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Abstract Extranodal marginal zone lymphoma (EMZL),
mostly represented by mucosa-associated lymphoid tissue
(MALT) type, also referred to as MALT lymphoma, is a clin-
ically heterogeneous entity within the group of low-grade B
cell lymphomas that arises in a wide range of different
extranodal sites, including the stomach, lung, ocular adnexa,
and skin. It represents the third most common non-Hodgkin
lymphoma in the Western world, and the median age of oc-
currence is around 60 years. One characteristic aspect in a
subset of EMZL detectable in about 25% of the cases is the
presence of specific chromosomal translocations involving the
genes MALT1 and BCL10, which lead to activation of the
NF-κB signaling pathway. Another unique aspect is that sev-
eral infectious agents, such as Helicobacter pylori in the case
of gastric EMZL, and autoimmune disorders, like Sjögren
syndrome, have been implicated in the pathogenesis of this
cancer. Recent findings as summarized in this review have
further improved our understanding of the complex pathobi-
ology of this disease and have been essential to better define
novel treatment strategies. In addition, many of these specific
features are currently being implemented for the diagnosis of
EMZL.
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Introduction

There are three different types of marginal zone lymphomas
(MZLs): (i) extranodal marginal zone lymphoma (EMZL),
mostly represented of mucosa-associated lymphoid tissue
(MALT) type; (ii) splenic MZL (SMZL); and (iii) nodal
MZL (NMZL). EMZL accounts for about 7% of all adult
non-Hodgkin lymphoma (NHL) and 70% of MZL [1]. The
most predominant site for EMZL involves the stomach (70%),
but virtually all other organs can be affected, including the
lung, salivary gland, ocular adnexa, skin, and thyroid.
Despite their clinical heterogeneous presentation, at least three
common variants of chromosomal translocations have been
identified as specific for EMZL, all of which affect the
NF-κB pathway [2]. Moreover, EMZLs are frequently asso-
ciated with chronic inflammation and infectious agents that
give rise to chronic infections, such as Helicobacter pylori
in gastric EMZL, Chlamydophila psittaci in ocular adnexa
EMZL, Campylobacter jejuni in immunoproliferative small
intestinal disease (IPSID), and Borrelia burgdorferi in cutane-
ous EMZL [3]. On the other hand, several autoimmune disor-
ders, including Sjögren syndrome, lymphoepithelial
sialadenitis and Hashimoto thyroiditis, predispose to EMZL
development. The prevailing view is that continuous immune
stimulation resulting from chronic infections and
autoinflammatory diseases cooperates with recurrent genetic
aberrations resulting in lymphoid transformation.

EMZL, in general, shows a remarkably indolent disease
course with a median survival of more than 12 years [4].
However, in a small proportion of cases, EMZL can progress
and undergo histological transformation into aggressive high-
grade tumors, mostly diffuse large B cell lymphoma (DLBCL)
[5]. A common feature of EMZL is deregulation of the pro-
teolytic activity of the MALT1 protein, which results in con-
stitutive nuclear factor κB (NF-κB) stimulation. Current and
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novel therapeutic strategies are aimed to target these specific
features underlying the molecular pathogenesis of EMZL. In
this review, novel insight into molecular pathogenesis of
EMZL will be described and its impact on diagnosis and ther-
apy of this disease spectrum.

Clinical features of EMZL

EMZL often occurs in organs devoid of prominent organized
lymphoid tissue, where as a result of chronic inflammation,
outgrowth of a malignant clone progressively replaces the re-
active lymphocyte population. Irrespective of the site of origin,
EMZL is characterized by an indolent presentation and course,
mainly occurring in adults with a median age of 60 years. The
clinical presentation differs depending on the organ involved.
Patients with gastric EMZL often present with symptoms that
mimic those of peptic ulcer disease or gastritis (nausea, dys-
pepsia, and chronic fatigue), while recurrent respiratory infec-
tions, chest pain, and dyspnea are observed in patients with
pulmonary EMZL. Patients with conjunctival EMZL may
present with blurry vision or other visual field defects. The
majority of the patients with EMZL display localized stage I
or II extranodal disease (AnnArbor staging system), involving
epithelial tissues at specific sites, including the gastrointestinal
tract. In about 30% of the cases, these lymphomas disseminate
to other MALT sites, predominantly lymph nodes and in very
rare cases to the bone marrow, but the peripheral blood is
usually not involved [6]. The outcome of patients with
EMZL is good with a 5-year overall survival between 86 and
95%, without any significant differences between the site of
the EMZL, localized or disseminated disease [7].

Pathogenesis of EMZL

The term Bmarginal zone lymphoma^ refers to the fact that
these lymphoma cells are derived from post-germinal center
memory B cells normally present in the marginal zone of
lymphoid organs. In nearly all cases, EMZL displays fully
rearranged immunoglobulin heavy chain variable (IGHV)
and light chain genes, which show somatic hypermutation
and class switching [8, 9]. In many cases, EMZL has been
shown to be associated with chronic immune reactions driven
by bacterial, viral, or autoimmune stimuli (Table 1). This latter
aspect correlates with the observation that patients with auto-
immune disorders harbor an increased risk for the develop-
ment of lymphomas [10, 11]. These findings have led to the
hypothesis that this type of indolent lymphoma follows a mul-
tistage development that starts with an infection combined
with (auto-)antigenic stimulation or other direct effects on B
cells, like the presence of free radicals in an inflammatory
surrounding. With the subsequent accumulation of genetic

alterations, which frequently result in activation of the
NF-κB pathway, neoplastic transformation can occur, de-
creasing the dependency of antigenic stimulation (Fig. 1).
Nonetheless, many of the EMZL show regression upon erad-
ication of the bacterial infections with specific antibiotic treat-
ment, which is mainly the case in translocation-negative
EMZL.

Bacterial infections

Helicobacter pylori H. pylori infection is present in 85–90%
of gastric EMZL, and support for its role as an etiologic factor
was provided in the early 1990s after demonstration of tumor
regression in the early-stage cases treated with antibiotic ther-
apy. Although H. pylori infection can be detected in about
50% of the general population giving rise to chronic active
gastritis or even peptic ulcer disease, only ~ 1% of the infected
subjects will develop gastric adenocarcinoma or lymphoma. A
population-based study has demonstrated a declined incidence
of gastric EMZL after specific intervention for H. pylori in-
fections in patients with acid peptic disease symptoms [12].

More direct support for the role of H. pylori in the patho-
genesis of gastric EMZL derives from studies that have shown
that gastric EMZL cell growth could be stimulated in culture
by H. pylori-specific T cells [13]. An additional effect of
H. pylori on the microenvironment is the release of the
proliferation-inducing ligand (APRIL) by lymphoma-
associated macrophages [14]. Furthermore, the H. pylori
cytotoxin-associated gene A (CagA) protein has direct onco-
genic properties both for gastric epithelial cells and B lympho-
cytes [15, 16]. The CagA protein can enter B cells via type IV
secretion system in an ATP-dependent manner [17], where it
undergoes tyrosine phosphorylation by SRC or ABL kinases in
the C-terminal region [18, 19]. Phosphorylated CagA interacts
with Grb2 and tyrosine phosphatase SHP-2 leading to ERK
activation [20], which promotes phosphorylation of the pro-
apoptotic protein BAD and upregulation of the anti-apoptotic
molecules BCL2 and BCL-XL[17, 21]. Detection of CagA,
phospho-SHP2, and phospho-ERK predicts involvement and
dependence of H. pylori in the pathogenesis of gastric EMZL
[22]. Alternatively, CagA can block cell cycle progression and
inhibits B lymphocyte apoptosis by impairing the JAK/STAT
and p53 pathway [23, 24]. Furthermore, H. pylori activates the
NF-κB pathway in lymphocytes through both the canonical
and non-canonical pathways [25]. These findings provide fur-
ther evidence that gastric EMZL follows a multistage progres-
sion from chronic gastritis to gastric lymphoma that starts with
H. pylori infection.

Helicobacter heilmannii Additional non-H. pylori species
have been identified in human gastric mucosa, now
reclassified as Helicobacter heilmannii sensu lato
(H. heilmannii s.l.) without specific sequence information;
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and Helicobacter heilmannii sensu stricto (H. heilmannii s.s.)
or any of the other ten species names if definite identification
at the species level is achieved [26]. The frequency of human
H. heilmannii s.l. infection is less than 1% of the population in
industrialized countries and 3–8% in developing countries.
Similar to H. pylori, H. heilmannii s.l. infection has been
associated with gastritis, peptic ulcer disease, gastric carcino-
ma, and gastric EMZL [27]. However, it seems that there is a
relatively higher prevalence of gastric EMZL in patients with
H. heilmannii s.l. gastritis, i.e., 2% in comparison to 0.7%
among patients with H. pylori gastritis [28].

Chlamydophila psittaci The Chlamydophila genus is the eti-
ologic agent of psittacosis, also known as parrot disease, an
infection caused by exposure to infected bird species.
C. psittaci was recognized as a potential trigger of ocular
adnexal lymphoma, when Ferreri et al. showed the efficacy
of antibiotic treatment [29, 30]. C. psittaci DNA has been
detected in a variable percentage of ocular adnexal lymphoma,
with a high incidence of 47 to 80% in especially Italy, Austria,
Germany, and Korea, but with a much lower incidence in UK
and Southern China [31], while there was no evidence of
C. psittaci infection in cases from the USA and Japan

[32–34]. However, support for its role as a causative agent
in ocular adnexal lymphoma has been provided by the find-
ings of detecting chlamydial antigens in tumor biopsies and
the isolation of chlamydia from conjunctival swabs and pe-
ripheral blood from lymphoma patients as well as the visual-
ization ofC. psittaciwithin tumor-infiltrating macrophages by
electronic microscopy [35].

Campylobacter jejuni The Gram-negative helical-shaped
Campylobacter jejuni, which is usually carried by birds, rep-
resents one of the most common causes of gastroenteritis in
the world. Persistent infection leads to severe gastrointestinal
illness, which requires antimicrobial therapy, including
macrolides and fluoroquinolones. C. jejuni is also an initiating
factor in chronic autoimmune disease, such as Guillain-Barrè
syndrome and reactive arthritis [36]. C. jejuni has also been
associated with the pathogenesis of immunoproliferative
small intestinal disease (IPSID), a special subtype of EMZL
that primarily occurs in young adults of the Middle East,
North and South Africa, and the Far East. The presence of
C. jejuni DNA has been demonstrated in a small cohort of
IPSID samples [37], and clinical response to antibiotics direct-
ed at this infection has been described in a single study [38].

Table 1 Summary on the main
characteristics of extranodal
marginal zone lymphoma
(EMZL)

Primary site % EMZL Infection/autoimmunity Genetic alterations

Stomach 70 Helicobacter pylori (85%)

Helicobacter heilmannii (< 1%)

t(11;18)(q21;q21)/BIRC3-MALT1 (23%)

t(3;14)(p14;q32)/IGH-FOXP1 (3%)

t(1;14)(p22;q32)/IGH-BCL10 (2%)

t(14;18)(q32;q21)/IGH-MALT1 (1%)

TNFAIP3 inactivation (5%)

Salivary gland 9 Lymphoepithelial sialadenitis/

Sjögren syndrome (20–45%)

Hepatitis C virus (30%)

t(14;18)(q32;q21)/IGH-MALT1 (6%))

t(11;18)(q21;q21)/BIRC3-MALT1 (2%)

t(1;14)(p22;q32)/IGH-BCL10 (1%)

TNFAIP3 inactivation (8%)

Ocular adnexa 7 Chlamydophila psittaci (10–50%) t(3;14)(p14;q32)/IGH-FOXP1 (20%)

t(14;18)(q32;q21)/IGH-MALT1 (16%)

t(11;18)(q21;q21)/BIRC3-MALT1 (7%)

TNFAIP3 inactivation (38%)

Lung 4 Achromobacter xylosoxidans (40%) t(11;18)(q21;q21)/BIRC3-MALT1 (45%)

t(1;14)(p22;q32)/IGH-BCL10 (8%)

t(14;18)(q32;q21)/IGH-MALT1 (7%)

TNFAIP3 inactivation (9%)

Skin 4 Borrelia burgdorferi (20%) t(3;14)(p14;q32)/IGH-FOXP1 (10%)

t(14;18)(q32;q21)/IGH-MALT1 (7%)

t(11;18)(q21;q21)/BIRC3-MALT1 (4%)

Intestinal tract 2 Campylobacter jejuni (50%) t(11;18)(q21;q21)/BIRC3-MALT1 (19%)

t(1;14)(p22;q32)/IGH-BCL10 (7%)

Thyroid 2 Hashimoto thyroiditis (90%) t(3;14)(p14;q32)/IGH-FOXP1 (50%)

t(11;18)(q21;q21)/BIRC3-MALT1 (9%)

TNFAIP3 inactivation (11%)
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Borrelia burgdorferi The spirochete Borrelia burgdorferi is a
tick-borne obligate parasite and infection of humans can result
in Lyme borreliosis. Moreover, Borrelia infection has been
linked to cutaneous EMZL with higher detection rates in en-
demic areas, such as the Scottish Highlands and Austria [39,
40]. In Europe, the association varies between 10 and 42%
and is almost absent in non-endemic areas [41]. However,
even in non-endemic regions, like France, B. burdorferi
DNA is detected in 19% of the cases with primary cutaneous
EMZL [42].

Achromobacter xylosoxidans Primary lymphoma of the lung
is a rare entity representing ~ 4% of all extranodal lymphomas
and 0.4% of NHL. Although pulmonary parenchyma is de-
void of organized lymphoid tissue under normal physiological

conditions in adults, it develops due to some disease entities,
like pulmonary inflammatory process, follicular bronchiolitis,
and acute infections. In one report, Achromobacter
xylosoxidans, a Gram-negative bacterium with low virulence
but high resistance to antibiotic therapy, has been detected
with a significantly increased prevalence in patients with pul-
monary EMZL as compared to non-lymphoma biopsies [43].

Viral infections

Hepatitis C virus Belonging to the Flaviviridae family of
RNAviruses, hepatitis C virus (HCV) infects both hepatocytes
and lymphocytes and is strongly linked to the pathogenesis of
hepatocellular carcinoma and B cell NHL, including MZL.
Analysis on risk factors in EMZL has clearly established an
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Fig. 1 Pathogenesis of extranodal marginal zone lymphoma. At the site
of chronic antigen stimulation there is inflammation resulting from
infection with specific pathogens (e.g., Helicobacter pylori) or the
response to autoantigens present in autoimmune disorders, like Sjögren
syndrome and Hashimoto thyroiditis. This results in recruitment and
activation of T cells, production of proinflammatory cytokines,
chemotaxis of neutrophils releasing reactive oxygen species (ROS), and
production of the cytotoxin-associated gene A (CagA) protein harboring
oncogenic properties in case of Helicobacter pylori infection. The con-
tinuing antigenic stimulation causes a polyclonal activation and expan-
sion of B cells in the context of specific antigens. Due to the increased
proliferation rate, stimulation of different receptor signaling pathways,

like B cell receptor (BCR), Toll-like receptors (TLR), B cell-activating
factor (BAFF) collectively activating NF-κB, and exposure to DNA dam-
aging effects of ROS, genomic aberrations can occur that promote the
development of extranodal marginal zone lymphoma (EMZL). These
include t(11;18), t(14;18), t(1;14), and t(3;14) translocations; trisomy of
chromosomes 3, 12, and 18; and inactivation of TNFAIP3. The indolent
growth characteristics of EMZL may be altered, due to transformation to
the more aggressive diffuse large B cell lymphoma (DLBCL). This is
facilitated by inactivation of the tumor suppressor genes TP53 and
p16INK4A, translocations involving oncogenes BCL6 and CCND3, and
upregulation of c-MYC, CXCR3, and CXCR7
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increased risk associated with HCV seropositivity, and HCV
infection has been documented in about one-third of patients
with non-gastric EMZL [44]. The causal relationship between
HCVand EMZL is further substantiated by the observation of
lymphoma regression after antiviral treatment [45]. EMZL in
HCV-infected patients most often occurs at non-gastric sites,
especially the salivary and lacrimal glands. The proposed un-
derlying mechanisms for HCV-associated EMZL include a
direct oncogenic effect of HCV-encoded proteins, an indirect
antigen-driven stimulation, or immune suppression [46].

Autoimmune disorders

Sjögren syndrome Primary Sjögren syndrome (pSS) is a
complex autoimmune disease that includes lacrimal and sali-
vary gland disease, serum antibodies like anti-SSA, anti-SSB,
rheumatoid factor, and salivary duct antibodies [47].
Consequently, inmore than 20–40% of the patients the disease
extends beyond the exocrine glands, manifested either by ep-
ithelial lymphocytic infiltration of the lungs, liver, or kidney or
by immune complex-mediated phenomena such as skin vas-
culitis, peripheral neuropathy, and glomerular nephritis [48].
The incidence rate of pSS is 7 cases per 100,000 person-years
and occurs most frequently in the fourth to seventh decades of
life affecting more women than men. In patients with pSS,
there is a 15-fold increased incidence of NHL that affects 5–
10% of these patients, especially EMZL of the salivary glands
[49, 50]. Notably, translocations involving MALT1 occur less
frequently in EMZL of pSS patients [51]. However, germline
mutations in BAFFR (TNFRSF13C) as well as germline and
somatic coding variant of TNFAIP3 (A20) have been linked to
increased risk of pSS and associated lymphoma [52, 53].

Lymphoepithelial sialadenitis Lymphoepithelial sialadenitis
(LESA) is a benign lymphocytic infiltration of salivary gland
tissue producing atrophy of the columnar ductal epithelium. In
addition, there is intraepithelial infiltration of monocytoid B
cells or centrocyte-like cells, which promotes proliferation of
basal epithelial cells and lymphoepithelial lesions [54]. LESA
is an autoimmune lesion and a component of Sjögren syn-
drome, but can also occur without Sjögren syndrome. The
lymphoid infiltrate has a predominance of T cells, but within
the foci of epithelial proliferation, lymphocytes have features
of marginal zone B cells. In some cases, these foci display
clonal IG rearrangements, but without evidence of progressive
expansion [55]. LESA lesions are frequently controllable with
corticosteroid treatment, but can progress to salivary EMZL.

Hashimoto thyroiditis Hashimoto thyroiditis (HT) is a com-
mon form of autoimmune thyroid disease affecting up to 2% of
the general population, and more prevalent in women than
men. Longstanding autoimmune HT has been directly linked
to primary thyroid EMZL, which is quite a rare neoplasm

accounting for 2–8% of all thyroid malignancies and 2% of
all extranodal lymphomas [56]. Among patients with HT, there
is a 60-fold increased risk of thyroid EMZL that affects 0.5% of
the patients. The key factor in the development of HT is break-
down of immune tolerance, initiated by inflammatory events in
the gland probably as a result of viral or bacterial infection or
injury to the thyroid cells from toxins like iodine [57]. The
injured thyroid cells may exhibit new epitopes, resulting in
an influx of antigen presenting cells, clonal expansion of
autoreactive T cells, and IgG producing B cells. The develop-
ment of lymphoid tissue directly in the thyroid gland with
progressive destruction of the thyroid cells, eventually leads
to hypothyroidism [58]. The molecular pathways that contrib-
ute to lymphoma progression in HT remain to be identified, but
it is interest to note that translocations involving FOXP1 occur
at a relative high frequency in thyroid EMZL [59].

Genetic alterations present in EMZL

Chromosomal aberrations and gene deletions

There are several recurrent numerical and structural chromo-
somal aberrations linked to the pathogenesis of EMZL, includ-
ing trisomy of chromosomes 3, 12, and 18, which are present
in 20–30% of the EMZL cases [60–62], and the mutually
exclusive chromosomal translocations t(11;18)(q21;q21)/
BIRC3-MALT1 , t (14 ;18) (q32 ;q21) / IGH -MALT1 ,
t(1;14)(p22;q32)/IGH-BCL10, and t(3;14)(p14;q32)/IGH-
FOXP1 [63–68] (Table 1, Fig. 2). The most common is the
t(11;18)(q21;q21)/BIRC3-MALT1 translocation (previously
known as API2-MALT1), which occurs in approximately
20% of the EMZL cases with a higher predominance at certain
sites, such as the lung (45%) and stomach (23%), where it
strongly correlates with H. pylori-independent variants of gas-
tric EMZL [69, 70]. The BIRC3-MALT1 translocation is spe-
cific for EMZL and has not been detected in SMZL or NMZL.
Translocations involving the protease and scaffold protein
MALT1 or adaptor protein BCL10 result in activation of the
NF-κB pathway [71], while overexpression of transcription
factor FOXP1 potentiates WNT/β-catenin signaling and reg-
ulates NF-κB activity [72, 73]. Rare translocations of FOXP1
involving non-IGH partner genes have also been reported, but
these may lead to aberrant expression of N-truncated isoforms
of FOXP1 [68, 74, 75].

Occasionally, chromosomal translocations and gene ampli-
fications involving transcription factor BCL6 on 3q27.3 have
been described in EMZL [76]. Other rare translocations in-
volving IGH in EMZL include t(X;14)(p11;q32)/IGH-
GPR34[77, 78], t(5;14)(q34;q32)/IGH-TENM2, and
t(9;14)(p24;q32)/IGH-KDM4C[79]. GPR34 encodes an or-
phan G protein-coupled receptor highly expressed in immune
cells, while TENM2 represents a teneurin transmembrane
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protein regulating cell-cell contact. KDM4C is one of the
JmjC domain-containing histone demethylases involved in
epigenetic regulation. Next to these translocations, gains of
6p25 are detected rather exclusively in 20% of the ocular
adnexa EMZL cases. Furthermore, deletions on 6q23 of
TNFAIP3 (A20), which acts as a negative regulator of the
NF-κB pathway, are found across different anatomical sites,
but preferentially in translocation-negative EMZL [80–83].

Somatic mutations

Due to aberrant somatic hypermutation caused bymistargeting
of activation-induced cytidine deaminase (AID) in the germi-
nal center reaction, 5′ regulatory regions and coding sequences
of proto-oncogenes are mutated in EMZL. Thus, mutations in
the 5′ non-coding region of BCL6 have been identified in 85%
of low-grade gastric lymphomas of the EMZL type [84], while
somatic missense mutations in PIM1 and MYC have been re-
ported in 30–40% of EMZL (gastric and non-gastric sites) [85,
86]. Gain-of-function mutations in EMZL have also been
identified in BCL10 (6%), MYD88 (6%), which both lead to
NF-κB activation, as well as in NOTCH1 (8%) and NOTCH2
(8%) in ocular adnexal EMZL [87–90]. In this same tumor
type, inactivating mutations have been found in TNFAIP3
(27–54%), TBL1XR1 (18%), CREBBP (17%), TP53 (8%),
and KMTD2 (6–22%) [89, 91].

Activation of the NF-κB pathway in EMZL

NF-κB consists of a family of dimeric transcription factors
that are critical for both innate and adaptive immune responses

[92]. There are five NF-κB subunits, including RelA (p65),
RelB, c-Rel, NF-κB1 (p50 and its precursor p105), and
NF-κB2 (p52 and its precursor p100), which are kept inactive
in the cytoplasm by their inhibitors (IκBα, IκBβ, and IκBε)
or in its dormant precursor form. RelB forms transcriptional
inactive complexes with the subunits RelA and c-Rel. NF-κB
activation is mediated by two parallel signaling pathways,
termed the canonical (classical) and non-canonical
(alternative) NF-κB pathway that under normal physiological
conditions involves a highly regulated process of transient
activation in response to extracellular signals (Fig. 3). The
canonical pathway is activated by stimulation of specific re-
ceptors, such as the BCR, TLR, and interleukin 1 receptor
(IL1R). Each of these receptors engages distinct adaptor mol-
ecules, but all converge on the canonical NF-κB pathway,
which involves IκB phosphorylation by the IκB kinase
(IKK) complex, inducing its K48-linked polyubiquitination
and subsequent degradation by the proteasome. As a result,
NF-κB homo- and heterodimers are released permitting their
translocation to the nucleus and transcriptional regulation of
NF-κB target genes. The non-canonical NF-κB pathway con-
sists of successive activation of NF-κB inducible kinase (NIK)
and IKKα, leading to phosphorylation and partial proteolysis
of NF-κB2 (p100), thereby generating the functional active
form p52 that associates with RelB, and upon nuclear trans-
location regulates transcription [92].

Stimulation of TLR and IL1R triggers dimerization and
conformational change of the Toll/IL1R homologous (TIR)
domain, which results in recruitment of MYD88, interleukin-
1 receptor-associated kinase-4 (IRAK4) and IRAK1, forming
the Myddosome complex that is capable of activating the IKK
complex and activation of the canonical NF-κB pathway [93].

BIR BIR BIR UBA CARD RING DD IG IG Caspase-likeBIRC3 MALT1

* *

IG

*

BIRC3-MALT1 BIR BIR BIR UBA

Major breakpoint Major breakpoint

IG Caspase-like IG

t(11;18)(q21;q21)/BIRC3-MALT1

t(14;18)(q32;q21)/IGH-MALT1

DD IG IG Caspase-likeMALT1 IG

t(1;14)(p22;q32)/IGH-BCL10 t(3;14)(p14;q32)/IGH-FOXP1

CARDBCL10 S/T-rich CCFOXP1 FHZN CC

Fig. 2 Common translocations in extranodal marginal zone lymphoma.
Schematic representation of the proteins BIRC3, MALT1, BCL10, and
FOXP1 that are affected by recurrent translocations generating either
fusion protein (BIRC3-MALT1) or overexpression of the full-length cod-
ing sequence in case of translocations involving the immunoglobulin
heavy chain locus (IGH). Arrows indicate the different breakpoints
mapped within the BIRC3 and MALT1 gene, respectively. Asterisk

marks the most predominant breakpoints. BIR, baculovirus inhibitor of
apoptosis repeat; UBA, ubiquitin-associated domain; CARD, caspase
recruitment domain; RING, a Breally new interesting new gene^ domain,
encoding a C3HC4 zinc finger involved in the ubiquitination pathway;
DD, death domain; IG, immunoglobulin-like domain; S/T-rich, serine and
threonine-rich domain; CC, coiled-coil domain; ZN, zinc finger domain;
FH, forkhead domain
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In-frame deletions and hotspot mutations of MYD88, such as
p.L265P in the TIR domain, are found in about 19% of the
ocular adnexal EMZL cases [89], which yields a gain-of-
function phenotype resulting in spontaneous assembly of the
Myddosome and activation of NF-κB.

Engagement of the BCR triggers tyrosine phosphorylation
of immunoreceptor tyrosine-based activation motif (ITAM) of
CD79A and CD79B, which results in recruitment of spleen
tyrosine kinase (SYK). Through subsequent activation of
Bruton’s tyrosine kinase (BTK) and protein kinase C (PKC)
signaling, the scaffold protein CARD11 (CARMA1) is recruit-
ed, which upon a conformational change is able to interact with
adaptor protein BCL10, thereby promoting its polymerization
and filament formation leading to assembly of the CARD11/

BCL10/MALT1 (CBM) signalosome complex [94]. The CBM
complex recruits then TNFR-associated factor-6 (TRAF6),
transforming growth factor β activating kinase-1 (TAK1) and
TAK binding protein-2/3 (TAB2/3), which leads to activation
of the IKK complex and stimulation of the canonical NF-κB
signaling pathway [95]. Overexpression of BCL10 due to
t(1;14)(p22;q32) causes its constitutive activation through olig-
omerization via its N-terminal caspase recruitment domain
(CARD)/CARD interaction, thus leading to enhanced NF-κB
signaling. BCL10 also regulates the non-canonical NF-κB
pathway, which normally acts downstream of receptors, like
CD40 and B cell activating factor receptor (BAFFR).

The paracaspase MALT1 is an Arg-specific protease that
contains several functional domains including an N-terminal
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pathways. Canonical NF-κB signaling is induced upon activation of cy-
tokine receptors (e.g., TNFR1, IL-1R), pattern recognition Toll-like re-
ceptors (TLR) or B cell and T cell antigen receptors (BCR or TCR). Each
of the different receptor subtypes employ distinct adaptor proteins and
signaling complexes (e.g., Myddosome, CBM) that converge and engage
the IKK complex, consisting of the regulatory subunit NEMO and the
catalytic subunits IKKα and IKKβ. NEMO is regulated in multiple ways
including through linear polyubiquitination by the LUBAC complex
consisting of HOIP, HOIL1, and SHARPIN. IKK phosphorylation of
serine residues on cytosolic IκBs (IκBα/β/ε) or their precursors triggers
IκB ubiquitination and proteosomal degradation. Classical NF-κB di-
mers, like p50/RelA and p50/c-Rel are released and enter the nucleus to

regulate gene expression. Under physiological conditions the canonical
NF-κB pathway induces rapid but transient transcriptional responses.
Non-canonical NF-κB signaling is regulated by kinase NIK, which is
normally degraded in resting cells by an E3 ligase complex consisting
of TRAF2/TRAF3 adaptor proteins and the E3 ligases BIRC2/3.
Activation of a specific subset of TNFR family members, like CD40,
BAFFR, or APRIL, leads to stabilization of NIK via inactivation of the
TRAF/BIRC complex. Increased NIK protein levels promote IKKα
phosphorylation, which in turn phosphorylates RelB/p100, thereby in-
ducing partial proteosomal processing of p100 leading to release of
RelB/p52 dimers that translocate to the nucleus. Non-canonical NF-κB
signaling results in a more delayed and sustained transcriptional response
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death domain, three immunoglobulin (Ig)-like domains and a
proteolytically active caspase-like domain [96]. As a result of
t(14;18)(q32;q21), increased levels of MALT1 facilitate the in-
teraction with BCL10 through its N-terminal Ig-like domains,
which triggers its own oligomerization and activation, thus en-
hancing canonical NF-κB signaling (Fig. 4a). Furthermore,
through its protease activity, MALT1 also promotes the specific
cleavage of several negative regulators of NF-κB, which in-
cludes TNFAIP3, BCL10, CYLD, and RelB [97] (Fig. 4a).
TNFAIP3 can inactivate a number of NF-κB signaling mole-
cules, like receptor-interacting protein 1/2 (RIP1/2), TRAFF6,
and IKKγ (NEMO). Thus, TNFAIP3 deletions and inactivating

mutations, which are predominantly observed in translocation-
negative EMZL of ocular adnexa (30%), salivary glands (8%),
and thyroid (11%), augment NF-κB signaling downstream of
multiple surface receptors [82, 98].

Recently, another substrate of MALT1 has been identi-
fied that is also linked to regulation of the NF-κB pathway
[99, 100]. This involves HOIL1(RBCK1), a component of
the linear ubiquitin chain assembly complex (LUBAC),
which comprises of HOIL1, HOIP(RNF31), and Sharpin.
LUBAC promotes NF-κB activation by addition of linear
(N-terminal linked) polyubiquitin chains on its substrates.
MALT1-dependent RBCK1 cleavage reduces linear
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tion t(11;18)(q21;q21) in extranodal marginal zone lymphoma. The

oncogenic potential of BIRC3-MALT1 relies on its ability to activate both
the canonical and non-canonical pathways through multiple mechanisms.
BIRC3-MALT1 is activated through auto-oligomerization, which results
in the recruitment of TRAF2/RIP1 via the BIRC3 moiety that triggers
RIP1 ubiquitination and canonical NF-κB activation. In addition, recruit-
ment of TRAF6/TAB/TAK1 induces NEMO ubiquitination and also ca-
nonical NF-κB signaling. In parallel, BIRC3-MALT1 causes deregulated
MALT1 paracaspase activity, which results in proteolytic cleavage of
NIK, creating a constitutively active NIK fragment that stimulates
IKKα and the non-canonical NF-κB pathway
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ubiquitination of cellular proteins and has thus been pro-
posed to provide negative feedback on the NF-κB pathway.

The BIRC3-MALT1 fusion protein resulting from
t(11;18)(q21;q21) gains novel functions through its ability to
constitutively activate both canonical and non-canonical
NF-κB pathways [101] (Fig. 4b). BIRC3 belongs to the inhib-
itor of apoptosis (IAP) family of proteins and contains three
tandem copies of the baculovirus IAP repeat (BIR) domain, a
CARD and a C-terminal RING domain. Several variants of
the BIRC3-MALT1 fusion are present in patients with
t(11;18)(q21;q21) translocation [65, 102, 103]. In all cases,
the breakpoints within BIRC3 occur consistently between
the third BIR and the CARD domain, whereas the breakpoints
withinMALT1 retain the C-terminal caspase-like domain. The
BIRC3-MALT1 fusion is capable of auto-oligomerization, re-
cruitment of TRAF2/RIP1 and TRAF6/TAB/TAK1 com-
plexes, as well as cleavage of TNFAIP3 and CYLD, thereby
activating the canonical NF-κB pathway. In addition, the
BIRC3 moiety of the fusion protein recruits NIK, leading to
its cleavage by the MALT protease domain [104]. The
resulting truncated NIK kinase domain is resistant to
TRAF3-dependent proteosomal degradation, leading to con-
stitutive activation of the non-canonical NF-κB pathway.
Finally, the BIRC3-MALT1 fusion protein has also the ability
to cleave the tumor suppressor protein LIM domain and actin-
binding protein-1 (LIMA1), thereby generating a novel onco-
genic LIM domain only (LMO) fragment [105].

Progression and histological transformation
of EMZL

EMZL is normally presented as a low-grade tumor, but in
some cases gradually develops into a more aggressive large
B cell lymphoma with often complete transformation into
DLBCL. During this transition, composite lymphomas may
exist showing fields of clonally related small and large cell
areas. Histological transformation to DLBCL has been ob-
served between 3 and 4% [106, 107] and 8–11% of the
EMZL cases [5, 108]. Although there is a stronger tendency
of t(11;18)-negative EMZL to transform into DLBCL [109,
110], the presence of BIRC3-MALT translocation in gastric
EMZL does not exclude progression to DLBCL [111, 112].
Progression of low-grade lymphoma toward high-grade lym-
phoma is facilitated by complete loss of p16INK4A and TP53
gene function [113, 114]. Furthermore, chromosomal translo-
cations involvingBCL6[115–117], orCCND3[118], as well as
MYC overexpression [119], and strong nuclear FOXP1 ex-
pression [120] are found in DLBCL transformation. In addi-
tion, upregulation of the chemokine receptors CXCR3 and
CXCR7 has been correlated with progression of gastric
EMZL into DLBCL [121].

Diagnosis of EMZL

The diagnosis of EMZL can be rather challenging, as
extranodal sites of disease are sometimes difficult to access,
resulting in small biopsy samples. The optimal diagnosis of
EMZL requires integration of clinical, histopathological, and
molecular information.

Histopathological findings

In many cases, EMZL consists of multifocal, small, or conflu-
ent, clonally identical foci of malignant cells that colonize the
germinal center and are scattered throughout the involved or-
gan. EMZL shows a morphological spectrum, ranging from
mixtures of heterogeneous B cells, including monocytoid and
plasmacytoid B cells, small lymphocytes, and centrocytes to
monomorphic proliferations of monocytoid B cells. In about
one-third of the cases, prominent plasmacytic differentiation is
observed. Besides the tumor cells, additional reactive cells are
present, consisting mainly of T lymphocytes. Other histologi-
cal features include remnants of reactive follicular hyperplasia
and infiltration of glands or crypts of adjacent tissue accompa-
nied by architectural destruction, resulting in lymphoepithelial
lesions (LEL). The EMZL cells are positive for CD20, CD22,
CD35, CD79a, BCL2, and IgM, while usually negative for
CD5, CD10, CD23, cyclin D1, BCL6, and IgD, and many of
these markers are informative for differential diagnosis. Both
flow cytometry and immunohistochemistry can be performed
to detect the expression of these markers. Additional immuno-
histochemical markers that are informative include MNDA
and IRTA1 [122–125], as well as the detection of MALT1
and BCL10 nuclear/cytoplasmic protein levels in 18q21 and
1p22 translocation-positive EMZL [64, 126, 127].

Molecular diagnostics

IG clonality testing Although histopathological examination
remains the gold standard for diagnosis, the detection of
monoclonality of immunoglobulin (IG) gene rearrangements,
preferably using the EuroClonality/BIOMED-2 primer sets
and protocols, represents a useful aid [128]. Especially, inclu-
sion of incomplete IGH-DJ joining as a clonality target is very
informative, since clonal IGH-DJ rearrangements occur in
many EMZL cases. Furthermore, clonal IGH-DJ rearrange-
ments are exclusively present in 5–8% of clonal B cell popu-
lations in the absence of detectable IGH-VJ rearrangements
[129]. Although not part of the routine diagnostic workup,
sequence analysis of the rearranged IGHV genes in EMZL
have further provided evidence for antigen mediated affinity
maturation by the restricted use of certain sequences. In
extranodal lymphomas located at the ocular adnexa and sali-
vary glands there is biased usage of IGH4-34 and IGHV1-69,
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respectively, while those in the stomach appear to have over-
representation of IGHV3-7 and IGHV1-69 usage [130–132].

Detection of chromosomal aberrations by FISH and RT-
PCR The detection of common cytogenetic abnormalities by
interphase fluorescence in situ hybridization (FISH) has been
proven to be informative for the diagnosis of EMZL [133,
134]. FISH is used for the detection of chromosomal translo-
cations involving IGH, MALT1, FOXP1, and BCL10, as well
as numerical chromosomal abnormalities, including deletions
and trisomy of chromosome 3, 12, and 18 [59, 133, 135, 136].
However, it should be emphasized, that while positive FISH
together with clinical and morphological features of EMZL is
very helpful in the diagnosis, negative FISH should not ex-
clude the diagnosis of EMZL. Through the identification of the
specific genomic regions rearranged in EMZL, routine reverse
transcription polymerase chain reaction (RT-PCR) has also
been implemented for the detection of genomic translocations
and the presence of fusion transcripts, such as BIRC3-
MALT1[137, 138]. Moreover, detection of BIRC3-MALT1 in
gastric EMZL has therapeutic implications (see below).

Therapeutic strategies for EMZL

The involvement of infectious agents in the pathogenesis of
EMZL has provided opportunities toward unique therapeutic
approaches for lymphoma treatment. Many patients with ocu-
lar adnexa EMZL respond to doxycycline treatment and show
lymphoma regression in 65% of the patients [139]. Likewise,
for stages I and II of gastric EMZL, the initial treatment of
choice is H. pylori eradication, which results in complete re-
mission in about 80% of patients with gastric EMZL
[140–142]. The most commonly used regimen includes a pro-
ton pump inhibitor (omeprazole) in combination with amoxi-
cillin and clarithromycin. Notably, EMZL harboring t(11;18)
and t(1;14) translocations are associated with resistance to
H. pylori eradication therapy [70, 141]. H. pylori-negative
patients also respond to antibiotic treatment, since other mi-
croorganisms are known to be involved in the pathogenesis of
gastric EMZL, and complete remission can be achieved in
57% of these patients [143]. Patients with symptomatic sys-
temic disease, mainly those with disseminated stages III and
IV, are considered for treatment with chemotherapy (e.g.,
bendamustine, fludarabine, or chlorambucil) combined with
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deletions or mutations [*], can be blocked by bortezomib. Lenalidomide
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either anti-CD20 antibody rituximab or the immunomodulato-
ry drug lenalidomide [144–146]. First-line treatment combin-
ing chlorambucil with rituximab has shown improved survival
as compared to chlorambucil or rituximab alone [146].
Combination therapy of rituximab with lenalidomide has also
been demonstrated to be effective [147], along with cyclo-
phosphamide and dexamethasone [148]. The more aggressive
types of chemotherapy regimens, including CHOP (cyclo-
phosphamide, doxorubicine, vincristine, and prednisone), are
often reserved for patients with transformation to high-grade
lymphomas.

Alternative therapies for EMZL involving new agents in-
clude inhibitors of mTOR (everolimus) [149], HDAC
(vorinostat) [150, 151], proteasome (bortezomib) [152],
BTK (ibrutinib) [153, 154], and PI3Kδ (idelalisib) [155]
(Fig. 5). Many of these drugs are under investigation in clin-
ical trials, of which some show positive response rates, but
improvement on long-term overall survival remains to be
demonstrated. Targeted therapy directed against the MALT1
paracaspase protein has also been exploited for therapeutic
intervention. Several inhibitors have been identified that show
promising results in activated B cell-DLBCL [156–158], but
their effectiveness in EMZL remains to be established.

Conclusions

During the past two decades, new insight has been gained into
the pathobiology of EMZL, which revealed a complex inter-
play between chronic inflammation and genetic abnormalities
that seem to converge on deregulation of specific signaling
cascades that often result in activation of the NF-κB pathway.
This knowledge has lead to new developments in clinical di-
agnostics and has opened interesting opportunities for more
targeted therapeutic intervention. Further understanding of
which specific molecules within these signaling pathways
are essential in promoting and maintaining lymphomagenesis
may lead to novel therapy modalities, which will be especially
relevant for managing the more aggressive forms of EMZL.
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