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Abstract The current methods used to convert analogue
signals into discrete-time sequences have been deeply influ-
enced by the classical Shannon–Whittaker–Kotelnikov sam-
pling theorem. This approach restricts the class of signals
that can be sampled and perfectly reconstructed to bandlim-
ited signals. During the last few years, a new framework has
emerged that overcomes these limitations and extends sam-
pling theory to a broader class of signals named signals with
finite rate of innovation (FRI). Instead of characterising a sig-
nal by its frequency content, FRI theory describes it in terms
of the innovation parameters per unit of time. Bandlimited
signals are thus a subset of this more general definition. In
this paper, we provide an overview of this new framework
and present the tools required to apply this theory in neu-
roscience. Specifically, we show how to monitor and infer
the spiking activity of individual neurons from two-photon
imaging of calcium signals. In this scenario, the problem is
reduced to reconstructing a stream of decaying exponentials.

Keywords Sampling theory · FRI · Spike train inference ·
Calcium transient

1 Introduction

The world is analogue, but computation is digital. The
process that bridges this gap is known as the sampling process
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and has been instrumental to the digital revolution of the past
60 years. Without the sampling process, we could not convert
real-life signals in digital form, and without digital samples,
we could not use computers for digital computation. The
sampling process is also ubiquitous in that it is present in
any mobile phone or digital camera but also in sophisticated
medical devices like MRI or ultrasound machines, in sen-
sor networks and in digital microscopes just to name a few
examples.

Over the last six decades, our understanding of the con-
version of continuous-time signal in discrete form has been
heavily influenced by the Shannon–Whittaker–Kotelnikov
sampling theorem (Shannon 1949; Whittaker 1929; Kotel-
nikov 1933; Unser 2000) which showed that the sampling
and perfect reconstruction of signals are possible when the
Fourier bandwidth or spectrum of the signal is finite. In this
case, the signal is said to be bandlimited and must be sampled
at a rate (Nyquist rate) at least twice its maximum nonzero
frequency in order to reconstruct it without error.

We are so used to this approach that we tend to for-
get that it comes with many strings attached. First of all,
there are no natural phenomena that are exactly bandlim-
ited (Slepian 1976). Moreover, we tend to forget that the
Shannon sampling theorem provides sufficient but not nec-
essary conditions for perfect reconstruction. In other words,
this theorem does not claim that it is not possible to sam-
ple and reconstruct non-bandlimited signals. It is therefore
incorrect to assume that the bandwidth of a signal is related
to its information content. Consider for instance the func-
tion shown in Fig. 1a. This is a stream of short pulses and
appears in many applications including bio-imaging, seis-
mic signals and spread-spectrum communication. If the pulse
shape is known a priori, the signal is completely determined
by the amplitude and location of such pulses. If there are at
most K pulses in a unit interval, then the signal is com-
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Fig. 1 Examples of signals with FRI. When the shape of the pulse is known, the signal depends only on the amplitude and location of such pulses

(a) (b) (d)(c)

Fig. 2 Nyquist rate versus information rate. The signal x1(t) depicted in part a is bandlimited as shown in part b. The sum of x1(t) with a step
function lead to a signal x2(t) with infinite bandwidth as shown in part c and d

pletely specified by the knowledge of these 2K parame-
ters per unit of time. Assume now that the duration of the
pulses is reduced but that the average number of pulses
per unit interval stays the same. Clearly, the information
content of the signal is not changing (still 2K parame-
ters per unit of time); however, its bandwidth is increas-
ing (bandwidth increases when the support of a function
decreases).

Consider, as second example, the signal shown in Fig. 2c.
This is given by the sum of a bandlimited signal with a step
function. Clearly, the step function has only two degrees of
freedom: the discontinuity location and its amplitude. So,
its information content is finite. The bandlimited function
has a finite number of degrees of freedom per unit of time
since it is fully determined by its samples at points spaced
by the sampling period (given by the inverse of the Nyquist
rate). We thus say that they both have a finite rate of inno-
vation. However, the combination of these two functions
leads to a signal with infinite bandwidth (see Fig. 2d). Now,
if we were to relate the information content of the signal
to its bandwidth, we would conclude incorrectly that this
signal has an infinite rate of information since it requires
an infinite sampling rate for perfect reconstruction. There-
fore, bandwidth and information content are not always
synonyms.

A first attempt to reconcile these two notions: sampling
rate and information content was made in Vetterli et al.

(2002). Here, they introduced a new class of signals called
signals with finite rate of innovation (FRI) which includes
both bandlimited signals and the non-bandlimited functions
discussed so far. They went on showing that classes of FRI
signals can be sampled and perfectly reconstructed using
an appropriate acquisition device. These results have then
be extended to include more classes of acquisition devices
(Dragotti et al. 2007; Seelamantula and Unser 2008; Asl et al.
2010; Tur et al. 2011; Urigüen et al. 2013) and more classes
of signals (Maravić and Vetterli 2005; Berent et al. 2010;
Chen et al. 2012). FRI sampling theory has also had impact
in various applications (Baboulaz and Dragotti 2009; Poh
and Marziliano 2010; Tur et al. 2011; Kandaswamy et al.
2013) and here we focus on an application in neuroscience.

The paper is organised as follows. In the next section,
we define FRI signals and give some examples. Section 3
presents the framework for sampling and reconstructing
some classes of FRI signals. Specifically, we show how to
sample and perfectly reconstruct a stream of Diracs and what
are the conditions that the acquisition device has to satisfy.
We also extend this framework to the case of streams of
decaying exponentials and present some denoising strategies.
Section 4 presents an algorithm to reconstruct streaming sig-
nals where there is no clear separation between consecutive
bursts of spikes. Section 5 describes an application of this
theory to monitor neural activity from two-photon calcium
images. Finally, conclusions are drawn in Sect. 6.
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1.1 Notations

For f (t) ∈ L2(R), where L2(R) is the Hilbert space of
finite-energy functions, the Fourier transform of f (t) is
denoted by f̂ (ω) and is given by f̂ (ω) = F{ f (t)} =∫ +∞
−∞ f (t)e−iωt dt . If f (t) is complex-valued, f ∗(t) denotes

its complex conjugate. The Hermitian inner product is
〈 f , g〉 = ∫ +∞

−∞ f (t)g∗(t)dt . The indicator function is
denoted by 1A(t) and is given by 1A(t) = 1 if t ∈ A, and
1A(t) = 0 if t /∈ A. δi, j denotes the Kronecker delta, which
is defined as δi, j = 1 if i = j and 0 otherwise. �·� and 	·

denote the floor and ceil functions.

2 Finite rate of innovation signals

Classical sampling theorems state that any bandlimited func-
tion x(t) such that x̂(ω) = 0,∀ω > ωmax, can be perfectly
recovered from its samples xn = x(t)|t=nT if the sampling
rate 2π/T is greater than or equal to twice the highest fre-
quency component of x(t), that is, 2π/T ≥ ωmax. Moreover,
the original signal can be perfectly reconstructed as follows:

x(t) =
∞∑

n=−∞
xn sinc(t/T − n), (1)

where sinc(t) = sin(π t)/π t . If x(t) is not bandlimited, sam-
pling with an ideal lowpass filter (h(t) = sinc(t/T )) and
reconstruction applying (1) provides a lowpass approxima-
tion of x(t). This is the best approximation in the least square
sense of x(t) in the space spanned by {sinc(t/T − n)}n∈Z

(Unser 2000). However, it is an approximation, and perfect
reconstruction of the original signal is not achieved. We also
note that signals defined as in (1) are completely specified
by the knowledge of a new parameter xn every T seconds.

Based on this observation, consider now a new class of
signals that extend the one in (1) (Vetterli et al. 2002):

x(t) =
∑

k∈Z

R∑

r=0

ar,k gr (t − tk), (2)

where {gr (t)}R
r=0 is a set of known functions. We note that,

since gr (t) are known, signals in (2) are uniquely determined
by the set of parameters ar,k and tk . Introducing a counting
function Cx (ta, tb) that counts the number of degrees of free-
dom in x(t) over the interval [ta, tb], we define the rate of
innovation ρ as follows (Vetterli et al. 2002; Dragotti et al.
2007; Blu et al. 2008; Urigüen et al. 2013):

ρ = lim
τ→∞

1

τ
Cx

(
−τ

2
,
τ

2

)
(3)

and signals with a finite ρ are called signals with a finite rate
of innovation (FRI).

It is of interest to note that bandlimited signals fall under
this definition. Therefore, one possible interpretation is that
it is possible to sample them because they have a finite rate of
innovation (rather than because they are bandlimited). Exam-
ples of FRI signals which are not bandlimited and which are
of interest to us include

– Stream of pulses: x(t) = ∑
k ak p(t − tk). For instance,

stream of decaying exponentials:

x(t) =
∑

k

ak e−(t−tk )/τ 1t≥tk , (4)

which are a good fit for calcium transient signals in-
duced by neural activity in two-photon calcium imaging.
Figure 1a, b are examples of such signals.

– Piecewise sinusoidal signals (see Fig. 1c):

x(t) =
∑

k

∑

r

ak,r ei(ωk,r t+φk,r ) 1[tk ,tk+1)(t). (5)

– Stream of Diracs (see Fig. 1d):

x(t) =
∑

k

ak δ(t − tk). (6)

3 Sampling scheme

Consider the typical acquisition process as shown in Fig. 3.
This is usually modelled as a filtering stage followed by a
sampling stage. The filter accounts for the modifications that
the analogue signal x(t) experiences before being sampled.
It may model an anti-aliasing filter or it might be due to the
distortion introduced by the acquisition device, for example,
in the case of a digital camera the distortion due to the lens.
Filtering signal x(t) with h(t) = ϕ(−t/T ) and retrieving
samples at instants of time t = n T is equivalent to computing
the inner product between x(t) and ϕ(t/T −n). Specifically,
the filtered signal is given by

y(t) = x(t) ∗ h(t)

=
∫ +∞

−∞
x(τ )h(t − τ)dτ

=
∫ +∞

−∞
x(τ )ϕ

(

− t − τ

T

)

dτ.

(7)

Fig. 3 Acquisition process
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Fig. 4 Two different kernels
that reproduce exactly different
exponentials. The first row
illustrates the reproduction of
two real exponential functions
with the kernel ϕ1(t), shown in
a. The second row illustrates the
reproduction of two complex
exponentials with the kernel
ϕ2(t), shown in d. In e and f,
only the real part of the
exponentials is shown (eαm t =
eiωm t = cos(ωmt)+ i sin(ωmt)).
The thin lines represent the
shifted and weighted kernels,
the thick line represents their
sum and the dashed line the true
exponential. Note that both
kernels are of compact support.
The summation in (9) is
truncated which leads to the
border effects in b, c, e and f
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Moreover, sampling y(t) at regular intervals of time t =
n T leads to

yn = y(t)|t=nT

=
∫ +∞

−∞
x(τ )ϕ( τT − n)dτ

= 〈
x(t) , ϕ( t

T − n)
〉
.

(8)

The function ϕ(t) is called the sampling kernel. In order
to guarantee perfect reconstruction of the signal x(t), the
sampling kernel and the input signal have to satisfy some
conditions. The literature presents a variety of kernels that
can be used to achieve perfect reconstruction of FRI signals.
Here, we will focus on exponential reproducing kernels since
they offer the best flexibility and resilience to noise.

– Exponential reproducing property: Any function ϕ(t)
that together with its shifted versions can reproduce expo-
nential functions of the form eαm t with αm ∈ C and
m = 0, 1, . . . , P:

∑

n∈Z

cm,n ϕ(t − n) = eαm t , m = 0, 1, . . . , P. (9)

The exponential reproduction property is illustrated in
Fig. 4 for two different kernels that reproduce different expo-
nentials. In both cases, the kernels are of compact support.
The advantage of such kernels is that the summation in (9)
can be truncated and still have a region in time where the
exponential functions are perfectly reproduced. In general,
the exponentials eαm t are perfectly reproduced when the sum-
mation is computed for n ∈ Z. Let t ∈ [0, L) be the sup-
port of ϕ(t), that is, ϕ(t) = 0 for t /∈ [0, L). If the sum-

mation is truncated to n = n0, . . . , n f , it follows that the
perfect reproduction of the exponential functions holds for
t ∈ [n0 − 1 + L , n f + 1).

3.1 Exponential reproducing kernels

For the sake of clarity, in what follows, we restrict the analysis
to the case where the parameter αm in (9) is purely imaginary,
that is αm = iωm for m = 0, 1, . . . , P , where ωm ∈ R.
This analysis can easily be extended to the more general
case where αm has nonzero real and imaginary parts, or is
purely real.

A function ϕ(t) together with a linear combination of its
shifted versions reproduces the exponentials {eiωm t }P

m=0 as
in (9) if and only if it satisfies the generalised Strang-Fix
conditions:

ϕ̂(ωm) �= 0 and ϕ̂(ωm + 2πl) = 0, (10)

where m = 0, 1, . . . , P , l ∈ Z \ {0} and ϕ̂(ω) is the
Fourier transform of ϕ(t) (Strang and Fix 1971; Unser and
Blu 2005; Urigüen et al. 2013). A family of functions that
satisfy these conditions are the exponential B-splines, also
named E-splines. These functions are constructed through
the convolution of elementary zero order E-splines, where
each elementary function reproduces a particular exponen-
tial eiωm t . The Fourier transform of a zero order E-spline that
reproduces the exponential eαt is given by

β̂α(ω) = 1 − eα−i ω

i ω − α
. (11)
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Fig. 5 Absolute value of the
Fourier transform of zero order
E-splines given by (11). If the
parameter α is equal to zero, the
E-spline corresponds to the sinc
function. For α = iω0 purely
imaginary, the Fourier transform
of the E-spline is a shifted
version of the sinc function
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Figure 5 illustrates the Fourier transform of zero order E-
splines for two different values of the parameter α.

The corresponding E-spline that reproduces the set of
exponentials {eαm t }P

m=0 is obtained as follows

βα(t) = (
βα0 ∗ βα1 ∗ · · · ∗ βαP

)
(t), (12)

where α = (α0, α1, . . . , αP ). Thus, the Fourier transform of
βα(t) is given by

β̂α(ω) =
P∏

m=0

(
1 − eαm−i ω

i ω − αm

)

. (13)

E-splines have compact support P + 1 and have P − 1
continuous derivatives. It can be shown that any func-
tion that reproduces the set of exponentials {eαm t }P

m=0 can
be expressed as the convolution of another function γ (t)
with the corresponding E-spline that reproduces these expo-
nentials, that is, ϕ(t) = γ (t) ∗ βα(t) and γ (t) satisfies∫ +∞
−∞ e−αm tγ (t)dt �= 0 for all αm(Unser and Blu 2005;

Delgado-Gonzalo et al. 2012). It is also true that ifϕ(t) repro-
duces a set of exponentials, this property is preserved through
convolution. Let

ψ(t) = ϕ(t) ∗ ρ(t), (14)

for ρ(t) such that
∫ +∞
−∞ e−αm tρ(t)dt �= 0. The function ψ(t)

also reproduces the same set of exponentials. This is easy to
verify since ψ(t) also satisfies the Strang-Fix conditions.

3.1.1 Sampling with an exponential reproducing kernel

The choice of purely imaginary parameters αm = iωm leads
to an important family of sampling kernels. These design
parameters directly determine the information of the input
analogue signal x(t) that we acquire and allow us to per-
fectly reconstruct the input signal from the discrete samples
yn for some classes of signals. Specifically, the different ωm

correspond to the frequencies of the Fourier transform of

x(t) that we are able to retrieve from the only knowledge of
samples yn . It can be shown that if parameters αm are real
or appear in complex conjugate pairs, the corresponding E-
spline is real. We thus impose that for all αm that are nonzero,
their complex conjugates are also present in α. If parameters
αm = iωm in vector α are sorted in increasing order of ωm ,
we have that α∗

m = αP−m .
Let us assume that function x(t) is localised in time and

thus only N samples yn are nonzero. Let (sm)
P
m=0 be the

sequence obtained by linearly combining samples yn with
the coefficients cm,n from (9), that is, sm = ∑N

n=1 cm,n yn .
We have that

sm
(a)=

N∑

n=1

cm,n 〈x(t) , ϕ(t/T − n)〉

(b)=
∫ +∞

−∞
x(t)

N∑

n=1

cm,n ϕ(t/T − n)dt

(c)=
∫ +∞

−∞
x(t) eiωm t/T dt = x̂(−ωm/T ),

(15)

where (a) follows from (8), (b) from the linearity of the inner
product and (c) from the exponential reproduction prop-
erty. The quantity sm therefore corresponds to the Fourier
transform of x(t) evaluated at ω = −ωm/T . Since we
have imposed −ωm = ωP−m , we also have that sP−m =
x̂(ωm/T ).

3.1.2 Computation of cm,n coefficients

We have established the properties that a function ϕ(t) has to
satisfy in order to reproduce exponentials, which are given
by the Strang-Fix conditions. Moreover, we have seen the
importance of the E-splines since they allow us to obtain
samples of the Fourier transform of the input signal. We now
show how to obtain the coefficients cm,n in (9) required to
reproduce the exponential functions {eiωm t }P

m=0, and that are
used to obtain the sequence sm in (15). These coefficients are
given by
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Fig. 6 E-spline of order P = 6 and α = [−iπ/2,−iπ/3,−iπ/6,
0, iπ/6, iπ/3, iπ/2]. Note that the support in time is equal to P + 1
and quickly decays to zero. This E-spline reproduces the exponentials
in Fig. 4 among others. Parameters αm are purely imaginary or equal to
zero; purely imaginary αm appear in complex conjugate pairs. a illus-

trates the shape of the E-spline in time and b in frequency (expressed in
dB). The dots in b represent the locations at which the Fourier transform
of ϕ(t) is sampled in order to compute the cm,0 coefficients as in (20).
c is a representation of the complex values eαm

cm,n =
∫ ∞

−∞
eiωm t ϕ̃(t − n)dt, (16)

where ϕ̃(t) is chosen to form with ϕ(t) a quasibiorthonormal
set (Dragotti et al. 2007). This includes the particular case
where ϕ̃(t) is the dual ofϕ(t), that is, 〈ϕ̃(t − n), ϕ(t − m)〉 =
δn,m . The introduction of ϕ̃(t) is a technicality that is needed
in order to show where the coefficients cm,n come from, but
we do not need to work with this function. From (16), we
can express cm,n in terms of cm,0 by applying a change of
variable t ′ = t − n:

cm,n = eiωm n
∫ ∞

−∞
eiωm t ϕ̃(t)dt

= eiωm n cm,0.

(17)

If we plug this expression in (9), we can derive an expression
to compute cm,0 for each m = 0, . . . , P:

cm,0 =
(
∑

n∈Z

e−iωm (t−n) ϕ(t − n)

)−1

, m = 0, 1, . . . , P,

(18)

which is valid for any value of t . Let ψ(t) := e−iωm tϕ(t),
we have that

∑

n∈Z

e−iωm (t−n) ϕ(t − n) =
∑

n∈Z

ψ(t − n)

(a)=
∑

k∈Z

ψ̂(2πk) ei2πkt

(b)=
∑

k∈Z

ϕ̂(ωm + 2πk) ei2πkt ,

(19)

where (a) follows from the Possion summation formula1

and (b) from the fact that the Fourier transform of ψ(t) is
equal to the Fourier transform of ϕ(t) shifted by ωm . Since
ϕ̂(ω) satisfies the Strang-Fix conditions, from (18) and (19)
it follows that

cm,0 = [
ϕ̂(ωm)

]−1
. (20)

The dots in Fig. 6b illustrate the values ϕ̂(ωm) that are used
in the computation of the different cm,0 for an E-spline with
P = 6. Note that the generalised Strang-Fix conditions (10)
impose some constraints on the choice of ωm since we have
to guarantee that ϕ̂(ωm) �= 0. From (11) and Fig. 5, it is clear
that each ωm introduces zeros at locations ωm + 2πl, where
l ∈ Z \ {0}, we thus have to guarantee that for all pairs of
distinct m, n we have ωm − ωn �= 2πl. In Fig. 6b, it can be
appreciated that ϕ̂(ω) is nonzero for all ω = ωm , and that the
locations ωm + 2π and ωm − 2π are zero since the curve in
dB tends to −∞.

From (20) and (17), we can compute the cm,n coefficients
for our choice of (αm)

P
m=0 and any value of n ∈ Z. By com-

bining these coefficients with {ϕ(t −n)}n∈Z, the exponentials
{eαm t }P

m=0 are perfectly reproduced as shown in Fig. 4.

3.1.3 Approximate reproduction of exponentials

The generalised Strang-Fix conditions (10) impose restric-
tive constraints on the sampling kernel. This becomes a prob-
lem when we do not have control or flexibility over the design
of the acquisition device. Recent publications (Urigüen et al.
2013; Dragotti et al. 2013) show that these conditions can be
relaxed and still have a very accurate exponential reproduc-
tion, which is the property we require in order to reconstruct

1 For appropriate functions f , the Poisson summation formula is given
by:

∑+∞
n=−∞ f (t − nT ) = 1

T

∑+∞
k=−∞ f̂

( 2πk
T

)
ei2πkt/T .
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Fig. 7 Gaussian sampling filter with σ = 1 and approximate expo-
nential reproduction. a Fourier transform of Gaussian function com-
pared to a first order E-spline that reproduces frequencies −0.1π and
0.1π . The zoom-in box shows the region where the E-spline is zero
(ω = ωm + 2πl); the Gaussian function has a negligible amplitude.

b–d are examples of exponential reproduction with the Gaussian filter.
As in Fig. 4, the thin lines represent the shifted and weighted versions
of ϕ(t) (which in this case is the Gaussian function), the thick line their
sum, and the dashed line the true exponentials

the analogue input signal. The first part of the Strang-Fix
conditions, that is ϕ̂(ωm) �= 0, is easy to achieve, but the sec-
ond part is harder to guarantee when we do not have control
over the sampling device.

If the sampling kernel does not satisfy the generalised
Strang-Fix conditions, the exponential reproduction property
(9) cannot be satisfied exactly. We thus have to find the coeffi-
cients cm,n that better approximate the different exponentials
eiωm t :

∑

n∈Z

cm,n ϕ(t − n) � eiωm t . (21)

There are various options to compute these coefficients,
but a good and stable approximation is obtained with the
constant least squares approach (Urigüen et al. 2013). If the
Fourier transform of the sampling kernel is sufficiently small
at ω = ωm + 2πl, l �= 0, the cm,n coefficients are given by

cm,n = ϕ̂(ωm) eiωm n . (22)

Gaussian filters are good candidates for this approach
since they are smooth and the shape in time is very simi-
lar to the E-splines (see Fig. 7a). The Fourier transform of
such filters is given by

ϕ(t) = 1√
2πσ 2

e−t2/2σ 2 F−→ ϕ̂(ω) = e−ω2σ 2/2. (23)

It is clear that the filter is nonzero atω = ωm +2πl, l �= 0,
however, as can be appreciated from Fig. 7a, the attenuation at
these frequencies is very strong. This makes the exponential
reproduction very accurate as illustrated in Fig. 7b, c.

In the case of the Gaussian filter, we can easily obtain the
cm,n coefficients of the exponentials to be reproduced since
we have an analytical expression for its Fourier transform.
When an analytic expression is unknown, we can still apply
this approach since we only need knowledge of the transfer
function of the acquisition device at frequencies ω = ωm .
The cm,n coefficients are then given by (22).

The approximate Strang-Fix framework is therefore very
attractive since it allows us to use the theory discussed so far
with any acquisition device.

3.2 Perfect reconstruction of FRI signals

In the previous section, we have seen some properties of
exponential reproducing kernels. We have also seen that if
the sampling kernel satisfies the exponential reproducing
property, we can obtain some samples of the Fourier trans-
form of the input analogue signal from the measurements
(yn)

N
n=1 that result from the sampling process. We now show

how this partial knowledge of the Fourier transform can be
used to perfectly reconstruct some classes of band unlimited
signals.
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3.2.1 Perfect reconstruction of a stream of Diracs

We assume that the input signal is a stream of Diracs: x(t) =∑K
k=1 ak δ(t − tk), and that the sampling kernel ϕ(t) satisfies

the exponential reproduction property for a choice of α =
(αm)

P
m=0 such that αm = iωm , where ωm ∈ R for m =

0, 1, . . . , P . We further impose the frequencies ωm to be
equispaced, that is ωm+1 − ωm = λ, and to be symmetric,
that is ωm = −ωP−m . We thus have ωm = ω0 + λm and
ωP = −ω0.

Since x(t) is a sum of Diracs, we have that the Fourier
transform is given by a sum of exponentials:

x̂(ω) =
∫ +∞

−∞

K∑

k=1

ak δ(t − tk) e−iωt dt

=
K∑

k=1

ak e−iωtk .

(24)

This is clearly a band unlimited signal. We now con-
sider the sequence sm that is obtained by linearly combin-
ing samples yn with the coefficients cm,n from the expo-
nential reproducing property (9). From (15), we have that
sm = x̂(−ωm/T ) and therefore:

sm =
K∑

k=1

ak eiωm tk/T

=
K∑

k=1

ak eiω0tk/T
︸ ︷︷ ︸

bk

⎛

⎝eiλtk/T
︸ ︷︷ ︸

uk

⎞

⎠

m

=
K∑

k=1

bk um
k ,

(25)

where bk :=ak eiω0tk/T and uk :=eiλtk/T . Note that we have
also applied the fact that the frequencies can be expressed
as ωm = ω0 + λm. The perfect recovery of the original
stream of Diracs, that is, the estimation of the locations tk
and the amplitudes ak of the K Diracs, is now recast as the
estimation of parameters bk and uk from the knowledge of
values sm . The problem of estimating the parameters of a sum
of exponentials from a set of samples arises in a variety of
fields and has been analysed for several years by the spectral
estimation community (Pisarenko 1973; Paulraj et al. 1985;
Schmidt 1986). One way to solve it is by realising that the
sequence sm given as in (25) is the solution to the following
linear homogeneous recurrence relation

hK sm−K + · · · + h1 sm−1 + sm = 0. (26)

See section “Linear homogeneous recurrence relations
with constant coefficients” of Appendix for a description

of this type of homogeneous systems and their solutions.
Note that coefficients h1, . . . , hK are unknown, but can be
obtained from the following linear system of K equations:

⎡

⎢
⎢
⎢
⎣

sK−1 sK−2 . . . s0

sK sK−1 . . . s1
...

...
. . .

...

s2K−2 s2K−3 . . . sK−1

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

h1

h2
...

hK

⎤

⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎣

sK

sK+1
...

s2K−1

⎤

⎥
⎥
⎥
⎦
. (27)

It can be shown that, if the K parameters uk in (25) are
distinct, which is a direct consequence of the fact that all
the delays tk are different, the Toeplitz matrix in the left-
hand side of (27) is of rank K , and therefore, the solution is
unique (see section “Rank deficiency of Toeplitz matrix” of
Appendix for a proof on the rank of this matrix). As shown
in section “Linear homogeneous recurrence relations with
constant coefficients” of Appendix, the parameters uk are
obtained from the roots of the polynomial H(z) = hK z−K +
· · ·+h1 z−1 +1. Once the parameters uk have been obtained,
the amplitudes bk of the sum of exponentials can be directly
retrieved from (25) by solving the associated least squares
problem. From uk and bk , we can then compute tk and ak . The
stream of Diracs is thus perfectly recovered. In the literature,
this approach is known as Prony’s method or the annihilating
filter method (Stoica and Moses 2005).

The system of equations (27) requires at least 2K consec-
utive values sm . Recall that the sequence sm is obtained as
follows sm = ∑N

n=1 cm,n yn , with m = 0, 1, . . . , P , where
P + 1 is the number of exponentials reproduced by the sam-
pling kernel. We thus have a lower bound on the number
of exponentials that the sampling kernel has to reproduce:
P + 1 ≥ 2K . The perfect reconstruction of a stream of
Diracs is summarised in the following theorem.

Theorem 1 Consider a stream x(t) of K Diracs: x(t) =∑K
k=1 ak δ(t − tk), and a sampling kernel ϕ(t) that can

reproduce exponentials e i(ω0+λm)t , with m = 0, 1, . . . , P,
and P + 1 ≥ 2K . Then, the samples defined by yn =
〈x(t) , ϕ(t/T − n)〉 are sufficient to characterise x(t)
uniquely.

Figure 8 illustrates the entire sampling process. Note that,
since the sampling kernel is of compact support and the
stream of Diracs is localised in time, there are only a small
number of samples yn that are nonzero. From Fig. 8e, it is
clear that the signal is not bandlimited. Furthermore, in the
classical sampling setup, in order to sample a continuous-
time signal at rate T −1 Hz, an anti-aliasing filter that sets to
zero x̂(ω) for |ω| ≥ π/T has to be applied before acquisition.
The FRI framework does not impose this stringent condition
since the sampling kernel is not necessarily equal to zero for
all |ω| ≥ π/T .
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Fig. 8 Sampling of a stream of Diracs and perfect reconstruction.
K = 4 Diracs sampled with an E-spline of order P = 7 which corre-
sponds to the critical sampling rate (P + 1 = 2K ). a is the continuous-
time stream of Diracs, b the sampling kernel h(t) = ϕ(−t/T ) where
ϕ(t) is an E-spline of order P = 7 that reproduces the exponentials illus-

trated in c. d is the continuous-time signal y(t) = x(t) ∗ h(t) and the
corresponding discrete samples yn = y(t)|t=nT . In e, |x̂(ω)| is obtained
from (24) and |sm | from samples yn linearly combined with coefficients
cm,n . f is the reconstructed stream of Diracs from the sequence sm . The
original signal is perfectly reconstructed
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Fig. 9 Sampling of a stream of decaying exponentials and perfect
reconstruction. Since x(t) is an infinite duration signal, samples yn are
nonzero for n ≥ n0, for some n0 that depends on the location of the first
decaying exponential. However, if the number of decaying exponen-

tials is finite, the number of nonzero samples zn = yn − yn−1 e−αT is
also finite since they are equivalent to sampling a stream of Diracs with
a compact support kernel. a Input signal, x(t), b filtered and sampled
signal, c reconstructed signal

3.2.2 Perfect reconstruction of a stream of decaying
exponentials

Streams of Diracs are an idealisation of streams of pulses.
Although this example may seem limited, the framework
presented so far can be applied to other classes of functions
that model a variety of signals. For instance, calcium concen-
tration measurements obtained from two-photon imaging to
track the activity of individual neurons can be modelled with
a stream of decaying exponentials. In this model, the time
delays correspond to the activation time of the tracked neu-
ron, that is, the action potentials (AP).

Let x(t) be a stream of K decaying exponentials, that is

x(t) =
K∑

k=1

ak e−α(t−tk ) 1t≥tk =
K∑

k=1

ak ρα(t − tk), (28)

where ρα(t):=e−αt 1t≥0. See Fig. 9a for an example of such
signal. This is also an FRI signal since x(t) is perfectly deter-
mined by a finite number of parameters: {(tk, ak)}K

k=1. Let
us assume that x(t) is sampled with the acquisition device
described in Sect. 3.2.1, that is, an exponential reproducing
kernel h(t) = ϕ(−t/T ), followed by a sampling stage. We
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thus have that ϕ(t) satisfies (9), and the resulting samples
yn can be expressed as the inner product between x(t) and
ϕ(t/T − n) as in (8).

Let us also assume that the reproduced exponentials eiωm t

can be expressed as ei(ω0+λm)t , with m = 0, 1, . . . , P . It can
be shown that sampling the signal in (28) with ϕ(−t/T ) and
computing the following finite differences

zn = yn − yn−1 e−αT , (29)

is equivalent to the sequence that would result from sam-
pling the stream of Diracs s(t) = ∑K

k=1 ak δ(t − tk)with the
following kernel

ψ(t) = βαT (−t) ∗ ϕ(t) (30)

where βαT (−t) is a zero order E-spline with parameter αT
(Oñativia et al. 2013a). Note that α is the exponent in (28).
We thus have that

zn = 〈s(t) , ψ(t/T − n)〉 . (31)

Since convolution preserves the exponential reproduction
property, ψ(t) reproduces the same exponentials as ϕ(t).
Thus, we can find the coefficients dm,n such that
∑

n∈Z

dm,n ψ(t − n) = eiωm t , m = 0, 1, . . . , P. (32)

We now have all the elements to perfectly reconstruct the
stream of decaying exponentials x(t) from samples yn , that
is, estimate the set of pairs of parameters {(tk, ak)}K

k=1. By
combining the sequence zn with coefficients dm,n , we obtain
exactly the same measurements sm as in (25):

sm =
N∑

n=1

dm,n zn =
K∑

k=1

bk um
k , (33)

where bk = ak eiω0tk/T and uk = eiλtk/T . We can therefore
apply Prony’s method to this sequence and obtain the parame-
ters of interest. Figure 9 illustrates the perfect reconstruction
of a stream of K = 4 decaying exponentials.

3.3 FRI signals with noise

The acquisition process inevitably introduces noise making
the solutions described so far only ideal. Perturbations may
arise in the analogue and digital domain. We model the noise
of the acquisition process as a white Gaussian process that is
added to the ideal samples. The noisy samples are therefore
given by

ỹn = yn + εn, (34)

where yn are the ideal noiseless samples from (8) and εn are
i.i.d. Gaussian random variables with zero mean and variance

σ 2
ε . In order to have a more robust reconstruction, we increase

the number of samples sm by making the order P larger than
the critical rate 2K − 1.

The denoising strategies that can be applied to improve
the performance of the reconstruction process come from the
spectral analysis community, where the problem of finding
sinusoids in noise has been extensively studied. There are
two main approaches. The first, named Cadzow denoising
algorithm, is an iterative procedure applied to the Toeplitz
matrix constructed from samples sm as in (27). Let us denote
by S this matrix. By construction, this matrix is Toeplitz, and
in the noiseless case, it is of rank K . The presence of noise
makes this matrix be full rank. The Cadzow algorithm (Cad-
zow 1988) looks for the closest rank deficient matrix which
is Toeplitz. At each step, we force matrix S to be of rank K
by computing the singular value decomposition (SVD) and
only keeping the K largest singular values and setting the
rest to zero. This new matrix is not Toeplitz anymore, we
thus compute a new Toeplitz matrix by averaging the diago-
nal elements. This last matrix might not be rank deficient, and
we can thus iterate again. The next step is to solve equation
(27). This is done computing the total least squares solution
that minimises ‖Sh‖2 subject to ‖h‖2 = 1, where h is an
extended version of the vector in (27) and has length K + 1.
If this vector is normalised with respect to the first element,
we have that the following K elements correspond to the
coefficients hk in (26). This approach has successfully been
applied in the FRI setup in (Blu et al. 2008).

The second approach is based on subspace techniques for
estimating generalised eigenvalues of matrix pencils (Hua
and Sarkar 1990, 1991). Such approach has also been applied
in the FRI framework (Maravić and Vetterli 2005). This
method is based on the particular structure of the matrix S,
which is Toeplitz and each element is given by a sum of
exponentials. Let S0 be the matrix constructed from S by
dropping the first row and S1 the matrix constructed from S
by dropping the last row. It can be shown that in the matrix
pencil S0 − μS1 the parameters {uk}K

k=1 from (25) are rank
reducing numbers, that is, the matrix S0 − μS1 has rank
K − 1 for μ = uk and rank K otherwise. The parameters
{uk}K

k=1 are thus given by the eigenvalues of the generalised
eigenvalue problem (S0 − μS1)v = 0.

Further variations of these two fundamental approaches
have been proposed recently. See for example Tan and
Goyal (2008), Erdozain and Crespo (2011), Hirabayashi et
al. (2013).

4 Sampling streaming FRI signals

In the previous section, we have seen how to sample and
reconstruct a set of K Diracs. We now consider the case
where we have a streaming signal:
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Fig. 10 Border effects with the
sliding window approach. In this
example, N = 16 and T = 1/4.
a A nearby Dirac located before
the observation window τ

influences samples yn of the
window. b A Dirac inside the
window but close to the right
border generates nonzero
samples outside the window

−2 0 2 4 6

0

0.5

1

1.5 τ

(a)

−2 0 2 4 6

0

0.5

1

1.5 τ

(b)

x(t) =
∑

k∈Z

ak δ(t − tk). (35)

If the stream is made of clearly separable bursts, we can
apply the previously described strategy by assuming that each
burst has a maximum number of spikes. However, when this
separation cannot be made because of the presence of noise,
or due to the nature of the signal itself, this strategy is not
valid. The infinite stream presents an obvious constraint due
the number of parameters that have to be recovered. We have
seen that the order of the sampling kernel, P , and its support
are directly related to the number of parameters to be esti-
mated. However, we cannot increase P indefinitely. In order
to handle this type of signals, we thus consider a sequential
and local approach (Oñativia et al. 2013b).

4.1 Sliding window approach

We assume that x(t) has a bounded local rate of innovation
of 2K/τ , that is, for any time window of duration τ there
are at most K Diracs within the window. Since each Dirac
has two degrees of freedom, location and amplitude, the rate
of innovation is 2K/τ . We analyse sequentially the infinite
stream with a sliding window that progresses in time by steps
equal to the sampling interval T . Let the i-th window cover
the following temporal interval

t ∈ (ni T, ni T + τ ], (36)

where τ = N T and N is the number of samples that
are processed for each position of the sliding window. The
acquisition device is the same as in the previous section:
the sampling kernel is given by h(t) = ϕ(−t/T ) and
yn = 〈x(t) , ϕ(t/T − n)〉. In order to have a causal filter
h(t), that is h(t) = 0 for t < 0, we impose the support of
ϕ(t) to be t ∈ (−L , 0], where L = P + 1 if ϕ(t) is an
E-spline of order P . The support of ϕ(t/T − n) is therefore
t ∈ ((n − L)T, nT ]. Consequently, a Dirac located at t = tk
influences L samples yn . The indices corresponding to these
samples are given by

	tk/T 
 ≤ n < 	tk/T 
 + L . (37)

When we process the stream sequentially, there are border
effects due to the fact that we only process N samples at a
time. Diracs located just before the sliding window influence
samples within the window, and the Diracs inside the obser-
vation window which are close to the right border influence
samples outside the window. These effects are illustrated in
Fig. 10. However, if the sliding window is big enough, there
are a good number of positions of the sliding window that
will fully capture each individual Dirac and therefore lead to
a good estimate of its amplitude and location. In the noise-
less case, we can detect if we are in the presence of these
border effects or if there is no border effect and therefore the
reconstruction can be exact. Nonetheless, in the presence of
noise, we cannot guarantee perfect reconstruction.

For this reason, the sequential algorithm works in two
steps: first, it estimates the locations for each position of the
sliding window; second, it analyses the consistency of the
retrieved locations among different windows. The i-th win-
dow processes samples (ỹn)

ni +N
n=ni +1. Let {t̂ (i)k } be the set of

estimated locations within the i-th window. When the obser-
vation window is at position t = ni T , we know that Diracs
located at t < (ni − L)/T cannot have any influence on
the current samples. We can therefore analyse the consis-
tency of the locations up to (ni − L)/T . Figure 11a shows
the retrieved locations for different positions of the sliding
window, where the horizontal axis corresponds to the win-
dow index, ni , and the vertical axis to the locations in time,
that is, for a given window index, each dot corresponds to an
estimate of the set {t̂ (i)k }. Consistent locations among differ-
ent windows appear as horizontally aligned dots. The shaded
area represents the evolution in time of the observation win-
dow: for a given index ni , the vertical cross section of the
shaded area represents the time interval τ that is seen by this
window. This consistency can be analysed by building a his-
togram of all the estimated locations up to a given time. This
is illustrated in Fig. 11b. The Diracs are then estimated from
the peaks of this histogram.
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Fig. 11 Noisy scenario with
SNR = 15 dB, N = 50 and
T = 1/16. The maximum rate
of innovation of the streaming
signal is 2K/τ = 3.2(K = 5). a
Plot of the sequentially
estimated locations, the
horizontal axis indicates the
index of the sliding window and
the vertical axis the location in
time. b Histogram of the
locations shown in a.
Horizontally aligned dots in a
lead to peaks in the histogram
in b
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5 Application to neuroscience

To understand how neurons process information, neurosci-
entists need accurate information about the firing of action
potentials (APs of spikes) by individual neurons. We thus
need techniques that allow to monitor large areas of the brain
with a spatial resolution that distinguishes single neurons
and with a temporal resolution that resolves APs. Of the cur-
rently available techniques, only multiphoton calcium imag-
ing (Denk et al. 1990, 1994; Svoboda et al. 1999; Stosiek et al.
2003) and multielectrode array electrophysiology (Csicsvari
et al. 2003; Blanche et al. 2005; Du et al. 2009) offer this capa-
bility. Of these, only multiphoton calcium imaging currently
allows precise three-dimensional localisation of each indi-
vidual monitored neuron within the region of tissue studied,
in the intact brain. Populations of neurons are simultaneously
labelled with a fluorescent indicator, acetoxy-methyl (AM)
ester calcium dyes (Stosiek et al. 2003). This allows simulta-
neous monitoring of action potential-induced calcium signals
in a plane (Ohki et al. 2005) or volume (Göbel and Helmchen
2007) of tissue. The calcium concentration is measured with
a laser-scanning two-photon imaging system.

For a given region of interest (ROI) where a neuron is
located, the calcium concentration is obtained by averaging
the value of the pixels of the ROI for each frame. The result
is a one-dimensional fluorescence sequence. We assume that
when a neuron is activated, the calcium concentration jumps
instantaneously, and each jump has the same amplitude A.
The concentration then decays exponentially, with time con-
stant τ , to a baseline concentration. The one-dimensional flu-
orescence signal can therefore be characterised by convolv-
ing the spike train with a decaying exponential and adding
noise:

c(t) = A
∑

k

e−(t−tk )/τ 1t≥tk + εt

= A
∑

k

δ(t − tk) ∗ e−t/τ 1t≥0 + εt ,
(38)

where the index k represents different spikes and the different
tk their occurrence times. Hence, the goal of spike detection
algorithms is to obtain the values tk .

A number of methods have previously been used to detect
spike trains from calcium imaging data, including thresh-
olding the first derivative of the calcium signal (Smetters
et al. 1999), and the application of template-matching algo-
rithms based on either fixed exponential (Kerr et al. 2005,
2007; Greenberg et al. 2008) or data-derived (Schultz et al.
2009; Ozden et al. 2008) templates. Machine learning tech-
niques (Sasaki et al. 2008) and probabilistic methods based
on sequential Monte Carlo framework (Vogelstein et al.
2009) or fast deconvolution (Vogelstein et al. 2010) have
also been proposed. Some broadly used methods such as
template matching or derivative-thresholding have the dis-
advantage that they do not deal well with multiple events
occurring within a time period comparable to the sampling
interval. Our spike detection algorithm is based on connect-
ing the calcium transient estimation problem to the theory
of FRI signals. The calcium concentration model in (38) is
clearly a FRI signal, we can thus apply the techniques pre-
sented in the previous sections.

5.1 Spike inference algorithm

The spike inference algorithm is based on applying the slid-
ing window approach presented in Sect. 4.1 combined with
the reconstruction of streams of decaying exponentials pre-
sented in Sect. 3.2.2. One major issue of the framework pre-
sented so far is that we have assumed the number K of spikes
within a time window to be known a priori. In practice, this
is a value that has to be estimated.

In the noiseless case, the number of spikes can be recov-
ered from the rank of the Toeplitz matrix constructed from
samples sm :

S =
⎡

⎢
⎣

s	P/2
 . . . s0
...

. . .
...

sP . . . sP−	P/2


⎤

⎥
⎦ . (39)
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Fig. 12 Double consistency spike search with real data. a and b show
the detected locations with dots and the original spikes with horizontal
lines for two different window sizes. In a, the algorithm runs estimating

the number of spikes within the sliding window. In b, the algorithm runs
assuming a fixed number of spikes equal to one for each position of the
sliding window. c shows the joint histogram of the detected locations
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Fig. 13 Fluorescence signal and detected spikes using the double con-
sistency approach. The spikes are detected from the peaks of the his-
togram in Fig. 12c

In the noisy case, matrix S becomes full rank. An estimate of
K can still be obtained by thresholding the normalised singu-
lar values of S. Let μ1 ≥ μ2 ≥ . . . μ�P/2�+1 be the singular
values of S sorted in decreasing order. We can estimate K
as the number of singular values that satisfy μi/μ1 ≥ μ0.
Where 0 < μ0 < 1 is adjusted depending on the level of
noise. This approach tends to overestimate K . Moreover, we
never detect the K = 0 case since when noise is present we
always have μ1 �= 1.

To overcome these inaccuracies, we make the algorithm
more robust by applying a double consistency approach. We
run the sliding window approach presented in Sect. 4.1 twice.
First, with a sufficiently big window where we estimate K
from the singular values of S. Second, with a smaller window
where we assume that we only capture one spike and there-
fore we always set K = 1. We then build a joint histogram
out of all the locations retrieved from both approaches and
estimate the spikes from the peaks of the histogram. This
approach is illustrated in Figs. 12 and 13 with real data.

This technique is fast and robust in high noise and low
temporal resolution scenarios. It is able to achieve a detection
rate of 84 % of electrically confirmed AP with real data (Oña-
tivia et al. 2013a), outperforming other state of the art real-
time approaches. Due to its low complexity, tens of streams
can be processed in parallel with a commercial off-the-shelf
computer.

6 Conclusions

We have presented a framework to sample and reconstruct
signals with finite rate of innovation. We have shown that
it is possible to sample and perfectly reconstruct streams
of Diracs, and more importantly, streams of decaying expo-
nentials. The latter offer a perfect fit for calcium transients
induced by the spiking activity of neurons. The presented
approach is sequential, and the reconstruction is local. These
two features make the overall algorithm resilient to noise and
have low complexity offering real-time capabilities.

The theoretical framework, where perfect reconstruction
can be achieved, is also extended to the more realistic case
where we do not have full control over the sampling kernel. In
this case, perfect reconstruction cannot be guaranteed, but we
can still reconstruct the underlying analogue signal with high
precision if the sampling kernel can reproduce exponentials
approximately.
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Appendix

Linear homogeneous recurrence relations with constant
coefficients

Let L K [·] be the linear operator with constant coefficients
that establishes the following recurrence relation of order up
to K when applied to a sequence yn :

L K [yn] = hK yn−K + · · · + h1 yn−1 + yn . (40)
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The corresponding homogeneous system is given by

L K [yn] = 0. (41)

This is the discrete-time version of a homogeneous linear
differential equation given by

hK
d K y(t)

t K
+ · · · + h1

dy(t)

dt
+ y(t) = 0. (42)

Both, the linear homogeneous differential equation (42)
and the linear homogeneous recurrence relation (41) have
equivalent solutions. In the continuous-time case, the func-
tions that satisfy the homogeneous equation have the form of
exponential functions. Similarly, the solution to the discrete-
time version has the form of exponential sequences. The solu-
tion to (41) is not unique, but all the solutions have the form
zn , where z ∈ C. Thus, to solve (41) we set yn = zn , leading
to

hK z−K zn + · · · + h1 z−1 zn + zn = 0. (43)

Division by zn gives the K th order polynomial

H(z) = hK z−K + · · · + h1 z−1 + 1. (44)

H(z) is the characteristic polynomial of the homogeneous
system. The roots of H(z), that is, the values z1, z2, . . . , zK

that satisfy H(zk) = 0, determine the solution to (41). We
have that L K

[
zn

k

] = 0. If the K roots are distinct, the solution
to the homogeneous recurrence relation is given by any linear
combination of the sequences constructed from the different
roots:

yn =
K∑

k=1

ak zn
k ⇐⇒ L K [yn] = 0, (45)

since L K
[
zn

k

]=0 and L K

[∑K
k=1 ak zn

k

]
=∑K

k=1 ak L K
[
zn

k

]
.

Rank deficiency of Toeplitz matrix

Let S be the following (P − M + 1) × (M + 1) Toeplitz
matrix:

S =

⎡

⎢
⎢
⎢
⎣

sM sM−1 . . . s0

sM+1 sM . . . s1
...

...
. . .

...

sP sP−1 . . . sP−M

⎤

⎥
⎥
⎥
⎦
, (46)

where (P − M + 1) ≥ K , (M + 1) ≥ K and each element
of the matrix is given by sm = ∑K

k=1 bk um
k , with all bk

nonzero and all uk distinct. The matrix S can be decomposed
as follows:

S=

⎡

⎢
⎢
⎢
⎣

1 . . . 1
u1 . . . uK
...

. . .
...

u P−M
1 . . . u P−M

K

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
B

⎡

⎢
⎣

b1 . . . 0
...
. . .

...

0 . . . bK

⎤

⎥
⎦

︸ ︷︷ ︸
A

⎡

⎢
⎣

uM
1 uM−1

1 . . . 1
...

...
. . .

...

uM
K uM−1

K . . . 1

⎤

⎥
⎦

︸ ︷︷ ︸
C

.

(47)

Since B and C are Vandermonde matrices with dis-
tinct elements, both are of rank K . Therefore, if elements
b1, b2, . . . , bK are nonzero, matrix S has rank K .
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