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hyper and hypo sensitivity to sensory information, and sen-
sory seeking behaviours (Lane et al. 2010). Although dif-
ferences in sensory reactivity have been observed since the 
early descriptions of ASC, the aetiology, and exact nature, 
of these differences remains unknown. Recently, it has been 
suggested that an atypical interaction between information 
from the different senses may account for these differences 
(Iarocci and McDonald 2006), and in particular that tempo-
ral acuity (the ability to separate stimuli in time) between 
the senses may be reduced (see Stevenson et al. 2015 for a 
review).

Simultaneity judgement and Temporal Order Judgement 
(TOJ) tasks are commonly used to measure temporal acu-
ity across sensory modalities (Stone et al. 2001; Vroomen 
et al. 2004). In a simultaneity judgement task participants 
are presented with crossmodal stimuli separated by a range 
of stimulus onset asynchronies (SOAs) and judge whether 
the stimuli were simultaneous or sequential. Alternatively, 
in a typical crossmodal TOJ task the participant is presented 
with stimuli from two different sensory modalities sepa-
rated by a range of SOAs and asked to judge which stimulus 
came first. At shorter SOAs, it is more difficult to determine 
the order of presentation. The participant’s data can be fitted 
by a Psychometric function to extract measures of tempo-
ral acuity between the senses (typically the Just Noticeable 
Difference; JND, where a smaller JND represents increased 
acuity), and bias towards a particular sense (Point of Sub-
jective Simultaneity; PSS, which indicates the separation 
between the stimuli at which the person perceives them to 
be simultaneous. See Fig. 1a). Previous studies of crossmo-
dal TOJs in neurotypical participants (NTs) have indicated 
that the PSS varies between individuals and can be influ-
enced by attention to a particular modality (Spence et al. 
2001; Stone et al. 2001). That is, if a participant is attending 
to the modality of stimulus A then it can be presented later 
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This suggests that reduced multisensory temporal acuity 
and/or attention towards vision may contribute to atypical 
sensory reactivity.

Keywords Autism · Crossmodal temporal order 
judgements · Sensory reactivity · Crossmodal bias · 
Temporal acuity · Multisensory

Introduction

Atypical reactivity across multiple sensory modalities (e.g. 
vision, touch, hearing) is widely reported in autism spectrum 
condition (ASC; O’Neill and Jones 1997). This includes 
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make judgements about a stimulus in a particular modality, 
while ignoring distracting information presented in a second 
modality. The extent of temporal separation between the 
stimuli typically determines whether the stimuli will inter-
act; stimuli which occur closer in time to the target being 
more likely to influence the participant’s response (Shams 
et al. 2002; Shore et al. 2006). Studies which have inves-
tigated the effects of auditory information on visual judge-
ments across different delays have revealed differences in 
how NTs and individuals with ASC are affected by temporal 
separation. Children with ASC were influenced by crossmo-
dal distractors over a range of SOAs twice the size of that 
for NTs (Foss-Feig et al. 2010; Kwakye et al. 2011).

In the present study, we sought to extend the characteri-
sation of the temporal aspects of multisensory processing 
in ASC and explore the extent to which multisensory pro-
cessing may be related to sensory reactivity. The majority of 
previous research has focused on visual-auditory processing 
in ASC, but sensory differences associated with touch and 
hearing are frequently reported (Kern et al. 2006). Conse-
quently, it is important to explore whether any deficits in 
temporal processing in ASC are specific to visual-auditory 
interactions, or can also be observed for other bimodal pair-
ings. Adult participants completed TOJs for low level visual-
auditory, tactile-auditory and auditory-tactile pairings. TOJ 
tasks rather than simultaneity judgement tasks were used 
since apparently reduced temporal acuity in a simultaneity 
judgement task could be produced by a stronger inclination 
to report stimuli presented in close temporal proximity as 

than stimulus B, but perceived as simultaneous because the 
participant will process stimulus A more quickly.

Temporal acuity to crossmodal stimuli appears to be 
affected over the lifetime in NTs. Visual-auditory simulta-
neity judgement tasks, have revealed that the temporal acu-
ity of children and adolescents is reduced in comparison to 
young adults (Hillock et al. 2011; Hillock-Dunn and Wal-
lace 2012). It therefore seems plausible that differences in 
the developmental trajectory of ASC could affect the matu-
ration of this process. Indeed, reduced temporal acuity for 
visual-auditory stimuli has been observed across a range of 
task types (see Stevenson et al. 2015). For instance, chil-
dren and adolescents with ASC have previously completed 
simultaneity judgement tasks (Stevenson et al. 2014), and 
TOJ tasks (de Boer-Schellekens et al. 2013) with stimuli of 
varying complexity. Participants made judgements regard-
ing simple flash-beeps, speech stimuli and complex, but 
non-social visual-auditory stimuli. Both studies indicated 
that acuity was reduced with increasing stimulus com-
plexity. Participants with ASC had reduced acuity (larger 
JNDs) compared to controls (although this effect was only 
observed for speech stimuli in the Stevenson et al. 2014 
study). Reduced temporal acuity to simple stimuli is associ-
ated with poorer visual-auditory speech perception in ASC 
(Stevenson et al. 2014), which may suggest that low-level 
differences in temporal processing of crossmodal stimuli 
can impact on higher level communication issues in ASC.

The temporal alignment between the senses can also be 
inferred from selective attention tasks in which participants 

Fig. 1 a The proportion of trials where the participant judged stimulus 
B as first is plotted for each SOA and the data is fitted to a Psycho-
metric function. Two parameters were left free to vary in the fitting 
process: µ gives the mean of the fitted curve (0.5 point, referred to 
as the Point of Subjective Simultaneity; PSS), and β gives the slope, 
which is a measure of sensitivity and can be used to calculate the Just 

Noticeable Difference (JND). b Schematic of the experimental set-
up for a right handed participant. The participant held a tactor, which 
was embedded in a foam cube using the thumb and forefinger of their 
dominant hand. An LED was positioned next to the tactor on the foam 
cube. The participant was instructed to fixate on a grey cross posi-
tioned 19 cm above the speaker
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Apparatus and Stimuli

Participants sat at a desk in a dimly lit room and were 
instructed to focus on a central fixation point consisting of 
a grey cross (10 mm) in the centre of the screen. All stimuli 
were controlled through a PC running E-Prime (Psychol-
ogy Software Tools Inc., USA). A speaker was used to pres-
ent sound files (sine wave, 440 Hz, 0.8 AMPs) through a 
Tacamp amplifier (Dancer Design, St. Helens UK). Audi-
tory stimuli comprised a single 8 ms beep. The speaker 
was placed on a foam cube to prevent the participants feel-
ing vibrations emitted by the speaker through the table. A 
65 × 85 mm foam block was positioned 25 mm in front of 
the speaker. A bone conductor (Oticon Limited, B/C 2-PIN, 
100 Ω, Hamilton, UK) which was driven by the same sound 
files was embedded in the foam cube and attached to the par-
ticipant’s index finger on their dominant hand using double 
sided adhesive. Tactile stimuli comprised a single vibration 
of 8 ms. A single red LED which subtended a visual angle of 
approximately 2.24∘ was embedded in a black plastic cube 
(25 mm) positioned at the tip of the participant’s index fin-
ger. Visual stimuli comprised a single 8 ms flash (see Fig. 1b  
for apparatus).

White noise (~75dB SPL) was played through head-
phones throughout the experiment to prevent the participant 
from hearing sounds emitted by the bone conductor. All 
stimuli were clearly supra-threshold as confirmed by each 
participant before beginning the experiment.

Procedure

Participants were asked to report which stimulus came first 
for each bimodal pairing and their verbal response was 
recorded by the experimenter.

Stimuli were presented at ±28, 63, 98, 208 and 408 ms 
SOAs (Poliakoff et al. 2006; Spence et al. 2003; Zampini et 
al. 2003a, b, 2005). Each trial began with the onset of the 
central fixation cross followed by a delay randomly selected 
from a uniform distribution of 500–1000 ms (to prevent 
additional temporal cues). Then participants were randomly 
presented with either a visual-auditory, tactile-visual or 

simultaneous (response bias). It was anticipated that tem-
poral acuity would be reduced in participants with ASC in 
comparison to controls (increased JNDs for each bimodal 
pairing). There was no directional hypothesis for differ-
ences in PSSs between the groups, since differences have 
not been reported in the literature. Finally, we investigated 
whether experimental measures (JNDs and PSS) of multi-
sensory temporal processing were related to self-report of 
sensory reactivity across the groups. We anticipated that 
increased JNDs would predict more atypical sensory reac-
tivity as this would indicate a reduced ability to separate 
crossmodal stimuli in time which could lead to perceptually 
overwhelming experiences. Similarly increased PSS might 
predict sensory reactivity as this would indicate a bias (or 
increased attention) towards a particular sense.

Methods

Participants

ASC (n = 18) and NT control (n = 18) participants were 
matched for age, IQ, gender and handedness (see Table 1 
for demographic information). Four participants with ASC 
and four controls were female. One participant with ASC 
and one NT control were left-handed as self-reported using 
the Edinburgh Handedness Inventory (Oldfield 1971). All 
participants had a full scale IQ > 80 as measured using 
the Wechsler Abbreviated Scale of Intelligence (Wecshler 
1999). The diagnosis of ASC participants was confirmed 
using module 4 of the Autism Diagnostic Observation 
Schedule (ADOS-2; Lord et al. 2000) by a certified assessor. 
All participants had normal or corrected to normal vision 
(6/6 vision in both eyes as measured using Snellens test of 
visual acuity). To assess sensory reactivity all participants 
completed the Glasgow Sensory Quotient (GSQ; Robert-
son and Simmons 2013). The GSQ correlates strongly with 
autistic traits in both ASC and NT individuals and as such 
has been recommended as the most suitable instrument for 
measuring sensory reactivity in ASC (Horder et al. 2014).

 ASC (n = 18) NT (n = 18) t (34) p

Age 31 ± 8.43 31.05 ± 8.71 0.02 .985
FSIQ 116.56 ± 9.67 112.18 ± 7.56 1.49 .147
ADOS 8.55 ± 2.28 – – –

GSQ score 
(Bonferonni cor-
rected, α = .013)

Total 76.06 ± 24.28 31.44 ± 17.01 6.38 <.001
Hyper 

sensitivity
38.56 ± 14.47 16.78 ± 9.65 5.31 <.001

Hypo sensitivity 37.50 ± 12.42 14.67 ± 8.83 6.38 <.001

Table 1 Participant 
characteristics
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averages). Further data points were removed from analysis 
where pDev < 0.05 (Kingdom and Prins 2009). It is unlikely 
that poorly fitted functions, or those with an SOA beyond 
the stimulus range, gave a reasonable estimate of the partici-
pant’s underlying sensory mechanisms.

As the remaining samples contained a number of missing 
cases a Kruskall-Wallis test was then conducted to compare 
the JND and PSS in each condition between the groups.

Bayes factors were also calculated to compare the 
strength of the evidence for our principle research hypothe-
sis (participants with ASC would produce higher JNDs than 
NT participants in each condition) relative to that for the 
null hypothesis (no difference in JNDs between the groups). 
Bayesian independent samples t-tests with default priors 
were conducted comparing JNDs between the groups in each 
condition using JASP (https://jasp-stats.org/). A Bayes fac-
tor measuring evidence for the research hypothesis over the 
null hypothesis given the observed data is usually denoted 
BF10. The value BF10 indicates how many times more likely 
the research hypothesis is than the null hypothesis. Accord-
ingly a value of BF10 = 1 suggests the evidence does not 
favour either the research or the null hypothesis. Increas-
ingly large values of BF10 > 1 suggest greater evidence for 
the research evidence over the null, whereas decreasing val-
ues of BF10 < 1 suggest increasing evidence for the null 
hypothesis over the research hypothesis (Dienes 2014).

As an exploratory analysis, multiple regressions were cal-
culated for each group to explore the relationship between 
sensory scores reported using the GSQ and participants 
JND and PSS in each condition.

Results

Each group’s median responses to stimuli presented at each 
SOA for each modality pairing are given in Fig. 2.

Just Noticable Difference

The size of the JNDs did not differ between participants with 
ASC or NT for any modality pairing (see Fig. 3). ASC par-
ticipant JNDs were larger than NTs for the visual-auditory 
(χ2 (1, n = 30) < 0.01, p = .950) and for tactile-visual (χ2 (1, 
n = 34) = 1.22, p = .270) modality pairings, but these differ-
ences did not reach statistical significance. The JNDs of NT 
participants were larger than the ASC group for the tactile-
auditory modality pairings (χ2 (1, n = 26) = 1.17, p = .280), 
but this did not reach statistical significance. A Bayes Factor 
(BF) was calculated to compare JNDs between the groups for 
each modality pairing. For visual-auditory JNDs BF10 = 0.35 
meaning that the research hypothesis was 0.35 times more 
likely than the null given the data (or equivalently that the 
null was 2.82 times more likely than the research hypothesis). 

auditory-tactile pairing. Each of the 30 possible trial types 
was presented twice in each block. There were five blocks, 
meaning that each SOA was presented 10 times and there 
were 300 trials in total. There was a delay of 1000 ms after 
the experimenter entered the participant’s response, during 
which time the screen went blank, before the central fixation 
cross appeared to indicate the next trial was due to com-
mence. Before beginning the main experiment, participants 
completed 4 trials for each bimodal pairing with the SOA 
at ±408 ms as practice. These trials included feedback and 
the participant continued to the main experiment once per-
formance for each pairing was at 75 % accuracy, confirming 
that all stimuli were suprathreshold and the task instructions 
understood.

Data Analysis

Responses for each stimulus pairing were converted to pro-
portion of vision first (visual-auditory trials), tactile first 
(tactile-visual trials) and auditory first (auditory-tactile tri-
als). Each participant’s data was then fitted by a cumula-
tive Gaussian Psychometric function using the Palamedes 
toolbox for MATLAB (Kingdom and Prins 2009). Each 

participant’s JND (0 675.
β

; Zampini et al. 2003a, b, 2005) 

and PSS were then extracted for each stimulus pairing (See 
Fig. 1b). Individual JND and PSS values were removed 

prior to analysis where the standard deviation ( 1
β

) of the 

psychometric function was larger than the range of SOAs 
presented (visual-auditory ASC n = 1, auditory-tactile ASC 
n = 1; see Spence et al. 2001 in which similar exclusion cri-
teria were used). A measure of the goodness of fit of each 
function was estimated (pDev, range from 0 to 1 with values 
closer to 1 representing better fits; see Table 2 for group 

Table 2 Measures of psychometric function goodness of fit (mean 
pDev ± SD) for each modality pairing where values closer to 1 repre-
sent better fits. The final sample size in each condition is also included 

pDev Final n

Visual-auditory
ASC 0.29 ± 0.165 15
NT 0.34 ± 0.23 15

Tactile-visual
ASC 0.45 ± 0.29 18
NT 0.46 ± 0.30 16

Auditory-tactile
ASC 0.41 ± 0.31 14
NT 0.37 ± 0.21 12
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measured using the GSQ and the JND for each bimodal 
pairing (Table 3). The regression model was not statisti-
cally significant (F (3, 19) = 2.20, p = .128). However, JNDs 
for the visual-tactile modality pairing were a significant 
predictor of sensory reactivity, indicating that participants 
who had reduced temporal acuity to tactile-visual stimuli 
also reported more atypical sensory reactivity. A follow-up 
Pearson’s correlation coefficient revealed a non-significant 

For tactile-visual JNDs BF10 = 0.74 meaning the research 
hypothesis was 0.74 times more likely than the null given the 
data (or that the null was 1.34 times more likely). For audi-
tory-tactile JNDs BF10 = 0.19 meaning the research hypoth-
esis was 0.19 times more likely than the null given the data 
(or that the null was 5.28 times more likely).

A multiple regression was calculated exploring the rela-
tionship between self-reported sensory reactivity score as 
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predict sensory reactivity (F (3, 19) = 2.21, p = .127). How-
ever, PSS scores in the visual-auditory condition were a 
significant positive predictor of sensory reactivity, indicat-
ing that participants who required the auditory stimulus to 
be presented prior to the visual stimulus in order to judge 
the stimuli as simultaneous reported more atypical sensory 
reactivity (see Fig. 4). A follow-up Pearson’s correlation 
coefficient revealed a non-significant positive correlation 
between visual-auditory PSS and sensory reactivity scores 
(r (30) = .29, p = .129).

Discussion

The aim of the current study was to explore temporal acu-
ity between the senses in adults with ASC. The data sug-
gest that temporal acuity (JND) does not differ between the 
groups for any modality pairing, although there was greater 
variability in performance in the ASC group. The data also 
suggest that there are no between group differences in bias 
towards a stimulus (PSS). Interestingly, both the JND in the 
visual-tactile condition and the PSS in the visual-auditory 
condition predicted self-reported sensory reactivity.

The findings of the current study contrast with previ-
ous research suggesting that temporal acuity is reduced for 
simple visual-auditory stimuli in children and young adults 
with ASC (de Boer-Schellekens et al. 2013; Stevenson et 
al. 2014). As visual-auditory temporal acuity is believed 
to be reduced in ASC, it is interesting that in the present 
study the effect size was smallest (d = 0.02) for the between 
group comparison of visual-auditory JNDs. This suggests 
that temporal acuity is comparable to NTs in some adults 
with ASC (see de Boer-Schellekens et al. 2013; Poole et al. 
2015 for similar recent findings). As multisensory temporal 
acuity typically matures across development (Hillock et al. 

positive correlation between tactile-visual JNDs and sen-
sory reactivity scores (r (34) = .323, p = .063). See Fig. 4a.

Point of Subjective Simultaneity

There were no statistically significant differences in the PSS 
between the groups for any of the modality pairings (see 
Fig. 3). The ASC participants exhibited a more positive PSS 
for the visual-auditory pairings than NTs, but this differ-
ence was not statistically significant (χ2 (1, n = 30) = 0.36, 
p = .548). For the tactile-visual pairing, the ASC participants 
were more positive than the NTs, but this difference was 
not statistically significant (χ2 (1, n = 34) = 0.57, p = .448). 
For the auditory-tactile pairing, NT participants were more 
negative, but this difference was not statistically significant 
(χ2 (1, n = 26) = 0.04, p = .837).

A multiple regression was conducted to explore the rela-
tionship between self-reported sensory reactivity and the 
PSS for each bimodal pairing (Table 3). The regression 
model revealed that PSS scores overall did not significantly 

Table 3 Regression data comparing JND and PSS in each modality 
pairing with total sensory scores

R2 
adjusted

β t p

JND .16
Visual-auditory JND .24 0.59 .562
Tactile-visual JND .65 2.14 .048*
Auditory-tactile JND .04 0.12 .903

PSS .16
Visual-auditory PSS .68 2.56 .021*
Tactile-visual PSS .17 0.74 .473
Auditory-tactile PSS .35 1.39 .184

Significant predictors are highlighted with an asterisk
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more quickly. Previous research in NTs has suggested that 
the PSS can be biased towards an attended stimulus and is 
processed more quickly (Spence et al. 2001; Spence and 
Parise 2010) and selective attention has been implicated 
in TOJ tasks (Binder, 2015). The current finding therefore 
suggests that increased attention towards visual information 
may also contribute to sensory reactivity. Indeed, recent 
studies have observed differences in the selective atten-
tion to vision in ASC (Murphy et al. 2014; Occelli et al. 
2013). The finding that a visual bias predicted sensory traits 
is partially consistent with findings from a visual-auditory 
simultaneity judgement task in NTs, which indicated that 
a shift in PSS towards the auditory stimulus was correlated 
positively with autistic traits (Donohue et al. 20121). That 
is, those with higher autistic traits showed a similar pattern 
to the participants in the current study with more atypical 
sensory reactivity.

As previous investigations have indicated that the tem-
poral acuity of crossmodal stimuli can be enhanced with 
experience (Donohue et al. 2010), and training (Powers et 
al. 2009; Stevenson et al. 2013; Vroomen et al. 2004) the 
current findings suggest that such approaches may be effec-
tive in reducing sensory reactivity in ASC.

In summary, the current investigation provided no evi-
dence for reduced temporal acuity to crossmodal stimuli in 
adults with ASC. It may be that there is a developmental 
delay in the maturation of this process which has ‘caught 
up’ with NT performance by adulthood. However, the vari-
ability in the ASC data suggests that there are important 
individual differences in temporal processing of crossmo-
dal stimuli, which merit further investigation. Indeed, the 
tactile-visual JND and visual-auditory PSS data were pre-
dictors of sensory reactivity. Participants with reduced tac-
tile-visual temporal acuity and those who were more biased 
towards vision for visual-auditory judgements reported 
more sensory reactivity. This preliminary finding suggests 
that both reduced tactile-visual temporal acuity and atypical 
selective attention to vision warrant further investigation to 
understand and ameliorate atypical sensory reactivity.
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2011; Hillock-Dunn and Wallace 2012) there may be a delay 
in the maturation of this processing in ASC which may have 
‘caught up’ with NT performance by adulthood (see Foxe 
et al. 2015; Taylor et al. 2010, for evidence of maturation 
of visual-auditory speech processing in adolescents with 
ASC). However, the variability in the ASC group’s perfor-
mance is worth noting. For example, the most extreme val-
ues for visual-auditory JNDs (Fig. 3) display a participant 
close to 0 and another over 200 ms. In addition, a partici-
pant with ASC excluded from analysis produced a standard 
deviation beyond the range of SOAs which could suggest 
very poor acuity for visual-auditory stimuli (although see 
below for a possible limitation in the selection of SOA). 
This variability in acuity may reflect individual differences 
in the development of multisensory processing, or in the use 
of compensatory strategies.

The present study is the first to explore differences 
in multisensory temporal acuity in ASC across multiple 
modality pairings, but there are some limitations. The SOAs 
used were based on previous TOJ studies in NT participants. 
However, differences between ASC and NT performance 
on visual tasks including task-irrelevant auditory informa-
tion have previously revealed between group differences 
for stimuli presented between 150 ms-300 ms SOA (Foss-
Feig et al. 2010; Kwakye et al. 2011). As only a single SOA 
was presented within this range, it is possible that the cur-
rent experiment was not optimised to draw out differences 
between the groups. Similarly, there were only 10 repeti-
tions of each SOA which may have contributed to a number 
of participant’s functions being poorly fitted. Nevertheless, 
the current investigation suggests that temporal acuity is not 
universally impaired in adults with ASC. There is a need 
for further studies exploring temporal acuity between the 
senses across adolescence and into early adulthood in both 
NTs and in ASC.

The current findings revealed novel relationships 
between aspects of multisensory temporal processing and 
self-reports of sensory reactivity. In the tactile-visual condi-
tion participant JNDs were a significant predictor of self-
reported sensory reactivity, such that those with reduced 
tactile-visual temporal acuity reported greater sensory reac-
tivity. Reduced tactile-visual temporal acuity could lead to 
atypical experiences of touch which could impact on higher 
level processes such as the experience, and use, of inter-
personal touch (Poole et al. 2015) and in planning move-
ments, particularly involving objects (Gowen and Hamilton 
2013). Furthermore, participants who required a greater 
auditory lead to perceive visual-auditory stimuli as simul-
taneous reported more atypical sensory reactivity. Counter-
intuitively, the auditory lead suggests a bias towards visual 
information as it means that the auditory stimulus must be 
presented before the visual stimulus in order for them to be 
judged as simultaneous; i.e. the visual stimulus is processed 
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