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Abstract We consider the time-optimal control problem to the origin for a class of
nonlinear systems, called dual-to-linear systems. We obtain the general description of
possible optimal controls. In particular, we show that optimal controls take the values
−1, 0, and +1 only and have a finite number of points of discontinuity. We describe a
class of nonlinear affine control systems which can be approximated by dual-to-linear
systems in the sense of time optimality.
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Algebra of nonlinear power moments
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1 Introduction

One of the most powerful and well-investigated tools of the nonlinear control theory is
the method of linearization, that is, finding the precise mapping that transforms given
initial system to a linear one. A pioneer result in this direction was obtained in 1973 by
Korobov [1], who introduced and studied the so-called class of triangular systems in
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connection with the controllability and stabilizability problems for nonlinear systems.
Later on, the class of triangular systems was considered in many works, in particular,
in connection with the problem of linearizability, i.e., the possibility to transform a
nonlinear system to a linear one. A way using “Lie brackets technique” was proposed
in 1973 by Krener [2] and developed in numerous works. However, the class of non-
linear linearizable systems is rather small. So, the next step was to develop methods
of approximation (in some sense) of a given nonlinear system by a linear one. In
[3] the approximation was considered for nonlinear affine systems with real analytic
right-hand side, and a concept of approximation in the sense of time optimality was
introduced. Moreover, necessary and sufficient conditions were obtained, under which
the system is approximated by a certain linear system.

If these conditions are not satisfied, the question arises, how to approximate the
original system by another nonlinear affine system of a simpler form. Further progress
was achieved by developing the algebraic approach [4–10]. As a result, it was shown
that the approximating system can be constructed with the use of some special struc-
tures in the algebra of nonlinear power moments.

In the present paper, we consider the time-optimal control problem for affine sys-
tems with real analytic right-hand side including control and the first coordinate only.
It turns out that optimal controls take values −1, 0, +1 and have a finite number
of points of discontinuity. We study the question of approximation in the sense of
time optimality, following the approach proposed in [3,5]. We find conditions under
which a system of the considered class approximates an affine control system. These
conditions are “dual” to the corresponding conditions for systems approximated by
linear ones [3]. That gives a certain reason to interpret such systems as dual-to-linear
systems.

The paper is organized as follows. In Sect. 2, we consider the time-optimal control
problem for dual-to-linear systems and show that optimal controls take values −1,
0, and +1 only and have a finite number of points of discontinuity, and describe
possible optimal controls. Section 3 contains the three-dimensional example. Finally,
in Sect. 4 we describe the structure of right ideals induced by dual-to-linear systems in
the algebra of nonlinear power moments and consider the question of approximation
in the sense of time optimality.

2 Time-Optimal Control Problem for Dual-to-Linear Systems

In this section, we consider the time-optimal control problem

ẋ1 = u, ẋi = Pi (x1), i = 2, . . . , n, Pi (0) = 0, (1)

|u(t)| ≤ 1, t ∈ [0, θ ], x(0) = x0, x(θ) = 0, θ → min, (2)

where P2(z), . . . , Pn(z) are real analytic functions for z ∈ [−α, α], α > 0; below
we suppose that they are linearly independent. As follows from Fillippov’s Theorem
[11], if the point x0 from a neighborhood of the origin can be steered to the origin,
then there exists a solution of the time-optimal control problem (1), (2). Our nearest
goal is to prove that any optimal control takes values −1, 0, and +1 only and has a
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finite number of discontinuity points (that is, for such systems the chattering [12] is
impossible).

Let us fix an initial point x0 �= 0 from a neighborhood of the origin and suppose
that ̂θ > 0 is the optimal time, and û(t), t ∈ [0,̂θ ] is an optimal control for (1),
(2); let x̂(t) = (̂x1(t), . . . , x̂n(t)) be the corresponding optimal trajectory and x̂1(t) ∈
[−α, α], t ∈ [0,̂θ ]. Let us apply the Pontryagin Maximum Principle. Define H :=
ψ1u + ∑n

i=2 ψi Pi (x1) and consider the dual system

ψ̇1 = −
n

∑

i=2

ψi P ′
i (̂x1(t)), ψ̇2 = 0, . . . , ψ̇n = 0. (3)

Hence, ψ2(t), . . . , ψn(t) are constant, i.e., ψk(t) = ψk , k = 2, . . . , n. Due to the
Pontryagin Maximum Principle, there exists a numberψ0 ≤ 0 and a nontrivial solution
of the dual system (3) such that

û(t) = sign(ψ1(t)) a.e. for all t such that ψ1(t) �= 0, (4)

ψ0 + ψ1(t )̂u(t)+
n

∑

i=2

ψi Pi (̂x1(t)) = 0, t ∈ [0,̂θ ]. (5)

Since (ψ1(t), ψ2, . . . , ψn) is nontrivial, (4) and (5) imply

ψ2
0 + ψ2

2 + . . .+ ψ2
n > 0. (6)

Definition 2.1 We say that

P(z) := −ψ0 −
n

∑

i=2

ψi Pi (z), z ∈ [−α, α],

is a characteristic function of the problem (1), (2).

We emphasize that the coefficients ψ0, ψ2, . . . , ψn are defined by the optimal control
û(t) via the Pontryagin Maximum Principle. Thus, (4), (5) imply

|ψ1(t)| = P (̂x1(t)), t ∈ [0,̂θ ]. (7)

Since P2(z), . . . , Pn(z) are linearly independent and P2(0) = · · · = Pn(0) = 0,
inequality (6) implies that P(z) is not identically zero. We suppose that there exists
t ∈ [0,̂θ ] such that ψ1(t) = 0; due to (7), in this case P(z) is not identically constant,
i.e., its derivative P ′(z) is not identically zero. Let us denote by {z1, . . . , z p} the set of
all different roots of the function P(z) on the segment [−α, α] (if any). Analogously,
we denote by {z1

0, . . . , zq
0 } the set of all different roots of the function P ′(z) on the

segment [−α, α] (if any). If p ≥ 2, q ≥ 2, then we put

d := min{|zi − z j | : 1 ≤ i < j ≤ p} > 0,

d0 := min{|zi
0 − z j

0 | : 1 ≤ i < j ≤ q} > 0.
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Lemma 2.1 Suppose ψ1(t) = 0 for all t ∈ [t2, t1], where 0 ≤ t2 < t1 ≤ ̂θ . Then
û(t) = 0 for all t ∈ [t2, t1].
Proof The equality (7) implies that x̂1(t) is a root of the function P(z) for any t ∈
[t2, t1]. Since x̂1(t) is continuous, it equals one of these roots identically on [t2, t1],
i.e., x̂1(t) = const. Therefore, û(t) = ˙̂x1(t) = 0 for all t ∈ [t2, t1]. �	
Lemma 2.2 Let ψ1(t1) = ψ1(t2) = 0 and ψ1(t) �= 0 for all t ∈]t2, t1[, where
0 < t2 < t1 ≤ ̂θ . Suppose there exists a strongly increasing sequence {τk}∞k=1 such
that τk → t2 as k → ∞ and ψ1(τk) = 0, k ≥ 1. Then P ′(z) has at least two different
roots and t1 − t2 > d0.

Proof Due to Rolle’s Theorem, there exists a strongly increasing sequence {τ ′
k}∞k=1

such that τ ′
k → t2 and ψ̇1(τ

′
k) = 0, k ≥ 1. Due to (3), P ′(̂x1(τ

′
k)) = 0. Since P ′(z)

and x̂1(t) are continuous, P ′(̂x1(t2)) = 0. Analogously, due to Rolle’s Theorem, there
exists t2 < t ′ < t1 such that ψ̇1(t ′) = 0; hence, P ′(̂x1(t ′)) = 0. Therefore, x̂1(t2) and
x̂1(t ′) are roots of the function P ′(z). However,ψ1(t) �= 0 for all t ∈]t2, t ′[; hence, û(t)
equals 1 or −1 on ]t2, t ′[. Since ˙̂x1(t) = û(t), we get x̂1(t2) �= x̂1(t ′), i.e., x̂1(t2) and
x̂1(t ′) are different roots of P ′(z). Moreover, t1 − t2 > t ′ − t2 = |̂x1(t ′)− x̂1(t2)| ≥ d0.

�	
Below we use the notation sign(0) := 0.

Lemma 2.3 For any t ∈ [0,̂θ ] there exists ε > 0 such that sign(ψ1(t)) = const for
all t ∈ ] t − ε, t [ (except of t = 0) and for all t ∈ ] t, t + ε [ (except of t = ̂θ ).

Proof Ifψ1(t) �= 0, the proof is trivial. Assume thatψ1(t) = 0, where t ∈ [0,̂θ [, and
suppose that for any ε > 0, the function ψ1(t) changes its sign on ]t, t + ε[ (the other
cases are considered analogously). Then, for any ε > 0 there exist t1, t2 ∈ ]t, t + ε[
such that ψ1(t1) = 0 and ψ1(t2) �= 0.

We put t∗ := min{t + d0,̂θ}, provided P ′(z) has at least two different roots,
and t∗ := ̂θ otherwise. Then, the above-mentioned property implies that there exist
t < t ′2 < τ ′ < t ′1 < t∗ such that ψ1(t ′1) = ψ1(t ′2) = 0 and ψ1(τ

′) �= 0. We
denote t1 := inf{t > τ ′ : ψ1(t) = 0} and t2 := sup{t < τ ′ : ψ1(t) = 0}, then
t < t2 < τ ′ < t1 < t∗, ψ1(t1) = ψ1(t2) = 0, and ψ1(t) �= 0 for all t ∈]t2, t1[.

Due to Lemma 2.2, there exists ε > 0 such that ψ1(t) �= 0 for all t ∈]t2 − ε, t2[.
We denote t3 := sup{t < t2 : ψ1(t) = 0}, then, due to our supposition, t < t3 < t2.
Repeating this procedure, we put tk+1 := sup{t < tk : ψ1(t) = 0} for k ≥ 3, hence,
t < · · · < tk+1 < tk < · · · < t1. Then ψ1(tk) = 0, hence, x̂1(tk) are roots of P(z).
However, ψ1(t) �= 0 for all t ∈]tk+1, tk[, hence, û(t) ≡ 1 or û(t) ≡ −1, t ∈]tk+1, tk[.
Since ˙̂x1(t) = û(t), we get x̂1(tk+1) �= x̂1(tk), i.e., x̂1(tk+1) and x̂1(tk) are different
roots of P(z). We have tk −tk+1 = |̂x1(tk)− x̂1(tk+1)| ≥ d > 0, k ≥ 1; this contradicts
the inequalities t < · · · < tk+1 < tk < · · · < t1. �	

Lemmas 2.1 and 2.3 lead to the following theorem.

Theorem 2.1 Let û(t), t ∈ [0,̂θ ], be an optimal control for (1), (2). Then

û(t) = sign(ψ1(t)), t ∈ [0,̂θ ] a.e., (8)
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and therefore, û(t) is piecewise constant, takes the values −1, 0 and +1 only and has
a finite number of switching points.

Our next goal is to estimate the possible number of switching points and specify
the character of optimal trajectories.

Lemma 2.4 If t is a switching point of the optimal control û(t), then x̂1(t) is a root
of P(z). If û(t) = 0 for all t ∈]t2, t1[ where t2 < t1, then x̂1(t) ≡ c, t ∈ [t2, t1], and c
is a multiple root of the function P(z).

Proof The first statement follows from (8) and (7). Let us turn to the second statement.
If û(t) = 0, t ∈]t2, t1[, then (8) implies ψ1(t) = 0, hence, P (̂x1(t)) = 0 for all t ∈
]t2, t1[ due to equality (7). Moreover, ψ̇1(t) = 0, therefore, (3) implies P ′(̂x1(t)) = 0.
Thus, P (̂x1(t)) = P ′(̂x1(t)) = 0, i.e., x̂1(t) is a multiple root of the function P(z)
for any t ∈]t2, t1[. Since the function x̂1(t) is continuous, it equals one of such roots
identically for t ∈ [t2, t1]. �	

Let us explain the meaning of Lemma 2.4. Suppose that z1, . . . , zm ∈ [−α, α]
are multiple roots of P(z), and zm+1, . . . , z p ∈ [−α, α] are simple roots. Let us
consider the graph of the function P(z) and suppose that the point z = x̂1(t) moves
along the axis z when t runs through the time interval [0,̂θ ]. Relation (7) means that
x̂1(t) belongs to the connected component of the set {z : P(z) ≥ 0} containing the
point z = 0. Moreover, x̂1(t) can change the direction of its movement at the points
z1, . . . , z p only, and x̂1(t) can “stay” at the points z1, . . . , zm only.

Below, we denote by ϕ1 ◦ ϕ2 the concatenation of functions ϕ1(t), t ∈ [0, t1], and
ϕ2(t), t ∈ [0, t2], defined by

(ϕ1 ◦ ϕ2)(t) :=
{

ϕ1(t) for t ∈ [0, t1],
ϕ2(t − t1) for t ∈]t1, t1 + t2].

Definition 2.2 Let ϕ(t), t ∈ [0, θ ], be a continuous piecewise linear function and the
points 0 < τ1 < τ2 < τ3 < θ be such that ϕ(τ1) = ϕ(τ2) = ϕ(τ3). Denote

ϕ1(t) := ϕ(t), t ∈ [0, τ1], ϕ2(t) := ϕ(t + τ1), t ∈ [0, τ2 − τ1],
ϕ3(t) := ϕ(t + τ2), t ∈ [0, τ3 − τ2], ϕ4(t) := ϕ(t + τ3), t ∈ [0, θ − τ3].

We say that the function ϕ̃(t) := (ϕ1 ◦ ϕ3 ◦ ϕ2 ◦ ϕ4)(t), t ∈ [0, θ ], is obtained from
ϕ(t) by a transposition w.r.t. the points τ1, τ2, τ3. We note that ϕ̃(t) is continuous and
piecewise linear.

Definition 2.3 Let u(t), t ∈ [0, θ ], be a piecewise constant control steering the initial
point x0 to the origin in the time θ , and x(t) be the corresponding trajectory. Let
the points 0 < τ1 < τ2 < τ3 < θ be such that x1(τ1) = x1(τ2) = x1(τ3). Let the
function x̃1(t) be obtained from x1(t) by a transposition w.r.t. the points τ1, τ2, τ3, and
ũ(t) = ˙̃x1(t). Then we say that the control ũ(t) is obtained from u(t) by an admissible
transposition.

The next lemma follows from the form of the system (1).

123



J Optim Theory Appl (2015) 165:62–77 67

Lemma 2.5 Let u(t), t ∈ [0, θ ], be a control that steers the point x0 to the origin in the
time θ . Suppose the control ũ(t) is obtained from u(t) by an admissible transposition;
then ũ(t) steers x0 to the origin in the same time θ .

Definition 2.4 Let ϕ(t), t ∈ [0, θ ], be a continuous piecewise linear function and
η ∈ R. We say that the function ϕ(t) takes the value η k times iff the pre-image
ϕ−1(η) ⊂ [0, θ ] has k connected components (points or segments).

Lemma 2.6 Suppose a continuous piecewise linear functionϕ(t), t ∈ [0, θ ], such that
ϕ(θ) = 0, takes a certain nonzero value at least three times; then, for any k ≥ 1 there
exists a function ϕ̃(t), which is obtained from ϕ(t) by a finite number of transpositions
and has at least k pairwise different local extreme values.

Proof By supposition, for a certain number η �= 0 the pre-image ϕ−1(η) has at
least three connected components and ϕ(θ) = 0. Then, there exist three disjoint
intervals ]t1, t2[, ]t3, t4[, ]t5, θ [, where 0 ≤ t1 < t2 ≤ t3 < t4 ≤ t5 < θ , such that
ϕ(t1) = ϕ(t2) = ϕ(t3) = ϕ(t4) = ϕ(t5) = η, and sign(ϕ(t) − η) is nonzero on each
of them. Hence, it is the same at least on two of these intervals.

Let us assume that sign(ϕ(t) − η) = 1 for t ∈]t1, t2[∪]t5, θ [ (the other cases are
considered analogously). Then there exist a nonzero numberη′ > η and three points τ1,
τ2, τ3 such that t1 < τ1 < τ2 < t2 < t5 < τ3 < θ and ϕ(τ1) = ϕ(τ2) = ϕ(τ3) = η′,
ϕ̇(τ1) > 0, ϕ̇(τ2) < 0, ϕ̇(τ3) > 0. Moreover, η′ can be chosen so that it is not a local
extreme value of the function ϕ(t).

Let us denote by ϕ̃(t) the function which is obtained from ϕ(t) by a transposition
w.r.t. the points τ1, τ2, τ3. Then ˙̃ϕ(τ1 − 0) = ϕ̇(τ1) > 0 and ˙̃ϕ(τ1 + 0) = ϕ̇(τ2) < 0,
hence, τ1 is a local maximum point of the function ϕ̃(t). Analogously, τ3 is a local
minimum point of ϕ̃(t). Hence, η′ is a local extreme value of ϕ̃(t). Moreover, all
local extreme values of ϕ(t) (if any) are also local extreme values of ϕ̃(t) (maybe,
corresponding to other extreme points). Hence, ϕ̃(t) has at least one local extreme
value more than ϕ(t).

We note that ϕ̃(t) takes the (nonzero) value η′ at least three times, so, we may
repeat the described procedure, applying it to ϕ̃(t). Applying this procedure k times,
we obtain a function described in the statement of the lemma. �	
Lemma 2.7 Consider real analytic functions f1(z), . . . , fn(z), z ∈ [−α, α], and
suppose they are linearly independent on [−α, α]. There exists a constant N such that
any function F(z) = c1 f1(z)+ · · · + cn fn(z), where c2

1 + · · · + c2
n > 0, has no more

than N roots on [−α, α].
Proof Assume the converse. Then there exists a sequence {(c1,k, . . . , cn,k)}∞k=1 such
that

∑n
i=1 c2

i,k = 1 and the function Fk(z) = ∑n
i=1 ci,k fi (z) has more than k roots on

[−α, α], k ≥ 1. We may assume limk→∞ ci,k = c̃i , i = 1, . . . , n, so
∑n

i=1 c̃2
i = 1. We

consider the function ˜F(z) = ∑n
i=1 c̃i fi (z). Let us extend f1(z), . . . , fn(z) to an open

domain D ⊂ C such that [−α, α] ⊂ D, where f1(z), . . . , fn(z) are holomorphic; then
Fk(z) and ˜F(z) are also holomorphic. Then, ˜F(z) has a finite number of roots in D.
Due to Rouché’s Theorem for complex-valued functions, there exists a number r such
that the functions ˜F(z) and Fk(z) have the same number of roots in D for k ≥ r ; this
contradicts the assumption. �	
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Corollary 2.1 For the set of real analytic functions P2(z), . . . , Pn(z), z ∈ [−α, α],
there exists a number N and a neighborhood of the origin V satisfying the following
property: suppose that û(t) is an optimal control for (1), (2) with x0 ∈ V , {ti }m

i=1 are
different switching points of û(t), and x̂(t) is the corresponding optimal trajectory;
then the set {̂x1(ti )}m

i=1 has no more than N different elements.

Lemma 2.8 Let u(t), t ∈ [0, θ ], be a piecewise constant control steering x0 to the
origin in the time θ , and x(t) be the corresponding trajectory. If x1(t) takes a certain
nonzero value at least three times, then u(t) is not time-optimal.

Proof Assuming the converse, we suppose θ is the optimal time, u(t) is an optimal
control, and x(t) is an optimal trajectory. Let N be a constant from Corollary 2.1.
Applying Lemma 2.6 to x1(t), we obtain a function x̃1(t) having at least N + 1
(different) local extreme values {̃x1(ti )}N+1

i=1 . We put ũ(t) = ˙̃x1(t), then {ti }N+1
i=1 are

switching points for ũ(t). Lemma 2.5 implies that ũ(t) steers x0 to the origin in the
optimal time θ , hence, ũ(t) is optimal. This contradicts Corollary 2.1. �	

Roughly speaking, the previous results mean that the first coordinate of the optimal
trajectory, x̂1(t), does not take the same value more than twice; the unique exception
is the case x0

1 = 0, when the value x̂1(t) = 0 can be taken three times. In particular,
this implies that x̂1(t) has no more than one strong local maximum and one strong
local minimum on the interval ]0,̂θ [ (and each of these values can be taken only once).
Note that all “zero pieces” of x̂1(t) (corresponding to the intervals where û(t) = 0)
can be put between these extreme points by admissible transpositions.

Thus, let us describe possible optimal controls. We introduce the following notation
for three constant functions

pa(t) := 1, ma(t) := −1, na(t) := 0, t ∈ [0, a].

Theorem 2.2 If x0
1 ≥ 0, then an optimal control can be chosen in the following

“stair-step form”:

û(t) = (pa1 ◦ nσ1 ◦ mb1 ◦ · · · ◦ nσk ◦ mbk ◦ nσk+1 ◦ pa2)(t),

where k ≥ 1 and

a1 ≥ 0, σ1 ≥ 0, b1, . . . , bk > 0, σ2, . . . , σk > 0, σk+1 ≥ 0, a2 ≥ 0,

if a2 = 0, then σk+1 = 0, x0
1 + a1 + a2 = b1 + · · · + bk,

x0
1 + a1 �= b1 + · · · + b j , j = 1, . . . , k − 1.

Moreover, any other optimal control can be reduced to this form by a finite number of
admissible transpositions.

For x0
1 ≤ 0, the analogous result holds with the substitution of m instead of p and

vice versa.

Corollary 2.1 implies that there exists a finite upper bound for k for all initial points
x0 from a neighborhood of the origin. The additional information about the switching

123



J Optim Theory Appl (2015) 165:62–77 69

Fig. 1 Graphics of P(z), cases (i), (ii), (iii), (iv)

Fig. 2 Graphics of x̂1(t). Cases
(i) and (ii)

points ti of an optimal control can be obtained from the fact that the numbers x̂1(ti ) are
roots of a function P(z) = −ψ0 − ∑n

i=2 ψi Pi (z) for some ψ0, ψ2, . . . , ψn . In next
section, we use this observation to specify the possible optimal controls for a concrete
example.

3 Example

Consider the time-optimal control problem of the form

ẋ1 = u, ẋ2 = x1, ẋ3 = x3
1 ,

|u(t)| ≤ 1, t ∈ [0, θ ], x(0) = x0, x(θ) = 0, θ → min . (9)

The characteristic function of this system has the form P(z) = −ψ0 − ψ1z − ψ3z3.
Hence, it has no more than three simple different real roots or one multiple root and
no more than one simple root. Suppose x0

1 > 0 and consider “typical” cases for P(z)
when ψ3 �= 0 (Fig. 1).

Let us ignore the controls having no more than one switching point (they obviously
are optimal, since they are optimal for the linear sub-system ẋ1 = u, ẋ2 = x1). Then
we get the following possible forms of optimal controls (Figs. 2, 3, 4).

Case (i). Let z1 < 0 < z2 < z3 be the roots of P(z), then z1 + z2 + z3 = 0 and
x0

1 < z2. Then û(t) = (pa1 ◦ mb1 ◦ pa2)(t), a1 = z2 − x0
1 , b1 = z2 − z1, a2 = −z1.

Since z2 <
1
2 (z2 + z3) = 1

2 |z1|, we get x̂1(a1) = z2 <
1
2 |z1| = 1

2 |̂x1(a1 + b1)|.
Case (ii). Let z1 < z2 < 0 < z3 be the roots of P(z), then z1 + z2 + z3 = 0 and

x0
1 < z3. Then û(t) = (pa1 ◦ mb1 ◦ pa2)(t), a1 = z3 − x0

1 , b1 = z3 − z2, a2 = −z2.
Since z3 = |z1| + |z2| > 2|z2|, we get x̂1(a1) = z3 > 2|z2| = 2|̂x1(a1 + b1)|.

Case (iii). Let z1 < 0 be a simple root and z2 > 0 be a multiple root of P(z), then
z1 + 2z2 = 0. If x0

1 ≥ z2, then two cases are possible:

û(t) = (mb1 ◦ nσ2 ◦ mb2)(t), b1 = x0
1 − z2, σ2 ≥ 0, b2 = z2,

û(t) = (mb1 ◦ nσ2 ◦ mb2 ◦ pa2)(t), b1 = x0
1 − z2, σ2 ≥ 0, b2 = z2 − z1, a2 = −z1.
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Fig. 3 Graphics of x̂1(t). Case (iii)

Fig. 4 Graphics of x̂1(t). Case
(iv)

Note that in the last case x̂1(b1) = z2 = 1
2 |z1| = 1

2 |̂x1(b1 + σ2 + b2)|.
If x0

1 < z2, then also two cases are possible:

û(t) = (pa1 ◦ nσ1 ◦ mb1)(t), a1 = z2 − x0
1 , σ1 ≥ 0, b1 = z2,

û(t) = (pa1 ◦ nσ1 ◦ mb1 ◦ pa2)(t), a1 = z2 − x0
1 , σ1 ≥ 0, b1 = z2 − z1, a2 = −z1.

Note that in the last case x̂1(a1) = z2 = 1
2 |z1| = 1

2 |̂x1(a1 + σ1 + b1)|.
Case (iv). Let z1 < 0 be a multiple root and z2 > 0 be a simple root of P(z), then

2z1 + z2 = 0 and x0
1 < z2. We get two possible cases

û(t) = (mb1 ◦ nσ2 ◦ pa2)(t), b1 = x0
1 − z1, σ2 ≥ 0, a2 = −z1,

û(t) = (pa1 ◦ mb1 ◦ nσ2 ◦ pa2)(t), a1 = z2 − x0
1 , b1 = z2 − z1, σ2 ≥ 0, a2 = −z1,

where x0
1 < z2 = 2|z1| = 2|̂x1(b1)| and x̂1(a1) = z2 = 2|z1| = 2|̂x1(a1 + b1)|,

respectively.
As an example, consider the initial point x0 = (1,−0.5,−3). Checking all possible

cases, we get that the optimal control corresponds to case (iv) and equals û(t) =
(pa1 ◦mb1 ◦nσ2 ◦ pa2)(t), where a1 = 0.73, b1 = 2.59, σ2 = 1.43, a2 = 0.86, and the
optimal time equals θ = 5.62. The components of the trajectory are given in Fig. 5
(left picture).

This initial point can be also steered to the origin by the bang-bang control with
two switchings u(t) = (pa1 ◦ mb1 ◦ pa2)(t), where a1 = 0.94, b1 = 3.60, a2 = 1.66.
However, this control is not optimal, since it does not belong to the cases (i)–(iv)
described above. In fact, we have x1(a1) = 1.94 and x1(a1 + b1) = −1.66, and it
is easy to check that x1(a1) < 2|x1(a1 + b1)| and x1(a1) >

1
2 |x1(a1 + b1)|. For this

control, the time of motion equals T = 6.19. The components of the trajectory are
given in Fig. 5 (right picture).

4 Approximation in the Sense of Time Optimality

In this section, we describe the class of affine control systems that are equivalent to the
ones of the form (1) in the sense of time optimality. Let us consider the time-optimal
control problem for affine control systems of the form

123



J Optim Theory Appl (2015) 165:62–77 71

Fig. 5 Components of two trajectories for the initial point x0 = (1,−0.5,−3)

ẋ = a(t, x)+ ub(t, x), a(t, 0) ≡ 0, (10)

|u(t)| ≤ 1, t ∈ [0, θ ], x(0) = x0, x(θ) = 0, θ → min, (11)

where a(t, x), b(t, x) are real analytic on a neighborhood of the origin in R
n+1. We

introduce the operator Sa,b(θ, u) that maps a pair (θ, u) to the initial point x0, which
is steered to the origin by the control u = u(t) in the time θ , i.e., Sa,b(θ, u) = x0.
This operator admits the following series expansion [3,5]:

Sa,b(θ, u) =
∞
∑

m=1

∑

m1+···+mk+k=m
k≥1, m j ≥0

vm1...mk ξm1...mk (θ, u), (12)

where ξm1...mk (θ, u) are nonlinear power moments of the function u(t),

ξm1...mk (θ, u) =
θ

∫

0

τ1
∫

0

· · ·
τk−1
∫

0

k
∏

j=1

τ
m j
j u(τ j )dτk · · · dτ2dτ1, (13)

and vm1...mk are constant vector coefficients defined via a(t, x) and b(t, x) by the
following formulas. We introduce the operators Ra and Rb acting as

Ra f (t, x) = ft (t, x)+ fx (t, x) · a(t, x), Rb f (t, x) = fx (t, x) · b(t, x)

for any real analytic vector function f (t, x). We use the notation ad0
Ra

Rb = Rb,

adm+1
Ra

Rb = [Ra, adm
Ra

Rb], m ≥ 0, where brackets [·, ·] denote the operator commu-
tator. Then

vm1...mk = (−1)k

m1! · · · mk !adm1
Ra

Rb ◦ · · · ◦ admk
Ra

Rb E(x)∣
∣

x=0
t=0

, (14)
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where E(x) ≡ x . Now, we recall some concepts and results concerning the application
of the free algebras technique proposed and developed in [4–10]. Different approaches
based on series representations close to (12) can be found in [13–19].

We consider nonlinear power moments ξm1···mk (θ, u) as words generated by the
letters ξi (θ, u), i.e., assume that the word ξm1...mk (θ, u) is a concatenation of the
letters ξm1(θ, u), . . . , ξmk (θ, u). Then the linear span of nonlinear power moments
becomes an associative non-commutative algebra. It can be shown that nonlinear
power moments are linearly independent as functionals on L∞[0, θ ] (for θ > 0);
therefore, the above-mentioned algebra is free. Hence, it is isomorphic to an abstract
free algebra generated by abstract elements {ξi }∞i=0 (over R) with the multiplication
ξm1···mk := ξm1 ∨ · · · ∨ ξmk . We denote this algebra by A and call it the algebra of
nonlinear power moments. We introduce the free Lie algebra L generated by {ξi }∞i=0
with the Lie bracket operation [�1, �2] := �1 ∨ �2 − �2 ∨ �1, �1, �2 ∈ L. Then A is a
universal enveloping algebra for L. Finally, we introduce the inner product 〈·, ·〉 such
that {ξm1...mk : k ≥ 1, m1, . . . ,mk ≥ 0} is an orthonormal basis of A. We note that the
algebra A admits the natural grading, A = ∑∞

m=1 Am , where Am := Lin{ξm1...mk :
m1 + · · · + mk + k = m}. We denote Lm := L ∩ Am .

We note that the series (12) defines the linear mapping v : A → R
n by the rule

v(ξm1...mk ) = vm1...mk . Thus, one can consider an abstract analog of the series (12),
i.e., the series of elements of A with constant vector coefficients of the form

Sa,b =
∞
∑

m=1

∑

m1+···+mk+k=m
k≥1, m j ≥0

v(ξm1...mk ) ξm1...mk .

Below, we assume that v satisfies the Rashevsky–Chow condition [20,21]

v(L) = R
n . (15)

We recall that (15) is an accessibility condition for the system (10), i.e., it guarantees
that the set of those x0, that can be steered to the origin, has a nonempty interior, and
the origin belongs to the closure of this interior.

For a given system (10), we consider its core Lie subalgebra La,b defined by
La,b := ∑∞

m=1 Pm , where Pm := {� ∈ Lm : v(�) ∈ v(L1 + · · · + Lm−1)}, m ≥ 1.
We introduce also the right ideal Ja,b := Lin{�∨ z : � ∈ La,b, z ∈ A+R} and denote
by J ⊥

a,b the orthogonal complement of Ja,b in A. Let the Rashevsky–Chow condition
(15) be satisfied; then La,b is of codimension n. Suppose �1, . . . , �n ∈ L are such that

L = La,b + Lin{�1, . . . , �n}, (16)

and �i ∈ Awi , i = 1, . . . , n. For any element a ∈ A, we denote by ã the orthopro-
jection of a on the subspace J ⊥

a,b. One can show [5] that there exists a nonsingular
analytic transformation z = �(x) of a neighborhood of the origin such that

(�(Sa,b))i = ˜�i + ρi , i = 1, . . . , n, (17)
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and ρi ∈ ∑∞
j=wi +1 A j , i = 1, . . . , n. In other words, (˜�1, . . . ,˜�n) is the main part of

the series Sa,b. One can show that there exists a system

ẋ = a∗(t, x)+ ub∗(t, x), a∗(t, 0) ≡ 0, (18)

such that
(Sa∗,b∗)i = ˜�i , i = 1, . . . , n. (19)

Moreover, one can achieve a∗(t, x) ≡ 0. Such a system can be interpreted as an
algebraic approximation of the initial system.

Let us consider the time-optimal control problem

ẋ = a∗(t, x)+ ub∗(t, x), a∗(t, 0) ≡ 0, (20)

x(0) = x0, x(θ) = 0, |u(t)| ≤ 1, t ∈ [0, θ ], θ → min, (21)

where (20) is an algebraic approximation of (10). The question is whether the time-
optimal control problem (20), (21) approximates the initial time-optimal control prob-
lem (10), (11). Below, we recall the corresponding definition and result [5].

We suppose � ⊂ R
n\{0}, 0 ∈ �, is an open domain such that, for any x0 ∈ �,

there exists the unique solution (θ∗
x0 , u∗

x0) of (20), (21). By U a,b
x0 (θ) we denote the set

of all admissible controls which transfer the point x0 to the origin by virtue of the
system (10) in the time θ , and by θx0 we denote the optimal time for (10), (11). Then
θx0 = min{θ : U a,b

x0 (θ) �= ∅}.
Definition 4.1 We say that the nonlinear time-optimal control problem (20), (21)
approximates the time-optimal control problem (10), (11) in the domain � iff there
exists a nonsingular real analytic transformation � of a neighborhood of the origin,
�(0) = 0, and a set of pairs (˜θx0 , ũx0), x0 ∈ �, such that ũx0 ∈ U a,b

�(x0)
(˜θx0) and

θ�(x0)

θ∗
x0

→ 1,
˜θx0

θ∗
x0

→ 1,
1

θ

θ
∫

0

|u∗
x0(t)− ũx0(t)|dt → 0 as x0 → 0, x0 ∈ �,

(22)
where θ = min{˜θx0 , θ∗

x0}.
Now we recall the main result of [5].

Theorem 4.1 Let the system (10) satisfy the Rashevsky–Chow condition (15). We
assume that the elements �1, . . . , �n are chosen by (16) and consider the system (20),
whose series has the form (19). Let us suppose that there exists an open domain
� ⊂ R

n\{0}, 0 ∈ �, such that

(i) the time-optimal control problem (20), (21) has a unique solution (θ∗
x0 , u∗

x0) for

any x0 ∈ �;
(ii) the function θ∗

x0 is continuous for x0 ∈ �;
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(iii) when considering the set K = {u∗
x0(tθ

∗
x0) : x0 ∈ �} as a set in the space

L2(0, 1), the weak convergence of a sequence of elements from K implies the
strong convergence.

Then, for any δ > 0 there exists a domain �δ ⊂ R
n such that 0 ∈ �δ and

� = ∪δ>0�δ , and the time-optimal control problem (20), (21) approximates the
time-optimal control problem (10), (11) in any domain �δ .

Moreover, if the set ̂K = {ux0(tθx0) : x0 ∈ �} also satisfies condition (iii), where
(θx0 , ux0) is a solution of the time-optimal control problem (10), (11), then in (22) one
can choose ˜θx0 = θ�(x0) and ũx0(t) = u�(x0)(t).

We consider the condition (iii) in a separate way. It is, obviously, satisfied if the
system (20) is linear, because in this case K includes only piecewise constant func-
tions having no more than n − 1 switchings. However, in the general case this is
an open question about a class of systems satisfying this condition [6]. The results
of Sect. 2 allow us to conclude that systems of the form (1) satisfy condition (iii)
automatically. Let us describe the form of the approximating series (19) for systems
(1) more specifically and obtain the corresponding corollary of Theorem 4.1. We
denote Dm(x1) := (0, P(m)2 (x1), · · · , P(m)n (x1))

T , m ≥ 0, and e1 := (1, 0, · · · , 0)T ,

where P(m)k (x1) means the m-th derivative of Pk(x1). Then a(t, x) = D0(x1) and
b(t, x) = e1. Therefore, R2

b E(x) ≡ 0, RaRb E(x) ≡ 0, Rm
b Ra E(x) = Dm(x1) and

RaRm
b Ra E(x) ≡ 0 for m ≥ 0. We denote ξ k

0 := ξ0 ∨ · · · ∨ ξ0 (k times). Then

Sa,b = −e1ξ0 +
∞
∑

k=0

(−1)k Dk+1(0)ξ k
0 ∨ ξ1. (23)

Since the functions P2(x1), . . . , Pn(x1) are linearly independent, the Rashevsky–
Chow condition (15) holds. Suppose q2 < · · · < qn are the indices of the first n − 1
linearly independent elements in the sequence {Dk(0)}∞k=1. Then, there exists a system
(18) of the form

ẋ1 = u, ẋi = xqi
1 , i = 2, . . . , n, 1 ≤ q2 < . . . < qn, (24)

such that Ja,b = Ja∗,b∗ . Therefore, (24) is an algebraic approximation of (1).
In general, we say that a system of the form (10) is essentially dual-to-linear iff

there exists a dual-to-linear system (1) whose ideal coincides with the ideal of (10).
The discussion above implies that a system of the form (10) is essentially dual-to-linear
if and only if

b(0, 0) �= 0, Lin{b(0, 0)} + Lin{ad j
Rb

Ra E(x)∣
∣

x=0
t=0

}∞j=1 = R
n (25)

and

[adm1
Ra

Rb, · · · [admk−1
Ra

Rb, admk
Ra

Rb] · · · ]E(x)∣
∣

x=0
t=0

∈
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∈ Lin{b(0, 0)} + Lin{ad j
Rb

Ra E(x)∣
∣

x=0
t=0

}m−2
j=1 ,

where m = m1 + · · · + mk + k, k ≥ 1, m1 + · · · + mk ≥ 2. (26)

Thus, a system of the form (24) satisfies condition (iii) of Theorem 4.1. Moreover,
as follows from [22], if all numbers q2, . . . , qn are odd, then condition (ii) holds. As
a result, we obtain the following corollary.

Corollary 4.1 Suppose a system of the form (10) is essentially dual-to-linear, i.e.,
satisfies conditions (25), (26). Let 0 = q1 < q2 < · · · < qn be the indices of the
first n linearly independent elements in the sequence {y j }∞j=0, where y0 = b(0, 0)

and y j = ad j
Rb

Ra E(x)∣
∣

x=0
t=0

, j ≥ 1. We suppose that there exists an open domain

� ⊂ R
n\{0}, 0 ∈ �, such that

(i) the time-optimal control problem for the system (24) has a unique solution
(θ∗

x0 , u∗
x0) for any x0 ∈ �;

(ii) the function θ∗
x0 is continuous for x0 ∈ �;

Then, for any δ > 0 there exists a domain �δ ⊂ R
n such that 0 ∈ �δ and

� = ∪δ>0�δ , and the time-optimal control problem (20), (21) approximates the
time-optimal control problem (10), (11) in any domain �δ .

Moreover, in the case when the initial system is of the form (1), one can choose
˜θx0 = θ�(x0) and ũx0(t) = u�(x0)(t). Finally, if q2, . . . , qn are odd, then condition
(ii) holds automatically.

Now, we are ready to explain, why systems (1) are called “dual-to-linear.” In [3],
we considered systems of the form (10), which are approximated, in the sense of time
optimality, by linear systems ẋ = A(t)x+ub(t). We found out that the result analogous
to Corollary 4.1 holds, where, instead of (26), the following condition appears

[adm1
Ra

Rb, · · · [admk−1
Ra

Rb, admk
Ra

Rb] · · · ]E(x)∣
∣

x=0
t=0

∈ Lin{ad j
Ra

Rb E(x)∣
∣

x=0
t=0

}m−2
j=0 ,

where m = m1 + · · · + mk + k, k ≥ 2, m1, . . . ,mk ≥ 0. (27)

We note that (26) is obtained as a result of partial replacing of ad j
Ra

Rb by ad j
Rb

Ra in
(27). Such a “duality” of conditions (26) and (27) justifies our term “dual-to-linear
systems.”

5 Conclusions

In the paper, we have considered one special class of nonlinear control systems, called
dual-to-linear systems. For these systems, we studied the time-optimal control problem
and gave the explicit description of the possible character of optimal controls. The
three-dimensional example was given to illustrate these results. We described the
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class of nonlinear affine control systems, which can be approximated by dual-to-
linear systems in the sense of time optimality. Our analysis gave reason to conclude
that dual-to-linear systems are, in a certain sense, close to linear systems.

It is well known that the time-optimal control problem for a linear system admits
an interpretation in terms of the Markov moment problem [23,24]. The results of
the present paper open the following direction of the further research: find a moment
interpretation for dual-to-linear systems. The explicit form of optimal controls can be
considered as a starting point of such an investigation.
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