which the electron concentration from the Kane model is

equal to the hole concentration. In the calculations it has been assumed that the Kane

model was applicable at elevated temperatures. The density of free holes in the valence

band, under the assumption on the parabolic shape of the heavy-holes band, was taken

from
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where mhh
* denotes the effective mass of a heavy hole, F1/2 is the Fermi–Dirac integral,

g ¼ EC�F
kBT

, Y ¼ Eg

kBT
, Eg is the band gap energy, kB is the Boltzmann’s constant, T is the

temperature, and F is the Fermi energy, EC is energy of the bottom of conduction band and

h is the Planck’s constant.

Ariel-Altschul et al. (1992) obtained the relation for electron concentration by con-

sidering the carrier degeneracy and non-parabolic conduction band. The electron

concentration, with the Bebb’s non-parabolic approximation (Bebb and Ratiff 1961), being

valid for both narrow and wide band semiconductors, is given by:

n ¼ 8p21=2
m�

ekBT

h2

� �3=2Z1

0

X1=2 1þ bXð Þ1=2 1þ 2bXð Þ
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Poklonski et al. (2009) developed a model of hopping dc conductivity via the nearest

boron atoms in moderately compensated diamond crystals. They have assumed that the

energy of acceptor levels exhibits the Gaussian distribution due to the fluctuations of the

electrostatic interaction of ionized acceptors with other ionized atoms, both acceptors and

donors. We made a similar assumption that the energy of ionized acceptors and donors is

influenced by fluctuations caused by interaction with other electrical charges distributed

inside the semiconductor. Now the concentration of ionized acceptors may be expressed

by:

N�
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Zþ1

�1

NAffiffiffiffiffiffi
2p

p
W

e
� E�EAð Þ2

2W2
1

1þ a exp E�F

kBT
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Similarly the concentration of ionized donors reads:

Nþ
D ¼

Zþ1

�1

NDffiffiffiffiffiffi
2p

p
W

e
� E�EDð Þ2

2W2
1

1þ b1exp
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kBT

� � dE ð4Þ

where NA and ND denotes the concentration of acceptors and donors, respectively, EA and

ED denote the energy of the dopant levels, and α and β1 are the degeneracy factors. In the

past most researchers used α = 4 and β1 = 2. In fact, determination of the proper

degeneracy factor is very important and far from being obvious. Some simple rules which

allow the determination of these factors are shown, for example in Look (1989).

Here E denotes energy. The means for these distributions are equal to EA and ED;
respectively, where EA � EV is the mean ionization energy of acceptors, and EC � ED is

the mean ionization energy of donors. The standard deviation W caused by interaction of

the electron with all the other electric carriers inside the unit of semiconductor volume is

approximated by the relation (Kane 1985):

W ¼ 1

2p
1
2

e
3
2

ee0ð Þ34
kBTð Þ14 ND þ NAð Þ14 ð5Þ
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The integration range in relations (3) and (4) may be limited to EA − 3 W ≤ E ≤ EA-

+ 3 W for the acceptors and ED − 3 W ≤ E ≤ ED + 3 W for the donors. Errors of

calculations are smaller than 0.2%. The ionization energy of a hydrogen-like donor

impurity is:

EC � ED ¼ 13:6
m�

e=m0

� �
e2

in eV ð6Þ

me
* and m0 are the electron effective mass and the rest mass, respectively, e the electron

charge, and ɛ the static dielectric constant. In the case of a hydrogen-like acceptor impurity

must be taken into account the light holes and heavy holes (Capper and Garland 2011;

Chen and Tregilgas 1987). This results in:

EA � EV ¼ 13:6 0:44þ 0:56
m�

lh

m�
hh

� �
m�

hh

m0

� �
=e2 in eV ð7Þ

Here m�
lh is the light hole effective mass and mhh

* is the heavy hole effective mass,

respectively. The values of physical parameters of HgCdTe used in our calculations are

taken from Capper (1994). In our calculations we have assumed (after Capper and Garland

2011) that EC − ED = 0.3 and 0.85 meV for x = 0.2 and x = 0.3 respectively, and

EA − EV = 11 and 14 meV for x = 0.2 and x = 0.3, respectively. These values roughly

agree with the values obtained by using Eqs. (6) and (7), however, our earlier simulations

with different values of the center of gravity of donor band around the bottom of con-

duction band shown the weak influence on electron concentration. In all cases we have

assumed the acceptor concentration to be 1013 cm−3. The bandgap narrowing is not con-

sidered in our calculations. Using relations (1)–(7) we can express the equation for

electrical neutrality as:

Nþ
D þ p� N�

A � n ¼ 0 ð8Þ

In the solution of Eq. (8) we have determined the reduction of Fermi energy g and next

p; n;N�
A and Nþ

D . Unfortunately, in spite of the fact that in the case of the application of the

above method to p-type materials the results obtained are usually consistent with the

experimental ones, for n-type materials of the dopant concentration above 1015 cm−3 the

results of the computations are much underrated in relation to the experimental data. The

results of our computations are presented in Fig. 1a, b by dashed lines. The reason behind

this behaviour is low density of states within the conduction band. Thus, additional energy

states, which could be populated by electrons from the heavy-holes band should be found.

It is well known that at sufficient impurity concentration there is the occurrence of a

significant overlapping of electron wave functions for the neighbouring impurities enabling

electrons to jump from one impurity to another and, in this way, to contribute significantly

to the current. This type of metal–insulator transition depends on the effect of the electron–

electron interactions and is often referred to as the Mott transition (Mott 1956; Conwell

1956). Despite the fact that there exists extensive literature in this field (Landsberg 1991)

the nature of these transitions is not yet fully understood. The ionization energy of donor

levels in narrow-gap MCT is below 1 meV (Capper and Garland 2011). Due to the fact that

the ground donor level is degenerated β1-fold, the donor band being created should contain

β1ND energy levels. β1 = 2 if the ground donor level is an s-like donor state. There should

also exist the bands corresponding to the excited states of the donor level. The energy

distance between the individual states of the donor level can be easily estimated on the
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basis of a hydrogen-like model. We have assumed that the density of ground states exhibits

the Gaussian distribution with standard deviation determined by relation (5), however nD1
;

the electron concentration in this band, is determined by the relation:

nD1
¼

ZECþ3W

EC�3W

b1NDffiffiffiffiffiffi
2p

p
W

e
� E�EC�EDð Þ2

2W2
1

1þ exp E�F

kBT

� � dE ð9Þ

The mean value of energy for this distribution may occur at an energy equal to ED.

In the hydrogen-like model the radius of the first excited state is four time higher than

that for the unexcited state, thus the overlapping of the electron wave function may occur

even for the low concentration of donor atoms. This is why we have assumed that it creates

the additional donor band. We have also assumed that the density of states in this band also

exhibits the Gaussian distribution with the standard deviation determined by relation (5),

however nD2
; the electron concentration in this band is determined by the relation:

nD2
¼

ZECþ3W

EC�3W

b2NDffiffiffiffiffiffi
2p

p
W

e
� E�ECð Þ2

2W2
1

1þ exp E�F

kBT

� � dE ð10Þ

The overlap between impurity wave-functions is strong enough so that the impurity

band must cover an appreciable range of energy. The mean for this distribution may occur

at an energy above or equal to EC.We have assumed equal to EC. The overlapping between

impurity electron wave-functions in excess states is greater than for electrons in ground

state because of the larger orbits as a result of the hydrogen-like model. Therefore

there should also exist the bands corresponding to the excited states of the donor level. We

take into account two bands, first corresponding to the ground state and the second cor-

responding to the first excited state in the hydrogen-like model. The energy distance
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Fig. 1 Lines denoted as n show electron concentration and these denoted as p the hole concentration,
respectively as the function of donor concentration. a Structure with CdTe mole fraction x = 0.2 at 77 K.
Experimental data are shown for epitaxial CdxHg1−xTe structures with near 0.2 mol fraction grown by
MOCVD technology doped in iodine; (1) Murakami et al. (1993), (2) Mitra et al. (1994) structures deposited
on CdZnTe (100)4° substrate, (3) Faraone and Antoszewski (2016). b Results for x = 0.3 at 77 K. Dashed
lines show calculated results obtained by solving the relation (8) and without assumption of the existence of
donor bands. Solid lines are obtained by solving relation (11) under the assumption that two donor bands
exist, one connected with donor ground states and the second connected with donor excess states
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between the centers of gravity of this two bands assumed in our work roughly agrees with

energy distance between ground state and excess states in hydrogen-like model for the fifth

valence in donor atom in HgCdTe. The presence of these large impurity bands must have a

considerable effect on the density of the electron states g(E) for the original conduction

band. This idea is shown in Fig. 2a, b. b2 is the degeneracy of the first excess hydrogen-like
donor state. Because it is orbital p, b2 should be equal to 6. Using relations (1), (2), (3), (9)

and (10) we can express the equation for electrical neutrality as:

Nþ
D þ p� N�

A � n� nD1
� nD2

¼ 0 ð11Þ

Here Nþ
D ¼ ND. In the solution of Eq. (11) we have determined the reduction of Fermi

energy g and next p;N�
A ; n; nD1

and nD2
.The electron concentration is now the sum of

n ; nD1
and nD2

. The calculated values of electron and hole concentrations are function of

the donor concentration and are shown in Fig. 1a, b by solid lines for structures with mole

fraction x = 0.2 and 0.3 working under temperature T = 77 K. As is seen in Fig. 1a, b the

electron concentration calculated by using the classical relation (without the existence of

donor bands taking into account) is in good agreement with the experimental data only for

concentrations below 1015 cm−3. The discrepancies between the experimental and calcu-

lated results grow with the increase of the donor concentration. Thus for ND ¼ 1018 cm�3

at 77 K the electron concentration is around 100 times lower than the donor concentration.

Good agreement with experimental data gives relation (11) obtained under the assumption

that two donor bands exist, one connected with donor ground states and the second con-

nected with the donor excess state. In this case the electron concentration should be the

sum of nþ nD1
þ nD2

(solid lines). Figure 2a, b show the densities of state (in eV−1 cm−3)

as the function of energy in the MCT with a mole fraction x = 0.2. The curve denotes as

NC shows density of states in the conduction band. The value of energy E = 0 denoted on

the figures as EC correspond to the edge of the conduction band. The curve noted by digit 1

shows the density of states in the donor band connected with the donor ground states

having a mean value corresponds to the ionization energy ED. Digit 2 distinguishes the

energy, eV

N
D
=1015 cm-3, T=77K

N
D
=1018 cm-3, T=77K

1

2

EC

NC

1015

1016

1017

1018

1019

0 2x10-2 4x10-2 6x10-2 8x10-2 10-1 1.2x10-1

x=0.2

energy, eVEC

1
2

de
ns

ity
 o

f s
ta

te
s,

 e
V

-1
cm

-3

de
ns

ity
 o

f s
ta

te
s,

 e
V

-1
cm

-3

NC

0 8x10-26x10-24x10-22x10-2 10-1 1.2x10-1-2x10-2

1021

1020

1019

1018

1017

1016

1015

x=0.2

(a) (b)

Fig. 2 The density of states (in eV−1 cm−3) as the function of energy in material of mole fraction x = 0.2.
The curve marked by NC presents the density of states in conduction band. Te value of energy denoted as Ec
is the edge of the conduction band. Curves indicated by number 1 show the density of states in the donor
band connected with ground donor states, and those indicated by number 2 show the density of states in the
donor band connected with the excess states. a Structures with the donor concentration ND = 1015 cm−3 at
77 K, b ND = 1018 cm−3 at 77 K
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density of states in the donor band connected with donor excess states. We have assumed

that the mean value of this band equals to energy of the edge of the conduction band. These

two doping bands are very energy-narrow and increase with the increasing of dopants

concentration as well as the rise of the temperature.

The computations of the electron concentration in which the existence of a donor band

is taken into account demonstrate good consistency with the experiment. In Fig. 1a we

have shown the experimental data obtained by Murakami et al. (1993) and Mitra et al.

(1994) for CdxHg1−xTe layers with x mole fraction around x = 0.2, grown and doped with

iodine in MOCVD processes. The concentration of electrons is practically equal to the

donor concentration (solid lines in the graph). Similar conclusions can be formulated for

the structures with mole fraction x = 0.3 produced in MBE processes by Microelectronics

Research Group at the University of Western Australia in Perth (Faraone and Antoszewski

2016). These structures were doped with indium and iodine. The experimental results are

shown in Fig. 1b.

3 Conclusions

A simple method for computing the concentration of charge carriers in CdxHg1−xTe

structures doped with donors has been proposed. It is based on the assumption that donor

bands are created overlapping the conduction band and have the effective density of states

at least twice as high as the donor concentration. An approximate estimation based on the

hydrogen-like model of donor states shows that the overlapping of electron wave function

of the donor ground states takes places even for donor concentrations below 1015 cm−3.

Our calculations have shown that in n-type doped CdxHg1−xTe narrow-gap structures, the

electrons populated states located both in donor bands and in the conduction band. The

electron concentration is practically equal to the concentration of donor atoms. These

results are consistent with the experimental data.
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