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sequences to one another also yielded a high similarity 
(Dice 0.83–0.94) that exceeded intra-rater similarity (Dice 
0.75–0.91). We compared the results with those of other 
available methods and showed that the segmentation based 
on the proposed definition has better accuracy and repro-
ducibility in the test dataset used.
Conclusion  Overall, the presented definition is shown to 
produce accurate results with higher reproducibility than 
manual delineation. This approach can be an alternative to 
other manual or automatic methods not only because of its 
accuracy, but also due to its good reproducibility.

Keywords  Segmentation · White matter hyperintensities · 
White matter lesion · Multimodal segmentation

Introduction

White matter hyperintensities (WMH) are radiologi-
cal findings on MR images that are classically defined as 
areas with relatively high signal intensities on T2-weighted 
images (T2) and low intensities on T1-weighted images 
(T1). The presence and spatial patterns of WMH on MRI 
and the appearance of these changes are important for 
studying pathology and for prospective clinical practice 
including diagnosis, following progression, and monitoring 
treatments.

Table 1 presents the desirable characteristics of an algo-
rithm for the automatic detection of WMH to be widely 
usable. Although many automatic methods have been 
proposed in the last 20 years [1–10], no single method is 
widely employed, nor does it satisfy all desirable charac-
teristics of being widely used [11]. An important source of 
the imperfect performance of automated WMH segmenta-
tion methods is the attempt to solve a problem for which 
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there is no unique solution. In other words, although WMH 
are visually appreciable, expert human raters do not agree 
either on the general definition of WMH or on the precise 
segmentation of individual scans, resulting in automatic 
WMH segmentation methods that are aimed at a moving 
target. The problem of segmenting WMH as viewed in this 
way is an ill-posed problem [12]. The ill-posed characteris-
tic sets WMH segmentation apart from many other segmen-
tation problems, in which much closer agreement between 
experts is reached; this is why there are widely used and 
accepted methods for those other  segmentation problems. 
We believe that if the WMH segmentation problem were 
well-posed, it would served as a foundation for a stable 
computer solution. Although the previous approaches can 
be and have been useful in numerous scenarios, a new 
approach is needed in order to achieve a general solution.

In the present work, the problem of WMH segmentation 
has been reformulated as a well-posed problem. An easy-
to-implement statistical test has been proposed to compare 
the local image intensity to the global intensity as a refor-
mulation of the current descriptive definition of WMH. 
The concrete statistical definition for WMH, which enables 
segmentation independent of manual reference and scan-
ning parameters, has been shown to yield results with the 
same quality as the traditional supervised machine learning 
method.

In this study, we show that the proposed well-posed 
reformulation addresses the same question as the tradi-
tional approach: the proposed definition has been shown to 
be aligned with the traditional visual description by com-
paring the results using all combinations of input sequences 
(e.g., Fluid-attenuated inversion recovery (FLAIR), T1, 
T2 and T1) with manual delineation. These segmentations 

have then been compared with Lesion TOADS and LST 
[5, 8], two other available state-of-the-art methods, which 
work with T1 and FLAIR, to assess whether or not the pro-
posed statistical definition can be used in place of automatic 
methods that aim to replicate traditional visual descriptions 
of WMH. Segmentation using different combinations of 
input sequences are cross-compared to one another (e.g., 
segmentation using FLAIR and T1 compared with the one 
using T2 and T1) to simulate a scenario in which different 
imaging data protocols were used in a multi-center study.

The experiment described in this paper uses a dataset 
with four widely used MRI sequences (T1, T2, FLAIR, 
and PD) and manual WMH delineation. After describing 
the dataset, the proposed definition of WMH is presented 
followed by step-by-step descriptions of all necessary pre-
processing and its implementation. Then, the experimental 
setup and its results are presented before discussing the 
method and implication of the results.

Materials and methods

Subjects

Data used in the preparation of this paper were obtained 
from  the Kings Health Partners-Dementia Case Regis-
ter (KHP-DCR) in the UK. MRI scans of 119 subjects 
(Alzheimer’s disease (AD), mild cognitive impairment 
(MCI), and healthy controls) were used from the KHP-
DCR. The AD diagnosis was made according to the 
Diagnostic and Statistical Manual for Mental Diagnosis 
(fourth edition) and MCI was defined according to the 
Petersen criteria [13]. Subjects were 76.4  ±  7.4  years 

Table 1   Desirable features for a WMH segmentation algorithm and their availability in different methods

ANN artificial neural network, OD outlier detection, SVM support vector machines, RG region growing, kNN k-nearest neighbors algorithm, RI 
rotation invariant features, Yes satisfied (proved), ? Argued in discussion, not proved, No does not satisfy, – does not mention

Zijdenbos 
et al. [4]

Shiee  
et al. [5]

Raniga  
et al. [6]

Damangir 
et al. [7]

Schmidt  
et al. [8]

Steen-wijk 
et al. [9]

Guizard 
et al. [10]

Technique used ANN Clustering OD SVM OD and RG kNN RI

No manual editing No Yes Yes No Yes No No

Any conventional MRI 
sequences

No No ? ? No No Yes

Independent of scanning 
parameters

? Yes Yes ? Yes Yes ?

Handle diffuse dirty white 
matter

No No No No No No No

Handle partial volumes No No No No No No No

Multi-center datasets ? No No No No No ?

Duration – 2 h – 45 m 1.5 h 3 h 1 h

Publicly available No Yes No Yes Yes No No



229Magn Reson Mater Phy (2017) 30:227–237	

1 3

old, 56% female, and had 12.0 ± 4.3 years of education 
and a mini-mental state examination (MMSE) scores of 
26.5 ± 4.8.

The imaging protocol included the following sequences: 
sagittal 3D T1-weighted MPRAGE, axial proton density 
(PD), T2-weighted fast spin echo image, and 2-D FLAIR. 
All images had been acquired with a 1.5 Tesla scanner and 
had full brain and skull coverage. Quality control was per-
formed according to the AddNeuroMed procedure [14]. 
Table 2 shows the detailed sequence information.

In the rest of the paper, T1 refers to the T1-weighted 
MPRAGE and T2 refers to the T2-weighted image.

White matter hyperintensities definition

The common definition of WMH is based on their vis-
ual properties on specific pulse sequences (hyper- or 
hypo-intensities), which has been proved to be insuffi-
ciently reproducible for large multi-center studies [11].

We incorporated the common definition of WMH in a 
new statistical definition that can be robustly measured. 
This study defines WMH as areas where their local image 
histograms are significantly different from the expected 
normal local histogram on the one-tailed test.

This proposed statistical definition differs from machine 
learning methods and outlier detection methods, in which 
statistical features of manually delineated WMH are cap-
tured in a supervised or unsupervised way. In contrast, the 
proposed method defines WMH independent of manual 
delineation, and it is only based on the common definition.

A one-tailed Kolmogorov–Smirnov test has been used as 
the statistical test as shown in Eq. 1:

 where, F1 is the cumulative local histogram and F2 is the 
expected normal local histogram at index i.

The test statistic distribution is empirically calculated 
using permutation of all test statistics for voxels in an evi-
dently normal brain. In the present study, significance level 
0.05 was used, and the expected local histograms of nor-
mal brain were calculated for each voxel as the average of 
the local histograms of evidently normal voxels in the same 

(1)
D
+
= sup (F1(i)−F2(i))

D
−
= sup (F2(i)−F1(i))

.

subject. Figure S1 in the supplementary material illustrates 
sample local histograms for different brain tissue types and 
image sequences. Evidently, normal voxels are calculated 
in two steps as described in the  section “Calculating evi-
dent normal brain”.

Image processing

Preprocessing

The aim of the preprocessing is to register all input pulse 
sequences together, correct them for inhomogeneity, and 
estimate initial brain segmentation as white matter (WM), 
gray matter (GM) and cerebrospinal fluid (CSF). Preproc-
essing comprises the following steps performed with the 
FSL package (http://fsl.fmrib.ox.ac.uk/fsl):

1.	 Intra-subject registration using rigid 3-D transforma-
tion with mutual information (FSL FLIRT [15] http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/flirt).

2.	 Skull stripping (FSL BET [16] http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/bet).

3.	 Inhomogeneity correction for all registered input 
images using the N3 algorithm [17].

4.	 Brain tissue segmentation (FSL FAST [18] http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/fast) into GM, WM, and CSF 
voxels.

5.	 Refining brain tissue segmentation: GM voxels that are 
bright on either FLAIR or T2 images (top 15% voxels 
of GM intensity histogram) are labeled as suspicious 
voxels. Suspicious voxels surrounded by mostly WM 
are labeled as WM and voxels surrounded by mostly 
GM are labeled as GM.

The results of the preprocessing step were then used as 
the input to the rest of the procedure (as input sequences in 
Fig. 1).

Calculating evident normal brain

The proposed definition depends on the perception of a 
normal brain. In this paper, evidently normal voxels are 
simply calculated in two steps:

Table 2   Description of imaging pulse sequence protocols

Slice thickness 
(mm)

Slice gap 
(mm)

Matrix Field  
of view

Echo  
time (ms)

Repetition  
time (ms)

Inversion  
time (ms)

Flip angle 
(deg)

MPRAGE 1.2 1.2 192 × 192 240 3.80 8.6 1000 8

PD 3 3 256 × 256 240 10.58 3000 0 90

T2 4 5.5 512 × 512 240 88.16 5000 0 90

FLAIR 4 5.5 320 × 320 240 160.70 10,000 2500 90

http://fsl.fmrib.ox.ac.uk/fsl
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/flirt
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/flirt
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/bet
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/bet
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fast
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fast
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1.	 Heuristic thresholding is used to capture the bottom 
percentile (hypo-intense area) of voxels for FLAIR 
(45%), T2 (50%), and PD (65%) and the upper percen-
tile (hyper-intense area) of voxels for T1 (15%). The 
thresholding was performed independently on each 
sequence and applied three times after smoothing the 
image with Gaussian kernels of size 1, 2, and 3 mm. 
The final threshold mask is the intersection of all 
masks for each sequence and scale (i.e., AND opera-
tion). This step should generally be expected to remove 
some of non-WMH voxels while keeping all WMH 
voxels (results in Step 1 in Fig. 1).

2.	 The masks generated in the first step are used as the 
training for a support vector machine algorithm (SVM) 
with a Gaussian kernel, and then the SVM is reduced 
to a single-node SVM using the reduction algorithm 
described by Schölkopf et al. [19] The voxels that are 
classified by the single-node SVM is the output mask 
for this step.

Voxels captured by all the masks above (i.e., all masks 
AND-ed together) are considered as an evidently normal 
brain mask. A Proper Closing morphological filter is then 
used to include small holes and missing voxels in the evi-
dently normal brain before using the mask in the WMH 
definition. Proper Closing is defined as in Eq.  2, using 
initial mask (M), morphological closing (C), and opening 
(O) functions with a 2-mm spherical structuring element 
(results in Step 2 in Fig. 1).

Validation procedure

Manual delineation of WMH was used as a reference to 
evaluate the segmentation results. Manual delineation was 
performed by a trained radiologist according to the proto-
col described in [20]. WMH were delineated on the FLAIR 
images and then registered to other sequences using the 
same transformation calculated in the preprocessing steps. 
Having the manual delineation as a reference, the validity 
of the proposed approach was investigated in three experi-
mental settings:

First, the segmentation accuracy was assessed by com-
paring the results directly to manual delineation. The seg-
mentations using all 15 possible different sequence combi-
nations of T1, T2, FLAIR, and PD have been considered 
for comparison.

Second, the segmentations were compared to that of 
Lesion TOADS and LST [5, 8], two other publicly avail-
able software methods on our dataset.

Third, in order to investigate the robustness and gener-
alizability of the proposed statistical definition, the seg-
mentations produced using different combinations of input 
sequences were compared to one another. This comparison 
helps to predict the expected similarity should the method 
be used in a multi-center study with different image modal-
ity combinations (e.g., one center with T1 and FLAIR 
images, and another center with T1 and T2 images).

In all these three situations, fixed significance levels 
of 0.05 were used, and three measures were calculated to 
compare two segmentations:

1.	 Correlation coefficient: to measure similarity of total 
estimated volume.

2.	 False negative rate (FNR) and false discovery rate: to 
measure the types of errors in segmentation (i.e., miss-
ing or over estimating WMH)

3.	 Dice coefficient: to compare the extent to which two 
segmentations overlap. The Dice coefficient [21] is 
defined in Eq. 3 as twice the total volume of WMH that 
was labeled by both methods, divided by the sum of 
the total volumes obtained by them, where S1 and S2 
are the two segmentations to compare:

Statistical analysis and plotting were performed using 
MATLAB R2014B. The Pearson correlation coefficient 
was used for calculating correlation between volumes.

(2)Proper closing(M) def M ∧ O(C(O(M)))

(3)Dice def
2× (S1 ∩ S2)

S1 + S2

.

1 Thresholding 2 Normal WM removal

4 Final results3 Statistical definition

Preprocessed images

Fig. 1   Results after each step of CASCADE. Step 1 results after 
thresholding, Step 2 results after second thresholding and morpholog-
ical filter, Step 3 testing all voxels in the results of Step 2 against the 
statistical definition of WMH to generate the WMH confidence map, 
Step 4 thresholding WMH confidence map at the desired level to pro-
duce a binary WMH mask
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Results

Comparison to manual delineation

Table 3 describes the distribution of the WMH load in the 
dataset. The WMH size varies between subjects in this 
dataset, capturing different levels of involvement from 
very small patches of WMH to a very high load of WMH, 
making this a useful dataset for the current development 
project.

Since the range of WMH load is large, for all the figures 
of the “Results” section, we report the ratio between meas-
ured WMH volumes and the volumes of the manual seg-
mentations to obtain values in the same range for all sub-
jects to facilitate visual comparison. In all box-and-whisker 
plots, the highlighted band specifies the estimated manual 
performance reported in the literature [4, 22, 23] (i.e., man-
ual inter-rater agreement).

Figure  2 compares the  volumes obtained from differ-
ent combinations of input sequences to those obtained by 
manual delineation. It shows that all combinations of input 
sequences produce WMH volumes that are sufficiently 
close to the manual delineation, except for PD, T1, and 
PD + T1.

Figure 3 shows the Dice coefficient between the results 
of the proposed method and manual delineation. Similar 
to the results of volume correlation, all combinations of 
sequences perform comparable to manual delineation.

Figure 4 shows the error rates using different combina-
tion of sequences. In our experiment, false negative and 

false positive rates were in the same range for all combina-
tions that have T2 or FLAIR. Even though WMH volumes 
from all input sequences strongly correlates with the vol-
ume from manual delineation, results using only T1 or PD 
suffer from a large false negative rate (i.e., missing WMH 
detection).

Finally, Fig.  5 illustrates a sample segmentation using 
the proposed method for visual reference.

Comparison to other methods

The results of the segmentation using different combina-
tions of sequences were also compared to two available 
state-of-the-art methods: Lesion TOADS and LST [5, 8]. 
T1 and FLAIR were used as input pulse sequences to both 
methods. As Fig.  2 shows, both Lesion TOADS and LST 
produce volumes very close to volumes from manual delin-
eation with a slight underestimation. Figure  3 shows the 
Dice coefficient between these methods and manual deline-
ation and confirms both methods can produce the results 
in an acceptable range. Although these methods produced 
acceptable results, in our experiment for older populations, 
our method could surpass their Dice similarity using most 
of the combinations of input sequences.

Multicenter analysis simulation

A performance bottleneck for analyzing multicenter data is 
that each center may have its own imaging routine, unless 
optimized using a multi-center protocol.

Table 3   Descriptive statistics 
of estimated volume of WMH 
using different input sequences 
and their false negative (FNR) 
and false discovery rate (FDR)

Volume (cc) FNR (%) FDR (%)

Minimum 25% Median 75% Maximum

Manual (on FLAIR) 0.447 6.805 20.506 33.006 150.290 – –

PD 0.256 3.421 10.510 17.213 81.685 58.1 19.9

T1 0.275 4.059 12.234 22.093 99.503 47.5 17.2

PD + T1 0.313 4.343 13.087 20.901 95.043 44.8 15.6

T2 0.442 6.807 20.219 32.512 149.071 15.1 14.8

FLAIR 0.454 6.828 20.181 33.420 150.048 13.3 13.4

T1 + FLAIR 0.442 6.791 20.308 33.391 147.853 7.9 8.1

T1 + T2 0.445 6.737 20.703 33.277 148.391 12.3 12.2

PD + FLAIR 0.443 6.787 20.334 32.970 149.633 12.5 12.4

PD + T2 0.444 6.887 20.516 33.029 152.026 15.2 15.5

T2 + FLAIR 0.451 6.699 20.654 33.018 149.734 14.5 14.4

T1 + FLAIR + PD 0.454 6.798 20.871 33.272 148.040 8.1 8.0

T2 + FLAIR + PD 0.442 6.658 20.432 33.118 149.647 16.5 15.6

T1 + T2 + PD 0.449 6.735 20.266 32.943 152.826 12.1 11.9

T1 + T2 + FLAIR 0.455 6.712 20.456 33.039 151.451 8.4 8.2

T1 + T2 + PD + FLAIR 0.441 6.811 20.352 33.369 147.593 8.7 8.5
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In order for a method to be usable in studies with 
a different imaging protocol (e.g., some subjects with 
T1 + FLAIR and others with T1 + T2 sequence) the seg-
mentation with different input sequence should be compa-
rable. Since high similarity between manual segmentation 
and the first (e.g. T1 + FLAIR) and second (e.g. T1 + T2) 
sequence combination does not guarantee high similarity 
between first and second segmentation (see supplemen-
tary Fig. S2), in this experiment, the output segmentation 
from different combinations of input sequences were com-
pared against one another, e.g., the results obtained using 
T1 + FLAIR were compared with those using T1 + T2. In 
this experiment, the results from manual delineation are not 
taken into account and the similarity of the segmentation in 
different scenarios has been assessed.

Figure  6 shows the Dice coefficient when comparing 
the results from different input sequences. The value in 
each cell corresponds to the expected performance meas-
ure when comparing results from two hypothetical cent-
ers. It can be observed that in the presence of the T2 or 
FLAIR sequences, the results from two different centers 
can be comparable and the expected Dice coefficient is 

always more than 0.8. In particular, a comparison of the 
T1 + FLAIR and T1 + T2 combinations, a common sce-
nario in multicenter studies, results in a Dice coefficient of 
0.91.

For volume comparison, Fig. S3 (in the supplementary 
material) illustrates the ratio between the WMH volumes 
obtained from different sequence combinations.

Discussion

White matter hyperintensities are referred to as areas 
with unusually high signal intensities on FLAIR or 
T2-weighted MRI and/or unusually low attenuation on 
T1-weighted images. This description has been used for 
WMH segmentation, using either manual delineation 
or automatic segmentation methods that aimed to repli-
cate manual delineation. Manual guidelines are subject 
to interpretation and so are automatic methods based on 
machine learning that explicitly or implicitly rely on man-
ual delineation. In order to avoid the use of any explicit or 
implicit interpretation, we attempted to provide a concrete 
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statistical definition of the WMH that implies no human 
decision. This definition will also improve future soft-
ware development as it directly addresses some important 
issues:

•	 Usable with any available pulse sequence combination 
without any modification since it works with one pulse 
sequence at a time.

•	 Produces comparable results with different input pulse 
sequences, and thus can be used in multi-center studies.

•	 Although the issue of partial volumes and ambiguous 
WMH borders are still not completely solved, because 
of the probabilistic nature of our definition, the volume 
and the shape of the WMH can be estimated from the 
probabilistic maps that are output.

Validation analyses have been performed using dif-
ferent sequence combinations as input in order to assess 
segmentation performance. We found that any combina-
tion of pulse sequences containing either FLAIR or T2 
images produces valid and reliable results, especially if 
the main interest is to obtain regional volumes, shapes, 

or distribution of the WMH. However, using both T2 and 
FLAIR segmentation does not cause a dramatic improve-
ment in quality. Including T1 images in the input sequences 
significantly increases the accuracy of the results by boost-
ing the accuracy of brain tissue segmentation. PD images 
should be added only if the other modalities cannot result 
in a sufficiently good brain extraction.

Using the statistical definition of the WMH, we also 
investigated the performance of two other well-established 
methods for WMH segmentation: Lesion TOADS and LST 
[5, 8]. We have shown that the WMH volume and Dice 
coefficient of the proposed statistical definition is slightly 
higher than those methods on our dataset.

In order to facilitate further comparisons, we have also 
implemented the definition and algorithms described in 
this paper in an open-source software package called CAS-
CADE, and made it publicly available (appendix in sup-
plementary material and http://ki.se/en/nvs/cascade). Since 
the main idea of this study is to segment WMH, we keep 
the implementation simple by using only FSL utilities for 
pre-processing and finding an evidently normal brain that 
our definition is based upon. Specifically, in this study, we 
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use a simple method for finding an evidently normal brain 
based on adaptive thresholding, which leads to reliable 
results (Figs. 2, 3). We also substituted the results of Lesion 
TOADS and LST segmentation for detecting an evidently 

normal brain (Fig. S4 in the supplementary material), and 
showed that the output was robust independent of the qual-
ity of the initial segmentation (Fig. S5 in the supplementary 
material). This suggests that our statistical definition can be 

Fig. 4   Error rate illustrated by 
false positive rate (FPR) and 
false discovery rate (FDR); 
calculated using different com-
bination of input sequences
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Fig. 5   A sample slice overlaid with CASCADE output given different input sequences as input. Blue Manual delineation. Red CASCADE out-
put
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used as an add-on to the current methods (including man-
ual, semi-automatic, and automatic) to ensure reproducibil-
ity of the results.

In this study, a fixed significance level of 0.05 was 
used for all sequence combinations to ensure implicit and 
explicit independence from manual delineation. One may 
want to optimize the significance level to maximize the 
Dice coefficient for different sequences, which in the pre-
sent dataset would lead to 0.04–0.06 (0.046 ± 0.008). How-
ever, we believe applying such an optimization defeats the 
purpose of the method which is to approach the problem 
of WMH segmentation as a well-posed problem without 
any implicit or explicit dependency on manual delineation. 
Therefore even though changing the significance level may 
increase the accuracy for particular datasets, we believe the 
significance level should be set outside the image process-
ing pipeline.

Comparing other approaches

One of the main contributions of this study is the presenta-
tion of a new approach for the problem of WMH segmenta-
tion in which any implicit or explicit connection to manual 
WMH delineation is circumvented.

So far, three main approaches have been used to meas-
ure WMH in the literature: manual [24–28], supervised [4, 
7, 9] and unsupervised [5, 6, 8] machine learning methods 

(Table S1 in the  supplementary material). Using the cur-
rently accepted definition of WMH, manual delineation has 
been used for the WMH assessment [24–28]. However, low 
reproducibility and the need for human interaction have 
made it not feasible in large multi-center studies. Further-
more, these various guidelines have shown inconsistent 
correlations with different clinical features [28, 29]. Thus, 
computerized machine learning approaches emerged as 
tools for rapid and accurate segmentation of WMH.

Machine learning-based segmentation is performed 
using either supervised or unsupervised learning tech-
niques. However, both supervised and unsupervised 
methods rely on manual delineation data either for input 
or target segmentation. Supervised learning methods 
explicitly involve human input, and thus, to some degree 
have the same fundamental problem of manual measure-
ment. Unsupervised methods, based on either clustering 
or outlier detection methods, are also implicitly relying 
on human input by targeting replication of human results. 
Even though the measurements using supervised and unsu-
pervised methods are relatively reproducible with the least 
inter-rater disagreement, WMH are defined through the 
experts’ interactions in each setting where the intra-rater 
disagreement is still expected to be high. In other words, 
since the scope of machine learning approaches is to mimic 
expert delineation, they conceptually carry the same disa-
greement problem as manual measurements.

Fig. 6   Dice coefficients 
comparing WMH masks when 
measured using different input 
sequences and comparing 
results from CASCADE using 
different input sequences to one 
another
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On the other hand, the proposed statistical definition 
does not aim to mimic the manual delineation. Rather, it 
aims to resemble the general description and be reproduc-
ible. The generated reproducible measure of WMH is then 
observed to be close to manual delineation.

In other words, the main difference between machine 
learning methods and our proposed method is that machine 
learning methods are optimized to re-create manual seg-
mentation; however, our statistical definition is optimized to 
have a WMH measure in the most reproducible way, and the 
defined WMH measure is similar to the manual segmenta-
tion as a byproduct. One may dispute that our approach is 
not necessarily representative of the underlying pathology, 
and the results are not the same as what is measured using 
manual WMH delineation. However, given that the only 
sources of information about underlying pathologies on MR 
images are the actual intensities, WMH segmentation based 
on either guidelines or our definition are indirect measure-
ments of the underlying pathology. Thus, both approaches 
may have the same source of systematic errors. Neverthe-
less, the high correlation and similarity between two meas-
ures ensures that both approaches are measuring the same 
underlying entity with different levels of accuracy and 
reproducibility.

The idea of making a mathematical definition has been 
reported in the literature. Other researchers have proposed 
approaches to define WMH mathematically [30]. How-
ever, their definitions are complex, and they are not known 
to remain consistent across different centers. Our statisti-
cal definition of WMH uses simple statistics and is robust 
and reproducible, although it might be slightly inconsistent 
with experts’ manual definitions. This deviation is antici-
pated as manual delineations themselves have reportedly 
10–32 percent intra-rater disagreement, which approxi-
mately equals a Dice coefficient range of 0.76–0.90 [4, 22, 
23]. Although some deviation is observed, the segmenta-
tion produced with our statistical definition has very low 
disagreement when different combinations of sequences 
are used. For instance, the results using T1 + FLAIR have 
just nine percent disagreement (Dice coefficient 0.91) com-
pared to those obtained from T1 + T2. Low degree of disa-
greement can be invaluable in multi-center studies where 
results from datasets with different image modalities need 
to be compared to one another.

Conclusion

Reformulating the problem of WMH segmentation as a 
well-posed one, our new approach can segment WMH with 
high accuracy and reproducibility using any combination 
of MRI sequences. This new approach is applicable for 

multi-center studies where it is crucial to have high output 
similarity when comparing results from different datasets.

We showed that segmentation based on the proposed 
approach has slightly better accuracy than other major 
methods in the literature; however, since the accuracy is 
measured against the moving target of manual segmenta-
tion, accuracy is not the most crucial indicator of a method. 
We believe reproducibility of the measurement serves a 
more important role. Thus, until WMH can be directly 
measured, reproducible methods such as our concerted def-
inition are favorable to manual delineation.
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