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Abstract For fast and easy isolation of inhibitor-free

genomic DNA even from the toughest plant leaf samples,

including those high in polyphenols and polysaccharides, a

protocol has been developed. To prevent the solubility of

polysaccharides in the DNA extract, high salt concentration

(1.4 M) was used in the extraction buffer.

Polyvinylpyrrolidone (PVP) was used for the removal of

polyphenols as polymerase chain reaction (PCR) inhibitors.

Proteins like various enzymes were degraded by proteinase

K and removed by centrifugation from plant extracts dur-

ing the isolation process resulting in pure DNA and RNA

ready to use in downstream applications including PCR,

quantitative polymerase chain reaction (qPCR), ligation,

restriction and sequencing. This protocol yielded a high

molecular weight DNA and RNA isolated from leaves and

roots of recalcitrant plants which was free from contami-

nation and color. The average yields of total RNA from

roots and shoot of Betula and Grape ranged from 285 to

364 ng/ll with A260/A280 between 1.9 and 2.08. The

RNA isolated with this protocol was verified to be suit-

able for PCR, quantitative real-time PCR, semi-quantita-

tive reverse transcription polymerase chain reaction, cDNA

synthesis and expression analysis. This protocol shown

here is reproducible and can be used for a broad spectrum

of plant species which have polyphenols and polysaccha-

ride compounds.
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Introduction

The isolation of high-quality DNA and RNA is important

in any molecular biology work because contaminants such

as proteins, polyphenols and polysaccharides may interfere

with enzymes such as restriction enzymes (in blotting

techniques) and Taq polymerase [in polymerase chain

reaction (PCR)] (Angeles et al. 2005). Isolation of high-

quality nucleic acids from plant tissues rich in polysac-

charides and polyphenols is often a difficult task. The

presence of these substances can affect the quality and/or

quantity of the nucleic acids isolated (Heidari et al. 2011).

Polysaccharide contamination is a common problem in

higher plant DNA and RNA extraction. DNA samples are

often contaminated with polysaccharides, polyphenols,

which are almost insolvable in water or Tris–EDTA (TE)

buffer and are difficult to separate from DNA and RNA.

These contaminants are readily identified as they impart a

sticky gelatinous brown color to the DNA isolated and

interfere with polymerases, ligases and restriction enzymes

(Ogunkanmi et al. 2008).

Plant metabolites such as polysaccharides have a similar

structure of nucleic acids and are not efficiently removed

by most homebrew DNA and RNA isolation methods.

Furthermore, the structural similarity allows contaminating

polysaccharides in DNA and RNA preparations to interfere

with the action of enzymes such as DNA polymerase and

reverse transcriptase. Natural substances contained in plant

tissues (shoots and roots), such as polysaccharides, inhibit

polymerase chain reaction (PCR) to differing degrees. In
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particular, acidic polysaccharides are extremely strong

PCR inhibitors. In this study, to prevent the solubility of

polysaccharides in the DNA and RNA extract, high salt

concentration (1.4 M) in the extraction buffer was used. In

addition, polyvinylpyrrolidone (PVP) was included as an

optional step for samples high in polyphenolic compounds,

such as, Betula and grape leaves. This compound breaks

the bond between DNA and RNA and phenolics, prevent-

ing loss of DNA and increasing DNA yield.

Although many protocols have been published for the

isolation of total RNA from different plant tissues, the

majority are not completely satisfying as they may be time

consuming (Yin et al. 2011; Porto et al. 2010), technically

complex (Carra et al. 2007; Ren et al. 2008), require

ultracentrifugation steps (Carra et al. 2007) and are specific

to a particular plant species (Ma and Yang 2011).

To our knowledge, this is the first report of a highly

efficient method to extract DNA and RNA from roots and

shoots of the recalcitrant plants.

Materials and methods

Plant materials

The fresh leaves and roots were collected from different

plant species like Betula (Betula pendula), and grape (Vitis

vinifera) in Iran and were taken for laboratory. For each

sample, three parcels were made and reserved in -70

refrigerators until DNA extraction. Betula pendula and

Vitis vinifera are recalcitrant species with high levels of

polysaccharides, polyphenols and other sticky substances.

DNA and RNA extraction from Betula has been always

hard and phenolic compounds make DNA purity very low.

Buffers

Buffer 1: 200 mM Tris–HCl, 1.4 M NaCl, 0.5 % (v/v)

Triton X-100, 3 % (w/v) CTAB, 0.1 % (w/v) PVP (add to

buffer only before use).

Buffer 2: 50 mM Tris–HCl, 2 M guanidinethiocyanate,

0.2 % (v/v) mercaptoethanol (add to buffer only before use),

0.2 mg/ml Proteinase K (add to buffer only before use).

Reagents

2 M Sodium acetate, 2 M LiCl, 4 M NaCl, chloroform–

isoamylalcohol (24:1, v/v), isopropanol, 75 % (v/v) ethanol

(EtOH).

DNA isolation

1. Scrap 50 mg of leaf tissue in a 2-ml tube.

2. Add 400 ll buffer 1 and 0.1 % (w/v) PVP, vortex for

20 s and transfer the tube to the heat sink at 60 �C for

30 min.

3. Add 400 ll chloroform–isoamylalcohol (24:1, v/v)

and shake severely for 2 min.

4. Centrifuge the tube for 15 min at 10,000 rpm.

5. Transfer 300 ll of supernatant to a fresh 2-ml

sterilized centrifuge tube and add 1/2 volume Buffer

2 and transfer the tube to heat sink at 40 �C for

15 min.

6. Add 1/2 of total volume 4 M NaCl, shake and place

the tube on ice for 5 min.

7. Add 2 volume cold isopropanol and place at room

temperature for 2 min.

8. Centrifuge at 8000 rpm for 15 min (in this stage, the

pellet should be seen).

9. Discard the supernatant.

10. Wash the pellet with 75 % (v/v) ethanol (add

ethanol gently and keep for 2 min at room

temperature, do not spin, be careful that the pellets

do not spill out, then centrifuge at 8000 rpm for 2

min).

11. Dry the pellet and dissolve in the 100 lL TE buffer.

12. Transfer the tube containing DNA to heat sink at

70 �C for 10 min.

RNA isolation

1. Scrap 50 mg of leaf tissue in a 2-ml tube.

2. Add 400 ll buffer 1 and 0.1 % (w/v) PVP, vortex for

20 s and transfer the tube to the heat sink at 60 �C for

30 min.

3. Add 400 ll chloroform–isoamylalchol (24:1, v/v).

4. Add 0.1 volume 2 M sodium acetate (2 M sodium

acetate preparation for RNA extraction: add 16.42 g

sodium acetate (anhydrous) to 40 ml water and 35 ml

glacial acetic acid. Adjust to a pH of 4 with glacial

acetic acid and bring to a final volume of 100 ml with

DEPC-treated water).

5. Shake severely for 2 min and place the tube on ice for

15 min.

6. Centrifuge at 10,000 rpm at 4 �C for 20 min.

7. Transfer 300 ll of supernatant to a fresh 2-ml sterilized

centrifuge tube and add 1/2 volumeBuffer 2 and transfer

the tube to heat sink at 40 �C for 15 min.

8. Add 1/2 of the total volume 2 M LiCl and keep for

10 min on ice.

9. Add 2 volume isopropanol and store for 1 h at-20 �C.
10. Centrifuge at 12,000 rpm at 4 �C for 20 min (in this

stage the pellet should be seen).

11. Wash the pellet with 75 % ethanol (add ethanol

gently and keep for 2 min at room temperature, do
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not spin, be careful that the pellets do not spill out

then centrifuge at 8000 rpm for 2 min).

12. Dry the pellet and dissolve in 100 ll DEPC-treated
water.

13. Transfer the tube containing RNA to heat sink at

70 �C for 10 min.

Quantification and qualification of isolated DNA and

RNA were assayed by spectrophotometry and 1D elec-

trophoresis gel analysis by Total Lab (TL 120). Extracted

DNA was first checked on a 0.8 % agarose gel. After

electrophoresis, it was stained with ethidium bromide and

viewed under an ultraviolet transilluminator for quality

and yield assessments (Fig. 1). Because of the high con-

tent of secondary metabolites in Betula, AFLP (that its

first step is digestion) and RAPD analyses (based on

polymerase chain reaction) also were designed to ensure

DNA integrity.

The concentration of RNA was determined by measur-

ing the absorbance at 260 nm (A260) in a spectropho-

tometer using quartz cuvettes. To ensure significance,

readings should be between 0.15 and 1.0. An absorbance of

1 unit at 260 nm corresponds to 40 lg of RNA per ml.

This relation is valid only for measurements made at

neutral pH. Therefore, if it is necessary to dilute the RNA

sample, this should be done in a low-salt buffer with

neutral pH (e.g., 10 mM Tris–Cl, pH 7.0). When measuring

RNA samples, cuvettes were checked to be RNase free,

especially if the RNA is to be recovered after spec-

trophotometry. This can be accomplished by washing

cuvettes with 0.1 M NaOH, 1 mM EDTA followed by

washing with RNase-free water.

AFLP analysis

AFLP analysis was performed as described by Vos et al.

(1995). At the first step: genomic DNA of Betula and grape

populations was digested with two restriction enzymes,

EcoRI and MseI, and the combination of genomic DNA

and restriction enzymes were incubated for 12 h at 30 �C.
Figure 2 shows the restriction enzyme (three right lanes)

and pre-selective (three left lanes) steps. Long smears show

the successfulness.

In the second step: the two stranded adaptors were

ligated to the restricted fragments. After that the pre-se-

lective amplification, a subset of all the fragments was

amplified, using primers that are complementary to the

linker sequences. In the last step, the number of fragments

was further reduced by a second round of PCR (selective

amplification), in which the PCR primers had an additional

three selective bases (Meudt and Clarke 2007). The PCR

products were separated on denaturing 6 % polyacrylamide

gels and the bands were revealed using the silver staining

protocol (Panaud et al. 1996) (Fig. 3). The primers used for

AFLP analysis are listed in Table 1.

RAPD-PCR

Six decanucleotides of arbitrary sequence were tested for

PCR amplification to assess the genetic variability of the

samples: BB13, OA12, OA4, OB10, OB20 and OC4

(Table 2). Amplification reaction was performed according

to the method described by Saker et al. (2005) with slight

modification, which contains a template (1.5 ll), primer

Fig. 1 Gel electrophoresis of extracted DNA (B: Betula pendula, V:

Vitis vinifera). 1–3: Betula leaf and root DNA, 4: Vitis leaf, 5: Vitis

root DNA

Fig. 2 Two main steps of AFLP analysis in this study. Left (a1–a3):

pre-selective step in Betula and Grape genotypes made a strong smear

on agarose gel. Right (b1–b3): EcoRI and MseI double digest made

light smear
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(1 ll), enzyme master mix (12.5 ll) and Milli Q water

(10 ll). The amplification was carried out in a DNA ther-

mal cycler with PCR profile: pre denaturation at 94 �C for

5 min, 36 cycles at 94 �C for 30 s, 36 �C for 30 s, and

72 �C for 1 min, with a final extension at 72 �C for 5 min,

finally amplified product was held at 4 �C. The 15 ll of
amplified products were resolved in 2 % agarose gel with

ethidium bromide. The electrophoresis gel was docu-

mented under UV light (Fig. 4).

Result and discussion

DNA quantification

In this study, we used several protocols of DNA isolation

reported by Cheng et al. (2003), Xu et al. (2004) and

Hameed et al. (2004); but a high yield and quality of DNA

was only obtained with our modified method. The DNA

samples prepared by this protocol were of high purity with

low polysaccharide and protein contamination, which was

indicated by the A260/A230 and A260/A280 ratios (Sam-

brook and Russell 2001), which ranged from 1.85 to 2.13

and 1.79 to 1.90, respectively. Spectrophotometry data

showed average 292 ng/ll with 260/280 ratio 1.79 for

Betula pendula and average 324 ng/ll with 260/280 ratio

1.9 for Vitis vinifera. Data analyzed by Total Lab (TL 120)

indicated that DNA quantities on agarose gel were average

1517.69 ng for Betula pendula and 1588.75 ng for Vitis

vinifera. However, the average genomic DNA yields from

other methods ranged from 780 to 1100 ng for young

leaves and roots (Table 3).

AFLP and RAPD fingerprinting

Good quality starting DNA is one of the most important

prerequisites for successful AFLP analysis. For that reason

the AFLP profile was tested. The new protocol showed

sharp bands and presented polymorphic and scorable bands

Fig. 3 Two Betula and Vitis genotypes which were amplified on

PAGE successfully. a1, a2; b1, b2; c1, c2: two Betula genotypes which

were amplified by E32-M61, E36-M42 and E39-M39, respectively.

d1, d2; e1, e2; f1, f2: two Vitis genotypes which were amplified by E32-

M61, E36-M42 and E39-M39, respectively

Table 1 AFLP primers used for this study

Primer Sequence

MseI 50-GATGAGTCCTGAGTAA-30

EcoRI 50-GTAGACTGCGTACCAATTC-30

MseI adaptor 50-GACGATGAGTCCTGAG-30

MseI adaptor 30-TACTCAGGACTCAT-50

EcoRI adaptor 50-CTCGTAGACTGCGTACC-30

EcoRI adaptor 30-CATCTGACGCATGGTTAA-50

E32-M61 Eco-AAC ? MseCTG

E36-M42 Eco-ACC ? MseAGT

E39-M39 Eco-AGA ? MseAGA

Table 2 RAPD primers used for this study

Primer Sequence

BB13 50-TTCCCCCGCT-30

OA12 50-TCGGCGATAG-30

OA4 50-AATCGGGCTG-30

OB10 50-CTGCTGGGAC-30

OB20 50-GGACCCTTAC-30

OC4 50-CCGCATCTAC-30

Fig. 4 Amplified RAPD patterns of genomic DNA of Betula (a1–a6)

and Vitis (b1–b6) genotypes which were amplified with OB10 primer
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(Fig. 4). The RAPD procedure had the same situation.

According to Fig. 4 it can be concluded that the new pro-

tocol presented pure DNA and sharp band than can be

scored easily.

RNA quantification

The RNA samples prepared by this method demonstrated

the intact, sharp 28S and 18S ribosomal RNA (rRNA)

bands and the lack of RNA degradation on agarose gels,

indicating high quality of obtaining total RNA (Fig. 5),

whereas other procedures exhibited a failure production of

a high-quality RNA due to the serious degradation of the

RNA as indicated by the degradation of 28S and 18S rRNA

as well as a smear of smaller sized RNAs.

In addition, RNA quality was measured by means of

spectrophotometric ratios that relate differences in

absorption spectra maxima of pure nucleic acids

(Amax = 260 nm), proteins (Amax = 280 nm) and

polysaccharides (Amax = 230 nm). In contrast to other

methods (Asif et al. 2000; Iandolino et al. 2004; Reid et al.

2006; RNX-PLUS kit, CinnaGen, Iran and Trizol reagent)

the A260/A230 ratio for all RNA samples prepared by our

protocol was higher than 1.82. This indicated that the RNA

samples were of high purity and without polyphenol and

Table 3 Yield and purity of genomic DNA prepared by the new

protocol and other methods evaluated by UV light absorption spectra

and ratios of A260/A230 and A260/A280

Method Plant Tissue Absorbency ratio DNA

yield

(ng/ll)A260/230 A260/280

Our new protocol Betula Leaf 1.72 1.79 292

Root 1.68 1.71 254

Grape Leaf 1.76 1.80 324

Root 1.70 1.78 287

Cheng et al. (2003) Betula Leaf 1.28 1.23 132

Root 1.41 1.44 110

Grape Leaf 1.23 1.23 113

Root 1.52 1.5 98

Xu et al. (2004) Betula Leaf 1.12 1.16 87

Root 1.27 1.25 91

Grape Leaf 1.34 1.33 77

Root 1.44 1.41 101

Hameed et al. (2004) Betula Leaf 1.08 1.12 64

Root 1.34 1.38 63

Grape Leaf 1.49 1.44 77

Root 1.47 1.52 56

Fig. 5 Formaldehyde agarose gel of total RNA isolated from Betula

and grape. 1 ll RNA was loaded per lane. a1 and a2: Betula leaf and

root, b1 and b2: Vitis leaf and root, respectively

Table 4 Yield and purity of total RNA prepared by the new protocol

and other methods evaluated by UV light absorption spectra and

ratios of A260/A230 and A260/A280

Method Plant Tissue Absorbancy ratio RNA

yield

(ng/ll)A260/230 A260/280

Our new protocol Betula Leaf 2.01 1.99 292

Root 1.98 1.87 285

Grape Leaf 2.04 2.01 364

Root 1.96 1.97 356

Asif et al. (2000) Betula Leaf 1.17 1.23 85

Root 1.21 1.45 97

Grape Leaf 1.12 1.31 101

Root 1.08 1.04 65

Iandolino et al.

(2004)

Betula Leaf 1.01 1.40 112

Root 1.22 1.22 62

Grape Leaf 1.17 1.31 54

Root 1.22 1.14 69

Reid et al. (2006) Betula Leaf 1.19 1.01 79

Root 1.24 1.22 68

Grape Leaf 1.44 1.28 108

Root 1.38 1.58 103

RNX-PLUS kit Betula Leaf 1.08 1.12 54

Root 1.34 1.31 48

Grape Leaf 1.25 1.23 62

Root 1.14 1.44 71

Trizol reagent Betula Leaf 1.32 1.42 110

Root 1.34 1.13 108

Grape Leaf 1.35 1.38 98

Root 1.48 1.32 112
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polysaccharide contamination. Also, the A260/A280 ratios

ranged from 1.87 to 2.01, indicating a low protein con-

tamination (Table 4). On the other hand, the average A260/

A230 of RNA prepared by other protocols ranged from

1.01 to 1.44, which indicated that the samples contained

polyphenol and polysaccharide contamination. Neverthe-

less, the average RNA yields from other protocols were far

less and ranged from 54 to 112 ng/ll (Table 4).

For as long as scientists have used the polymerase chain

reaction (PCR), PCR inhibitors have been obstacles to

success. All who use PCR are likely to be impacted by

inhibitors at some time, but the wide range of forensic

sample types and variety of sampling conditions encoun-

tered make forensic scientists particularly vulnerable

(Bessetti 2007). It is hard to determine all of the causes of

inhibition on the PCR. The PCR process can be affected by

compounds that interfere with the interaction between

DNA and Taq polymerase, and thus inhibit the reaction

(Wilson 1997). Many inhibitors are removed during the

extraction process through ethanol precipitation or cen-

trifuge process. However, some inhibitors co-elute with the

DNA, which may lead to PCR inhibition. A number of

inhibitors are contained in the samples themselves, while

others can be introduced by the substrate or the analysis

process (Bourke et al. 1999). The presence of inhibitors can

result in loss of data or results that could be mistaken for

degradation. Not all of the factors affecting inhibition are

known, and most of the methods used to overcome inhi-

bition are specific to the inhibiting compound.

In this research a protocol has been developed for easy

isolation of inhibitor-free genomic DNA from even the

toughest plant leaf samples, including those high in

polyphenols and polysaccharides. To prevent the solubi-

lization of polysaccharides in the DNA extract, high salt

concentration (1.4 M) in the extraction buffer was used in

the precipitated DNA. The presence of polysaccharides in

extracted plant DNA is a common concern for plant

molecular biologists; however, the data presented here

show that in many cases this can be averted with the use of

increased salt concentrations in extraction buffer (Page

2000). According to Fang et al. (1992) results, high-salt

buffer (1.5–2.0 M NaCl) can prove effective isolation of

genomic DNA from muskmelon, cucumber, potato, soy-

bean, and geranium. At this level, the polysaccharides

remained in the solution and were discarded with the

ethanol supernatant, decreasing the levels of polysaccha-

ride. The diatomite procedure described here is quick,

simple and most reliable enabling the processing of a large

number of samples with ease.

PVP was used for the removal of polyphenols that are

known as PCR inhibitors and proteins like various enzymes

were degraded by proteinase K and were removed by

centrifugation from plant extracts during the isolation

process resulting in pure DNA and RNA that are ready to

be used in downstream applications including PCR, quan-

titative PCR, real-time PCR and sequencing. Polyphenolics

occur at different concentrations in the leaves, bark and

fruit of higher plants. An important characteristic of many

polyphenolics is their propensity to form complexes with

nucleic acids. Hence, a variety of protocols have been

developed to avoid inhibition of molecular biological

reactions (Koonjul et al. 1999). In this research, we have

included PVP in the extraction buffer, alleviating the

inhibition of Taq DNA polymerase associated with

unknown components, polyphenols, present in several

crude DNA preparations and thus increasing the utility of

our simple method. It is exceptionally good at absorbing

polyphenols during DNA purification. Polyphenols are

common in many plant tissues and can deactivate proteins

if not removed and, therefore, inhibit many downstream

reactions like PCR.

The first step in DNA isolation is to break open the cell

and release the cytoplasmic contents, which includes the

nucleus, in which we find DNA. Proteinase K is a protease

which is used to digest the cell surface proteins. When cell

surface proteins are digested, the integrity of the cell

membrane is compromised leading to cell lysis. Most pro-

tocols for the extraction of DNA from fresh tissue or cul-

tured cells require tissue to be incubated with proteinase K

for 12–24 h. An incubation time of 18 h for the proteinase

K extraction technique was a very efficient procedure,

capable of extracting high molecular weight DNA (more

than 20 kilobases) from as little as one frozen section of the

fresh tonsil (Jackson et al. 1990). In this protocol, the tissues

were incubated with proteinase K for 15 min.

RNA extraction relies on good laboratory technique and

RNase-free technique. RNAse is heat stable and refolds

following heat denaturation. They are difficult to inactivate

as they do not require cofactors. The most common iso-

lation methods can be divided into two classes: utilization

of 4 M guanidinium thiocyanate and utilization of phenol

and SDS (Chee Tan and Chin Yiap 2009). Guanidinium

thiocyanate (GITC) is a chemical compound used as a

general protein denaturant, being a chaotropic agent,

although it is most commonly used in the extraction of

DNA and RNA. Guanidinium thiocyanate is also used to

lyse cells, where its function, in addition to its lysing

action, is to prevent the activity of RNase enzymes and

DNase enzymes by denaturing them. These enzymes would

otherwise damage the extract (Shimomura et al. 1978). At

the end of experiments, it was found DNA and RNA iso-

lation from these recalcitrant plants are very difficult even

using best kits. However, this protocol shown is repro-

ducible and can be used for a broad spectrum of plant

species which have polyphenols and polysaccharide

compounds.
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