

 Int. J. Electronic Security and Digital Forensics, Vol. X, No. X, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

Flash vulnerabilities analysis of US educational
websites

Joanne Kuzma*, Colin Price and
Richard Henson
Business School,
University of Worcester,
Worcester WR26AJ, UK
E-mail: j.kuzma@worc.ac.uk
E-mail: c.price@worc.ac.uk
E-mail: r.henson@worc.ac.uk
*Corresponding author

Abstract: With the increase in online and web learning, schools are building
the number of web-based applications using media like Flash. However, sites
that use Flash and other types of media encounter problems with security.
Issues are raised with how to protect personal data that are entered via these
sites. The purpose of this study is to determine if Flash-based web application
at US educational institutions protect the personal data of their consumers, and
what levels of security vulnerability are shown. The research also shows the
main types of security problems that are shown in the schools sites. To mitigate
these vulnerabilities and provide a higher level of security during development,
technical, procedural and managerial recommendations are presented.

Keywords: security; Flash, web applications; education; universities; SwfScan.

Reference to this paper should be made as follows: Kuzma, J., Price, C. and
Henson, R. (xxxx) ‘Flash vulnerabilities analysis of US educational websites’,
Int. J. Electronic Security and Digital Forensics, Vol. x, No. x, pp.xx–xx.

Biographical notes: Joanne Kuzma is a Senior Lecturer in Computing at the
University of Worcester and her main lecturing and research interests are in the
areas of computer security, electronic commerce and web accessibility. She
received her PhD in Information Systems from Nova Southeastern University
(USA), and her MBA and BS from Pennsylvania State University and has her
CISSP certification in computing security.

Colin Price is a Principal Lecturer in Computing at the University of Worcester
and his main lecturing and research interests are in the areas of computer game
and immersive environment development. He received his PhD in
Electrotechnical Engineering from Katholieke Universiteit Leuven, Belgium,
and a BA and an MA in Natural Sciences.

Richard Henson is a Senior Lecturer in Computing and a Knowledge Transfer
Fellow in Information Security at the University of Worcester. His main
lecturing and research interests are in the areas of information assurance and
privacy, particularly in relation to SMEs and e-commerce. He received a BSc in
Chemistry from Imperial College and an MSc in Computing Science from
Staffordshire University.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Worcester Research and Publications

https://core.ac.uk/display/1914692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2 J. Kuzma, C. Price and R. Henson

1 Introduction

There are many aspects of security one needs to consider when developing web-based
applications using media like Flash. News articles report daily security vulnerabilities and
hacking attacks of online applications. Because of these, consumers are growing
increasingly concerned about misuse of their personal information and are mistrustful of
the security protection firms are employing. To protect consumers, federal and state
agencies have enacted some legislation to attempt to secure systems and to protect
consumer personal data, so it is mandatory that institutions understand legal issues related
to security when developing their systems. In addition, institutional developers need to
understand the technical framework when creating web-based applications, and review
security of their systems before implementing on production servers.

However, despite both legal mandates and advice to fully test and develop secure
systems; many educational institutions are not fully protecting their web users. This
research analyses the level of security vulnerabilities among 250 US educational sites
utilising Flash-based pages using a software tool, SwfScan, developed by Hewlett
Packard (HP). It reviews the most common types of Flash-based vulnerabilities and
recommends some methods to improve security.

2 Framework for web security

2.1 Legal aspects

There are a wide range of US federal and state laws which are aimed to protect personal
consumer information collected and stored in computer systems. Most of these laws are
dependent on one’s industry, so it is imperative that application developers understand
and adhere to specific legal mandates to protect the data of their consumers. The Health
Insurance Portability and Accountability Act (HIPAA) covers securing personal data
within the healthcare industry while the 1999 Gramm-Leach-Bliley (GLB) mandates
protection for the financial industry (Johnson, 2005). Although the GLB is usually geared
towards the financial industry, in 2002 the Federal Trade Commission (FTC) ruled that
colleges and universities are covered under this law, and it requires institutions to have
data-security systems in place (‘Legislators try to shore up…’, 2004).

Educational institutions including those in higher education must adhere to Family
Education Rights and Privacy Act (FERPA). This federal privacy law prohibits
institutions from disclosing personally identifiable information without a student’s
permission (Salomon et al., 2003). The authors explain that a significant technology risk
is that the number of computerised records on databases have increased exponentially,
thus increasing the likelihood of potential security vulnerabilities.

“An institution may be particularly vulnerable to a FERPA violation if it can be
shown that it was negligent in instituting procedures to protect against
disclosure of electronic records. At the same time, however, continuous
changes in the technology environment, combined with the often decentralized
nature of institutions’ networks, make it difficult to ensure that appropriate
practices are in place. For example, the movement away from mainframe
systems and toward distributed databases and servers has made it more difficult
to have consistent and clear data access policies and procedures.” (Salomon
et al., 2003)

 Flash vulnerabilities analysis of US educational websites 3

Thus, educational institutions must have clear policies related to data protection.
However, even with clear policies, if there is a lack of training of the staff or application
developers, the institution may still find itself at risk to data theft and security holes
within their systems.

Some states have enacted their own laws to protect computerised students records.
California was the first state to enact a security breach law – the 2003 California
Database Security Breach 1386 (CA SB 1386), which requires prompt notification of any
data breaches affecting California citizens, including students at educational institutions.
This would also affect universities outside of California who have students who are
California residents (Johnson, 2005). Thus, higher education officials throughout
the USA would have to notify California students if data issues occurred, and it is to the
benefit of these institutions to ensure that their computer applications are secure.
Since California’s implementation, 44 other states have/are considering acting laws that
require businesses and other institutions that maintain personal consumer data to give
consumers timely notice of a breach in the security of their personal information
(Coakley, 2009). New York and Arizona limit the use and/or disclosure of Social
Security numbers (SSNs) for educational institutions (Salomon et al., 2003). Thus,
developers of computer applications need to be aware of a variety of state and federal
laws when creating applications that use or store personal data.

2.2 University security breaches

There have been a myriad of computer security breaches at US universities, putting many
staff and students at risk for personal data disclosure. According to Security Directors
Report (2008), in USA there were 167 reported breaches in a variety of industries
including: military, education, banking, medical and other businesses. Of these,
educational institutions accounted for 25% of all breaches in the first three months of
2008, with 2.9% of compromised personal records in the total number of records stolen in
these categories. According to Young (2008a), a report by Identity Theft Resource Center
indicates that number of data-security incidents at colleges and universities across the
country rose 47% between 2007 and 2008. These numbers include reported statistics,
although there could be a sizable increase with the numbers of unreported or
undiscovered breaches.

In February 2009, the University of Florida admitted a security breach exposed the
names and SSNs of 97,200 students, faculty and staff who attended the school between
1996 and 2008. It also had other data breaches in October and November 2008. The latest
breach was caused by a server configuration error (Vijayan, 2009). In 2006, Ohio
University had five data breaches resulting in the theft of 173,000 SSNs and hackers
using unsecured servers to launch attacks against outside systems. These breaches had
such a negative impact on public relations that the school reported an 88% decline in
donations once the breaches were reported (Culnan and Carlin, 2009).

2.3 Application security

Young (2008b) reports there are a myriad of computer security threats that universities
face, but one of the top one includes malware, a large category which can include
infected and unsecured code. According to Waters (2009), the rise of web-based
applications is the number one avenue of malicious hacker attacks. The root of most

 4 J. Kuzma, C. Price and R. Henson

problems is due to software issues, such as poor coding practices in the applications, and
that it is difficult for developers to build secure systems. Waters also adds that
educational institutions are finding more media-based applications, like Flash, containing
security vulnerabilities. This is a growing problem for schools as more schools are
putting online educational content online using media and web-based applications.
Although application developers could easily become the scapegoat for web application
systems, school administrators should realise that programmers may not have the
knowledge or training or create secure applications, and project managers may value
speedy development and functionality over secure systems (Waters, 2009).

In 2008, Culnan and Carlin (2009) conducted a privacy study of the top 236 schools
from the US News and World Report 2004 list of best colleges. Although most of the
study dealt with general privacy risk practices and notices, part of the study involved
analysing privacy risk associated with web-based data collection forms (although not
necessarily Flash-based forms). They found that of the 236 schools, all had at least one
non-secure page with a data collection form, with an average of 424 such pages per
school. Nearly all had at least one data collection form that used the HTTP GET method
to submit the data with an average of 209 instances per school, a problem which could
result in personal data to be made visible to unauthorised individuals. Their study
suggested that nearly all institutions engaged in poor security practices that put personal
data at risk.

A specific study on Flash-based application security was conducted by HP in 2008.
They downloaded and audited 4,000 Flash applications and found numerous insecure
security vulnerabilities including:

• of 250 Flash applications that had a login form 15% had user names or passwords
hard-coded inside the application code

• 16% of SWF applications targeting Flash Player 8 and earlier contained XSS
vulnerabilities

• 35% of all SWF applications violated Adobe’s security best practices

• 77% of SWF applications targeting Flash Player 9 and 10 contained developer
debugging information and source code file references (HP Application Security
Center Community, 2009).

A serious problem in university security is that professors, colleges, departments and
even student organisations regularly create and maintain separate shadow systems. So
even if the university does have secure core applications and specific security policies,
these shadow systems could create security vulnerabilities (Titus, 2008). According to
Culnan and Carlin (2009), academic departments may bypass core university systems and
operate their own individual servers. In addition, individual faculty, students and school
organisations have their own systems, bypassing corporate servers and policies. For
example, a staff member could create a separate Flash application to collect
miscellaneous user information and this application could be developed with minimal
thought to security, or could bypass corporate security policies and development
procedures. Another reason for security problems in higher education institutions is that
staff may be unaware of legal regulations that apply to the industry (Johnson, 2005). Or,
staff may be unaware of specific university policies regarding safeguarding personal data.

 Flash vulnerabilities analysis of US educational websites 5

They may also have minimal coding skills when developing applications and could be
unaware of safe development practices regarding securing data.

2.4 Flash security framework

Adobe (previously Macromedia) aims with its Flash application is to provide robust
security by using existing security solutions, architecture and protocols to avoid
vulnerabilities exposures. Because of an integrated approach, institutions should not have
to employ additional security solutions outside the Flash architecture and platform
(Ludwig, 2005). Ludwig explains that in order to prevent malicious code from being
spread, Flash utilises a sandbox approach where the application code is separate from the
host system. In addition, to prevent cross-site scripting (XSS) threats, Flash content is
delivered as a series of instructions in binary format to Flash Player over web protocols in
the SWF file format in comparison to string-based language solutions. Protection against
unauthorised access to private user information can be controlled through security
settings and permissions (Ludwig, 2005). Thus, the Flash framework itself can supply a
high level of security to protect against disclosure of personal information and other
security vulnerabilities. However, even though Adobe has implemented secure features
within the architecture, it is still up to developers to implement safe coding within the
context of the framework. If they do not, security problems could still affect web
applications. According to Fukami and Fuhrmanne (2008) one issue with Flash security
is that most developers only superficially test Flash pages and in most cases, no testing of
ActionScript functions happens. Many companies view Flash as a way to show pictures
on sites, and do not realise that Flash can carry full applications. The authors give an
analysis on two common methods of Flash attacks. First, HTTP GET requests could
result in redirection attacks. Also, privacy concerns could results with so-called local
shared objects (Flash cookies).

3 Methodology

The research was accomplished through completing an analysis of 250 US education sites
containing Flash SWF applications to determine the most prevalent security problems for
these sites. The project consisted of four phases:

1 choosing an online testing tool

2 choosing a list of education sites to test

3 run a software analysis

4 perform an in-depth analysis of the results.

3.1 Choosing a testing tool

The first phase of the study was to choose a tool to test for Flash application
vulnerabilities. For this study, a software product from HP, called SwfScan, was chosen.
This is a relatively new product which was released in March 2009 to allow web
developers to test Adobe Flash applications for various types of security vulnerabilities.
According to HP, it works in the following manner:

 6 J. Kuzma, C. Price and R. Henson

• decompiles applications built on the Adobe Flash platform to extract the
ActionScript code and statically analyses it to identify security issues like
information disclosure

• identifies and reports insecure programming and deployment practices and suggests
solutions

• enables auditing of third party applications without requiring access to the
source code

• audit the code for over 60 vulnerabilities including exposure of confidential data,
XSS and cross-domain privilege escalation

• validate Flash application adherence to Adobe Best Practice (HP, 2009; HP
Application Security Center Community, 2009).

Although a variety of Flash testing tools do exist, there were several reasons why this tool
was chosen compared to other products, such as cost and testing of ActionScript versions
2.0 and 3.0. For example, a product by AsUnit, SWF UI, only tests ActionScript 2.0
(AsUnit, 2009). IBM’s Rational AppScan software is a very comprehensive software
product testing Flash and other web applications for security vulnerabilities (IBM,
2009a). However, this product cost ranged from $17,550 to $32,000, with a trial version
available. However, the free trial was limited to 30 day and was limited in functionality
testing (IBM, 2009b). Another software package reviewed was SWFIntruder developed
by Open Web Application Security Project (OWASP). However, although this product is
open source and free, one significant issue with using it is that it requires downloading
the software on a server in order to test Flash applications and these applications can only
be tested on the Firefox browser (OWASP, 2008). Finally, the ‘erlswf’ toolkit allows
disassembly of SWF code and was designed to test security. However, it is only designed
for ActionScript 2 tags and it is still missing some testing abilities, for example full
AVM2/ActionScript 3 support and support for ActionScript 2 tags other than DoAction
and DoInitAction (Fukami and Fuhrmanne, 2008) Therefore, based on an analysis of
functionality as well as the free cost to use HP’s product, SwfScan was chosen.

3.2 Choosing testing sites

The second phase of this project involved choosing a list of education sites in order to
analyse for Flash vulnerabilities. To accomplish this, an advanced search of Google was
performed with the following search criteria: ‘login site:.edu filetype:swf’. The first
parameter was a keyword search for the term ‘login’. This was chosen in order to obtain
as many Flash applications as possible that would have login capabilities or login screens,
thus necessitating the need for greater security in security personal data in the login. It
should be noted that although this keyword was used in the search, the results would not
necessarily guarantee that a login screen would be a result of a search. If the text ‘login’
was used anywhere in the Flash application, whether it was an actual login screen or not,
this would result in the application site being included within the search result. However,
using this search term in Google would result in a higher probability of a login
application. The second parameter was ‘.edu’ which would only bring up sites with an
US education suffix within the uniform resource locator (URL). The final Google search
parameter was ‘.swf’, which would only produce sites that contain Flash-based
applications.

 Flash vulnerabilities analysis of US educational websites 7

The top 250 results from this Google search contained a vast majority of US
university educational institutions. There were a variety of different functional
applications. One example was login screens which would require users to enter sensitive
information such as user IDs and passwords. Other site results were purely informational
web-based Flash applications not requiring users to enter information into the site.

3.3 Running the software analysis

The product software is downloaded from the HP site and can be installed on a stand-
alone computer system with access to the internet. The software is started and the
designer can choose whether or not to test 70 different error checks. Each specific error
check is divided into a criticality ranking (critical, high, medium and low).

• Critical: severe impact problems that have serious repercussions on user security and
lead to an extreme probability of risk and damage potential. These should be
corrected as soon as possible.

• High: serious impact problems that can pose a significant level of security risk to
users, and should also be addressed promptly.

• Medium: moderate problems that could pose some level of risk to users. These
should be corrected, but with less urgency than the critical and highly ranked errors.

• Low: minor issues that pose slight or harmless risk to users, but should be reviewed
by application designers. These may or may not need to be addressed based on the
effort and cost to correct based upon the level of risk.

This phase of the study was completed in April 2009, and involved using SwfScan to
determine the main types of Flash checkpoint errors and the quantity of each error.
Although the software allows one to choose which of the 70 available Flash errors to test,
for this study all 70 error checks were chosen to test for each of the 250 web applications.
The URL of each of the 250 websites to be tested was typed into a selection box and each
individual test was compiled. For each URL run, an individual error report was produced
listing which specific Flash-based errors were found for that URL. In addition, each error
was listed by the criticality of the specific error. The next phase of this project was to take
the raw data from the SwfScan results and compile it into tabular format and analyse the
results.

4 Analysis of results

Results in Table 1 show the number and types of Flash errors reported within the 250
university sites tested. The first column of the table shows the specific type of error,
while the second column is the level of severity for that error (critical, high, medium and
low). Column three contains the number of errors that were reported across 250 sites,
while the fourth column is the calculated percentage of the type of error for the total
number of sites. The final column lists the potential application or coding fix suggested
by HP in order to ensure this type of error does not occur.

 8 J. Kuzma, C. Price and R. Henson

Table 1 Flash error statistics and fixes

Type of error Criticality # errors Percent Fix

Insecure
Security.AllowDomain()

Critical 6 2.4 Avoid using a wildcard as parameter
in a Security.allowDomain() method
call. Instead specify a list of trusted
domains in the allowDomain call

FlashVars Cross Scripting High 5 2.0 Properly validating user supplied
input via white listing

FlashVars Cross
Scripting/Request Forgery

High 5 2.0 Properly validating user supplied
input via white listing

Insecure Flash Storage
Object

High 1 0.4 Configure the localPath of the
shared object to allow only trusted
SWFs at specific URL paths to gain
access to the shared object

Possible Cross-site scripting
in getURL using ‘GET’

High 5 2.0 Perform proper validation on the
data before making a request to the
URL via a getURL call

Possible FlashVars
Cross-Site Scripting in
HTMLtext property bound
to an Uninitiialised
Variable

High 6 2.4 Avoid using undefined or
uninitialised variables and validate
values obtained from user through
FlashVars

Debug Messaging Medium 31 12.4 Set ‘Omit Trace Actions’ to ‘true’
MD5 Hash Detected Medium 2 0.8 Only use cryptographically secure

hashing algorithms
Potential User Account
Information Disclosure

Medium 51 20.4 Ensure information of potential
value to an attacker is not being left
in application code

Possible Application
Information Disclosure

Low 13 5.2 Ensure information of potential
value to an attacker is not being left
in application code

Possible Commerce
Information

Low 1 0.4 Ensure information of potential
value to an attacker is not being left
in application code

Possible Cryptographic
Data

Low 1 0.4 Ensure information of potential
value to an attacker is not being left
in application code

Potential Interesting Name
Encountered

Low 4 1.6 Ensure information of potential
value to an attacker is not being left
in application code

Potential Personal
Information Disclosure

Low 27 10.8 Ensure information of potential
value to an attacker is not being left
in application code

Shared Flash Storage
Object

Low 8 3.2 Do not store sensitive information in
the local stored objects

Suggested Security Controls
for Embedding SWF Files in
HTML

Low 248 99.2 When embedding SWF in HTML
page, set the Allow Networking
Access flag to internal

 Flash vulnerabilities analysis of US educational websites 9

Of the 250 sites tested, only 2 (0.8%) did not have any reported Flash issues. The vast
majority of sites had the error ‘Suggested Security Controls for Embedding SWF Files in
HTML’ reported. According to HP documentation this indicates that the SWFScan
examined the Flash ActionScript and revealed that it did not utilise any browser or
network communication functionality (HP, 2009).

Table 1 results show that there were six other low-criticality errors. The second most
common of this category was ‘Potential Personal Information Disclosure’, which was
found in 27 sites (10.8%). This error indicates that there is a potential vulnerability due to
the presence of a ‘keyword’ that would allow personal information to be disclosed. To fix
the problem, application designers or coders should ensure that this potential personal
information is not left within the application code. Five other low-criticality errors
existed where similar information could be viewed within the application code. These
included: ‘Possible Application Information Disclosure’, found in 13 sites (5.2%),
‘Possible Commerce Information’ (1 site and 0.4%), ‘Possible Cryptographic Data’
(1 site and 0.4%), ‘Potential Interesting Name Encountered’ (4 sites and 1.6%) and
‘Potential Personal Information Disclosure’ (27 sites and 10.8%). The final low-severity
problem was ‘Shared Flash Storage Object’, which means that the data stored in shared
objects are not encrypted and could be prone to unauthorised access depending on the
access restrictions specified by the developer (HP, 2009). This problem was found in
eight sites (3.2%).

There were three errors of medium level severity found in these results. A sizable
number of sites were found with the error ‘Potential User Account Information
Disclosure’ (51 sites, 20.4%). This error is similar in function to the five low-severity
errors where information is displayed via application code, although this specific error is
of a more serious nature. Another medium-ranked problem was ‘Debug Messaging’ with
31 sites (12.4%) containing this issue. According to HP (2009) this specific fault
indicates that the trace() function is being utilised and was detected due to the presence of
Debug Messaging. This could indicate a serious security concern as path names and other
information could be revealed to hackers. Finally, the third error in this category was
‘MD5 Hash Detected’, which indicates that a string of hexadecimal digits matching the
length of a cryptographic hash from the MD family was detected. These hashes are used
to protect passwords and other sensitive personal data. Certain hashes such as MD5,
MD4 and MD2 are especially susceptible to attacks, and should not be considered
secured. Therefore, they should only be used in certain situations.

There were five error types within the ‘high’ ranking category, with the number of
sites ranging from one error up to the maximum of six sites displaying a specific error.
The most common error in this category was ‘Possible FlashVars Cross-Site Scripting in
HTMLtext property bound to an Uninitialised Variable’ (six sites, 2.4%). These types of
XSS vulnerabilities can be manipulated by hackers to steal cookies, create requests that
could be mistaken from those of a valid user, compromise confidential information or
execute malicious code on client systems (HP, 2009). Three other specific scripting errors
were found in five sites each (2.0%). These were:

1 ‘FlashVars Cross Scripting’

2 ‘FlashVars Cross Scripting/Request Forgery’

3 ‘Possible Cross-site scripting in getURL using ‘GET’’.

 10 J. Kuzma, C. Price and R. Henson

In addition to compromising confidential information and executing malicious code, if
JavaScript is used within the application, appended malicious text can be used to execute
arbitrary JavaScript code leading to a XSS attack (HP, 2009). The fifth type of high-
ranking error encountered was ‘Insecure Flash Storage Object’, displayed by one site
(0.4%). This error indicates that if designers incorrectly set a localPath value, all SWF
files on that domain, including multiple parties, could therefore have unauthorised data
access.

There was one critical error in the study results, which was ‘Insecure Security
AllowDomain()’, found in six sites (2.4%). To provide secure SWF applications, it is
important to restrict loading of remote SWFs to trusted domains only by using the
System.security.allowDomain() method. However, if an incorrect parameter is passed to
a Security.allowDomain method call, the developer can have an overly permissive cross-
domain setting which could lead to threats such as cross-domain privilege escalation, data
injection and unauthorised data access (HP, 2009).

5 Implications

Evaluation results show that the majority of university Flash applications have some type
of security issues. The vast majority of sites had the low-criticality problem ‘Suggested
Security Controls for Embedding SWF Files in HTML’ reported. Recommendations to
fix the problem include setting the AllowNetworkingAccess flag to none. This will
implicitly disable the SWF applications communication ability to the browser or network
(HP, 2009). However, it should be noted that this is a low priority issue. Based on the
cost to fix and other business factors, a fix may or may not be appropriate. Of the six
other low-severity errors, five were very similar in the types of information that would be
disclosed including:

1 Possible Application Information Disclosure.

2 Possible Commerce Information.

3 Possible Cryptographic Data.

4 Potential Interesting Name Encountered.

5 Potential Personal Information Disclosure.

For each of these errors, the similarity in the functionality resulted in HP recommending
a similar fix, ensuring information of potential value to an attacker is not being left in
application code and to remove that information from the production server (HP, 2009).
The final low-priority error was ‘Shared Flash Storage Object’, and the recommended fix
was not to store sensitive information in the local stored objects (HP, 2009).

There were three medium-priority errors, with the most common being ‘Potential
User Account Information Disclosure’. The fix for this error was the same as the fix for
the majority of low-ranked errors where personal information was revealed, ensuing
information is not being left in application code. The next most common medium-ranked
error dealt with displaying debug messaging, and HP’s recommended fix was to remove
all debugging messaging from the application code before it is moved to the production
servers. Designers should also set the ‘Omit Trace Actions’ to ‘true’, which will make the
published SWF smaller and will remove any excess information or actions from the

 Flash vulnerabilities analysis of US educational websites 11

SWF (HP, 2009). The MD5 Hash error occurs because this hash function is especially
susceptible to attacks, and this MD5 hash should not be used. Instead, the application
should use more secure cryptographical hash algorithms, such as SHA-224, SHA-256,
SHA-384 or SHA-512 (HP, 2009).

For the four high-priority scripting errors, HP (2009) recommends the following
prevention techniques to minimise XSS attacks in Flash applications:

• set appropriate allowScriptAccess and allowNetworking parameters within the
HTML code

• perform data validation on variables sent to URL functions to ensure only http:// and
https:// protocols are allowed; validate that the URL is for an allowed domain or use
relative URLs

• escape special characters placed within HTML text fields

• do not use HTML text fields unless HTML support is needed

• compile the SWF for more recent Flash Player versions

• encourage users to have the latest version of Flash Player to view your content.

For the high-priority error ‘Insecure Flash Storage Object’, an incorrect setting of the
localPath function could lead to vulnerabilities. It is recommended that the localPath be
restricted to specific URL paths of trusted SWFs to gain access to the shared object. The
critical error ‘Insecure Security.AllowDomain()’ could be avoided by not using a
wildcard as parameter in the method call, and instead specifying a list of trusted domains
in the call (HP, 2009).

Fukami and Fuhrmanne (2008) give some specific technical advice for thwarting
Flash-based attacks. One approach is to use run-time or dynamic code analysis to analyse
reoccurring behaviours such as file downloads while residing in a safe testing
environment. For security reviews outside the testing environment, they suggest using
static code analysis, where the SWF file is disassembled in order to check for analysation
patterns recognising various attack methods.

Although technical recommendations aimed at the programmers for securing their
Flash applications are most relevant for the purpose of this study, it should be realised
that technical security measures addressing developers should be only one part of a multi-
phase security agenda in educational institutions. First, educational entities should
analyse applicable federal, state and local ordinances with regards to security and
personal data safeguards. Many laws have been already passed, and others are pending,
so it would be wise for schools to coordinate with their legal advisors to properly assess
and analyse applicable and upcoming legislation (Salomon et al., 2003). In addition,
mandatory workshops or training for staff and developers should be held in order to
update them on their legal obligations to provide secure systems and safeguarding
consumer data. Staff should understand how to properly handle data, and application
developers should be taught how improper security development could have an adverse
affect on the school from a legal standpoint.

A second practical solution that schools should implement is to periodically assess
information security vulnerabilities and risks (Salomon et al., 2003). With tools such as
SwfScan, schools could periodically run tests on their Flash (and other) applications to
assess any security holes and risks. However, it should be noted that once a risk

 12 J. Kuzma, C. Price and R. Henson

assessment is completed, the school needs to take appropriate action to correct the
problems. According to Salomon et al. (2003), if an institution identifies vulnerabilities
and then fails to institute appropriate measures to remedy those issues, the institution
could open itself up to potential liability if a breach should occur, especially if this
information is later obtained by the public under a Freedom of information or ‘open
records’ law request.

A third tactic the institution should implement is to review and update secure policies
and procedures. A school should develop a policy in line with the nature and magnitude
of usual threats and respond with an appropriate level to ensure their information is being
protected (Salomon et al., 2003). Along with developing these policies, it is important to
educate staff as to the nature of the policies and to have some consequence in place if
policies are not followed. In dealing with web application development, policies could
exist where developers would have to test their applications for such Flash security
problems as ‘Potential Personal Information Disclosure’ or ‘MD5 Hash Detected.’ The
policy could state that approvals would have to be obtained before applications could be
moved to a production server.

Finally, secure application development needs to be a priority in project management.
Waters (2009) indicates that ultimately, it is the developers who are responsible for
security. However, instead of emphasising rapid development and functionality, project
managers and institutional administrators also need to put a high priority on security.

6 Conclusion

This research shows that a preponderance of US educational sites using web-based Flash
applications do not adequately secure these pages. Almost all pages showed at least low-
level security vulnerabilities, while over 20% of them had medium-level security issues
where personal information could be disclosed to attackers. This indicates a serious
concern for education sites, who are increasing the number of their Flash-based pages and
applications, especially due to the growth of online learning. It may be impossible to
make a web application 100% secure, but institutions need to implement a variety of
policies in order to better secure their sites. There are a variety of technical, legal and
procedural methods that institutions could effectively implement to provide a better level
of consumer protection.

References
Adobe Systems (2008) Adobe Flash Player 9 Security White Paper, Available at:

http://www.adobe.com/devnet/flashplayer/articles/flash_player_9_security.pdf.
AsUnit (2009) AsUnit Home Page, Available at: http://asunit.org/.
Coakley, M. (2009) ‘Privacy protection, safety and security: a state law enforcement perspective’,

The Computer and Internet Lawyer, Vol. 26, No. 4. pp.1–9.
Culnan, M. and Carlin, T. (2009) ‘Online privacy practices in higher education: making the

grade?’, Communications of the ACM, Vol. 52, No. 2., pp.126–130.
Fukami, S. and Fuhrmanne, B. (2008) ‘SWF and the malware tragedy, detecting malicious adobe

flash files’, Application Security Conference, May 2008, Ghent, Belgium, Available at:
http://www.owasp.org/images/1/10/OWASP-AppSecEU08-Fukami.pdf.

AU:
Adobe
Systems
(2008) and
Jackson et al.
(2009) are
given in the
list but not
cited in the
text. Please
check.

 Flash vulnerabilities analysis of US educational websites 13

HP (2009) Register to Download SwfScan Software. SwfScan Ver. 1.0, Program
Documentation, Available at: https://h30406.www3.hp.com/campaigns/2009/wwcampaign/1-
5TUVE/index.php?key=swf&jumpid=go/ swfscan.

HP Application Security Center Community (2009) Exposing Flash Application Vulnerabilities
with SWFScan, Available at: http://www.communities.hp.com/securitysoftware/blogs/spilabs/
archive/2009/03/20/exposing-flash-application-vulnerabilities-with-swfscan.aspx.

IBM (2009a) Rational AppScan Standard Edition, Available at: http://www-142.ibm.com/software/
dre/ecatalog/detail.wss?locale=en_US&synkey=T864089C20170U90.

IBM (2009b) View Pricing and Buy, Available at: https://www-112.ibm.com/software/howtobuy/
buyingtools/paexpress/Express?P0=E1&part_number=D040CLL,D040DLL,D61SYLL,D61T
0LL,&catalogLocale=en_US&Locale=en_US&country=USA&S_TACT=none&S_CMP=non
e&PT=html.

Jackson, C., Barth, A., Bortz, A., Shao, W. and Boneh, D. (2009) ‘Protecting browsers from DNS
rebinding attacks’, ACM Transactions on the Web, Vol. 3, No. 1, pp.2–26.

Johnson, J. (2005) ‘The privacy challenge’, Network World, 30 May 2005, p.29.
‘Legislators try to shore up campus data security holes’ (2004) Recruitment and Retention in

Higher Education, September, pp.5–6.
Ludwig, A. (2005) ‘Macromedia flash platform security and macromedia enterprise solutions’,

Macromedia White Paper. Available at: http://security.hoffmanmarcom.com/docs/
Network_Security_Authentication_Access_Control.pdf.

Moshchuk, A., Gribble, S. and Levy, H. (2008) ‘Flashproxy: transparently enabling rich web
content via remote execution’, ACM International Conference on Mobile Systems,
Applications and Services Proceeding of the 6th International Conference on Mobile Systems,
Applications, and Services, Breckenridge, CO, USA, pp.81–93.

OWASP (2008) SWFIntruder Overview, Available at: https://www.owasp.org/index.php/
Category:SWFIntruder.

Salomon, K., Cassat, P. and Thibeau, B. (2003) ‘IT security for higher education: a legal
perspective’, EDUCAUSE, 20 March 2003, Available at: http://net.educause.edu/ir/library/
pdf/CSD2746.pdf.

Security Directors Report (2008) ‘General business and universities report most data breaches in
first quarter’, Ioma.com, June, p.2208.

Titus, A. (2008) ‘5 key ways your electronic data may be at risk’, Chronicle of Higher Education,
24 October 2008, Vol. 55, No. 9.

Vijayan, J. (2009) ‘University admits to third recent breach’, Computerworld, 2 March 2009, p.7.
Waters, J. (2009) ‘IT security: target: the web’, T.H.E. Journal, February, Vol. 36, No. 2.
Young, J. (2008a) ‘Number of data breaches at colleges is still rising’, Chronicle of Higher

Education, 23 January, Vol. 55, No. 20.
Young, J. (2008b) ‘Top 10 threats to computer systems include professors and students’, Chronicle

of Higher Education, 19 December, Vol. 55, No. 17.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

