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Abstract We investigate random sequential adsorption (RSA) on a random graph via the
following greedy algorithm: Order the n vertices at random, and sequentially declare each
vertex either active or frozen, depending on some local rule in terms of the state of the
neighboring vertices. The classical RSA rule declares a vertex active if none of its neighbors
is, in which case the set of active nodes forms an independent set of the graph. We generalize
this nearest-neighbor blocking rule in three ways and apply it to the Erdős–Rényi random
graph. We consider these generalizations in the large-graph limit n → ∞ and characterize
the jamming constant, the limiting proportion of active vertices in the maximal greedy set.

Keywords Random sequential adsorption · Jamming limit · Random graphs · Parking
problem · Greedy independent set · Frequency assignment

1 Introduction

Random sequential adsorption (RSA) refers to a process in which particles appear sequen-
tially at random positions in some space, and if accepted, remain at those positions forever.
This strong form of irreversibility is often observed in dynamical interacting particle systems;
see [5,6,13,19,21] and the references therein for many applications across various fields of
science. One example concerns particle systems with hard-core interaction, in which parti-
cles are accepted only when there is no particle already present in its direct neighborhood.
In a continuum, the hard-core constraint says that particles should be separated by at least
some fixed distance.

Certain versions of RSA are called parking problems [22], where cars of a certain length
arrive at random positions on some interval (or on R). Each car sticks to its location if it
does not overlap with the other cars already present. The fraction of space occupied when
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there is no more place for further cars is known as Rényi’s parking constant. RSA or parking
problems were also studied on random trees [8,24], where the nodes of an infinite random
tree are selected one by one, and are declared active if none of the neighboring nodes is active
already, and become frozen otherwise.

We will study RSA on random graphs, where as in a tree, nodes either become active
or frozen. We are interested in the fraction of active nodes in the large-network limit when
the number of nodes n tends to infinity. We call this limiting fraction the jamming constant,
and it can be interpreted as the counterpart of Rényi’s parking constant, but then for random
graphs. For classical RSAwith nearest-neighbor blocking, the jamming constant corresponds
to the normalized size of a greedy maximal independent set, where at each step one vertex is
selected uniformly at random from the set of all vertices that have not been selected yet, and
is included in the independent set if none of its neighbors are already included. The size of
the maximal greedy independent set of an Erdős–Rényi random graph was first considered
in [15]; see Remark 1 below. Recently, jamming constants for the Erdős–Rényi random
graph were studied in [2,23], and for random graphs with given degrees in [1,3,4]. In [3],
random graphs were used to model wireless networks, in which nodes (mobile devices) try
to activate after random times, and can only become active if none of their neighbors is active
(transmitting). When the size of the wireless network becomes large and nodes try to activate
after a short random time independently of each other, the jammed state with a maximal
number of active nodes becomes the dominant state of the system. In [23], random graphs
with nearest-neighbor blocking were used to model a Rydberg gas with repelling atoms. In
ultra-cold conditions, the repelling atoms with quantum interaction favor a jammed state, or
frozen disorder, and in [23] it was shown that this jammed state could be captured in terms
of the jamming limit of a random graph, with specific choices for the free parameters of the
random graph to fit the experimental setting.

In this paper we consider three generalizations of RSA on the Erdős–Rényi random graph.
The generalizations cover a wide variety of models, where the interaction between the parti-
cles is repellent, but not as stringent as nearest-neighbor blocking. The first generalization is
inspired by wireless networks. Suppose that each active node causes one unit of noise to all
its neighboring nodes. Further, a node is allowed to transmit (and hence to become active)
unless it senses too much noise, or causes too much noise to some already active node. We
assume that there is a threshold value K such that a node is allowed to become active only
when the total noise experienced at that node is less than K , and the total noise that would
be caused by the activation of this node to its neighboring active nodes, remains below K .
We call this the Threshold model. In the jammed state, all active nodes have fewer than K
active neighbors, and all frozen nodes would violate this condition when becoming active.
This condition relaxes the strict hardcore constraint (K = 1) and combined with RSA pro-
duces a greedy maximal K -independent set, defined as a subset of vertices U in which each
vertex has at most K − 1 neighbors in U . The Threshold model was studied in [17,18] on
two-dimensional grids in the context of distributed message spreading in wireless networks.

The second generalization considers a multi-frequency or multi-color version of classi-
cal RSA. There are K different frequencies available. A node can only receive a ‘higher’
frequency than any of its already active neighbors. Otherwise the node gets frozen. As in
the Threshold model, the case K = 1 reduces to the classical hard-core constraint. But for
K ≥ 2, this multi-frequency version gives different jammed states, and is also known as
RSA with screening or the Tetris model [10]. In the Tetris model, particles sequentially drop
from the sky, on random locations (nodes in case of graphs), and stick to a height that is one
unit higher than the heights of the particles that occupy neighboring locations. This model
has been studied in the context of ballistic particle deposition [16], where particles dropping
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vertically onto a surface stick to a location when they hit either a previously deposited particle
or the surface.

The third generalization concerns random Sequential Frequency Assignment Process
(SFAP) [9,11]. As in the Tetris model, there are K different frequencies, and a node cannot
use a frequency at which one of its neighbors is already transmitting. But this time, a new node
selects the lowest available frequency. If there is no further frequency available (i.e. all the K
different frequencies are taken by its neighbors), the node becomes frozen. The SFAP model
can be used as a simple and easy-to-implement algorithm for determining interference-free
frequency assignment in radio communications regulatory services [11].

The paper is structured as follows. Section 2 describes the models in detail and presents
the main results. We quantify how the jamming constant depends on the value of K and the
edge density of the graph. Section 3 gives the proofs of all the results and Section 4 describes
some further research directions.

1.1 Notation and Terminology

We denote an Erdős–Rényi random graph on the vertex set [n] = {1, 2, . . . , n} by G(n, pn),
where for any u �= v, (u, v) is an edge of G(n, pn) with probability pn = c/n for some
c > 0, independently for all distinct (u, v)-pairs. We often mean byG(n, pn) the distribution
of all possible configurations of the Erdős–Rényi random graph with parameters n and pn ,
and we sometimes omit sub-/superscript n when it is clear from the context. The symbol
1A denotes the indicator random variable corresponding to the set A. An empty sum and an
empty product is always taken to be zero and one respectively. We use calligraphic letters
such asA, I, to denote sets, and the corresponding normal fonts such as A, I , to denote their
cardinality. Also, for discrete functions f : {0, 1, . . . } �→ R and x > 0, f (x) should be
understood as f (�x�). The boldfaced notations such as x, δ are reserved to denote vectors, and
‖·‖ denotes the sup-norm on the Euclidean space. The convergence in distribution statements
for processes are to be understood as uniform convergence over compact sets.

2 Main Results

We now present the three models in three separate sections. For each model, we describe an
algorithm that lets the graph grow and simultaneously applies RSA. Asymptotic analysis of
the algorithms in the large-graph limit n → ∞ then leads to characterizations of the jamming
constants.

2.1 Threshold Model

For any graph G with vertex set V , let dmax(G) denote the maximum degree, and denote the
subgraph induced by U ⊂ V as GU . Define the configuration space as

�K (G) = {U ⊂ V : dmax(GU ) < K }. (1)

We call any member of �K (G) a K-independent set of G. Now consider the following
process on G(n, pn): Let I(t) denote the set of active nodes at time t , and I(0) := ∅. Given
I(t), at step t+1, one vertexv is selected uniformly at randomfrom the set of all verticeswhich
have not been selected already, and if dmax(GI(t)∪{v}) < K , then set I(t + 1) = I(t) ∪ {v}.
Otherwise, set I(t+1) = I(t).Note that, given the graphG(n, pn), I(t) is a random element
from�K (G(n, pn)) for each t , and after n steps we get amaximal greedy K -independent set.
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1220 S. Dhara et al.

We are interested in the jamming fraction I (n)/n as n grows large, and we call the limiting
value, if it exists, the jamming constant.

To analyze the jamming constant for the Threshold model, we introduce an exploration
algorithm that generates both the random graph and the greedy K -independent set simulta-
neously. The algorithm thus outputs a maximal K -independent set equal in distribution to
I(n).

Algorithm 1 (Threshold exploration) At time t , we keep track of the sets Ak(t) of active
vertices that have precisely k active neighbors, for 0 ≤ k ≤ K − 1, the set B(t) of frozen
vertices, and the set U(t) of unexplored vertices. Initialize by settingAk(0) = B(0) = ∅ for
0 ≤ k ≤ K −1, and U(0) = V . DefineA(t) := ⋃

k Ak(t). At time t+1, if U(t) is nonempty,
we select a vertex v from U(t) uniformly at random and try to pair it with the vertices of
A(t) ∪ B(t), mutually independently, with probability pn . Suppose the set of all vertices in
A(t) to which the vertex v is paired is given by {v1, . . . , vr } for some r ≥ 0, where for all
i ≤ r , vi ∈ Aki (t) for some 0 ≤ ki ≤ K − 1. Then:

– If r < K and vi /∈ AK−1(t) for all i ≤ r (i.e. maxi ki < K − 1), then put v inAr (t) and
move each vi from Aki (t) to Aki+1(t). More precisely, set

Ar (t + 1) = Ar (t) ∪ {v}, Aki (t + 1) = Aki (t) \ {v1, . . . , vr },
Aki+1(t + 1) = Aki (t) ∪ {vi }, B(t + 1) = B(t),

U(t + 1) = U(t) \ {v}.

– Otherwise, if r ≥ K orAK−1(t) ∩ {v1, . . . , vr } �= ∅, declare v to be blocked, i.e. B(t +
1) = B(t) ∪ {v}, Ak(t + 1) = Ak(t) for all 0 ≤ k ≤ K − 1 and U(t + 1) = U(t) \ {v}.
The algorithm terminates at t = n and produces as output the set A(n) and a graph G(n).

The following result guarantees that we can use Algorithm 1 for analyzing the Threshold
model:

Proposition 1 The joint distribution of (G(n),A(n)) is identical to the joint distribution of
(G(n, pn), I(n)).

Observe that |U(t)| = n − t . Our goal is to find the jamming constant, i.e. the asymptotic
value of A(n)/n. For that purpose, define αn

k (t) := Ak(�nt�)/n, and the vector αn(t) =
(αn

0 (t), . . . , α
n
K−1(t)) for t ∈ [0, 1]. We can now state the main result for the Threshold

model.

Theorem 1 (Threshold jamming limit) The process {αn(t)}0≤t≤1 on G(n, pn), with pn =
c/n, converges in distribution to the deterministic process {α(t)}0≤t≤1 that can be described
as the unique solution of the integral recursion equation

αk(t) =
∫ t

0
δk(α(s))ds, (2)

where

δk(α) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−cα0e−cα≤K−1
∑K−2

r=0 crαr
≤K−2/r ! + e−cα≤K−1 , k = 0,

c(αk−1 − αk)e−cα≤K−1
∑K−2

r=0 crαr
≤K−2/r ! 1 ≤ k ≤ K − 2,

+e−cα≤K−1ckαk
≤K−2/k!,

cαK−2e−cα≤K−1
∑K−2

r=0 crαr
≤K−2/r ! k = K − 1,

+e−cα≤K−1cK−1αK−1
≤K−2/(K − 1)!,

(3)
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Fig. 1 Fraction of active nodes as a function of c, for 0 ≤ c ≤ 10 and several K -values. The smooth lines
display

∑K−1
k=0 αk (1) and the rough lines follow from simulation of a network with n = 1000 nodes

with α≤k = α0 + · · · + αk . Consequently, as n → ∞, the jamming fraction converges in
distribution to a constant, i.e.,

I (n)

n
d−→

K−1∑

k=0

αk(1). (4)

Figure 1 displays some numerical values for the fraction of active nodes given by∑K−1
k=0 αk(1), as a function of the average degree c and the threshold K . As expected, an

increased threshold K results in a larger fraction. Figure 1 also shows prelimit values of this
fraction for a finite network of n = 1000 nodes. These values are obtained by simulation,
where for each value of c we show the result of one run only. This leads to the rougher curves
that closely follow the smooth deterministic curves of the jamming constants. If we had
plotted the average values of multiple simulation runs, 100 say, this average simulated curve
would be virtually indistinguishable from the smooth curve. This not only confirms that our
limiting result is correct, but it also indicates that the limiting results serve as good approx-
imations for finite-sized networks. We have drawn similar conclusions based on extensive
simulations for all the jamming constants presented in this section.

Remark 1 It can be checked that Theorem 1 gives the known jamming constant for K = 1.
In this case, (2) reduces to

α0(t) =
∫ t

0
e−cα0(s)ds (5)

with α0(0) = 0. Thus the value of the jamming constant becomes α0(1) = c−1 log(1 + c),
which agrees with the known value [15, Theorem 2.2(ii)].

Remark 2 Theorem 1 can be understood intuitively as follows. Observe that when a vertex
v is selected from U , it will only be added to Ak if it is not connected to AK−1, and it
has precisely k ≤ K − 1 connections to the rest of A. Further, if the selected vertex v

becomes active, then all the vertices in A j , to which v gets connected, are moved to A j+1,
0 ≤ j < K − 1. The number of connections to Ak , in this case, is Bin(Ak, pn) and that to⋃K−2

i=0 Ai is Bin(A≤K−2, pn), and we have the additional restriction that the latter is less than
or equal to K − 1. The expectation of Bin(Ak, pn) restricted to Bin(A≤K−2, pn) ≤ K − 1
is given by Ak pn times another binomial probability (see Lemma 1). This explains the first
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terms on the right side of (3). Finally, taking into account the probability of acceptance to
Ak gives rise to the second terms on the right side of (3).

Remark 3 Algorithm 1 is different in spirit than the exploration algorithms in the recent
works [4,23]. The standard greedy algorithms in [4,23] work as follows: Given a graph G
with n vertices, include the vertices in an independent set I consecutively, and at each step,
one vertex is chosen randomly from those not already in the set, nor adjacent to a vertex
in the set. This algorithm must find all vertices adjacent to I as each new vertex is added
to I , which requires probing all the edges adjacent to vertices in I . However, since in the
Threshold model with K ≥ 2 an active node does not obstruct its neighbors from activation
per se, we need to keep track of the nodes that are neither active nor blocked. We deal with
this additional complexity by simply observing that the activation of a node is determined by
exploring the connections with the previously active vertices only. Therefore, Algorithm 1
only describes the connections between the new (and potentially active) vertex and the already
active vertices (and the frozen vertices in order to complete the construction of the graph).
Since the graph is built one vertex at a time, the jamming state is achieved precisely at time
t = n, and not at some random time in between 1 and n as in [4,23].

Remark 4 For the other two RSA generalizations discussed below we will use a similar
algorithmic approach, building and exploring the graph one vertex at a time. These algorithms
form a crucial ingredient of this paper because they make the RSA processes amenable to
analysis.

2.2 Tetris Model

In the Tetris model, particles are sequentially deposited on the vertices of a graph. For a
vertex v, the incoming particle sticks at some height hv ∈ [K ] = {1, 2, . . . , K } determined
by the following rules: At time t = 0, initialize by setting hv(0) = 0 for all v ∈ V . Given
{hv(t) : v ∈ V }, at time t + 1, one vertex u is selected uniformly at random from the set
of all vertices that have not been selected yet. Set hu(t + 1) = max{hw(t) : w ∈ Vu} + 1
if max{hw(t) : w ∈ Vu} < K , where Vu is the set of neighboring vertices of u, and set
hu(t +1) = 0 otherwise. Observe that the height of a vertex can change only once, and in the
jammed state no further vertex at zero height can achieve non-zero height. Note that K now
has a different interpretation than in the Threshold model. In the Tetris model, the number
of possible states on any vertex ranges from 0 and K , whereas in the Threshold model the
vertices have only two possible states (active/frozen), and K determines “the flexibility” in
the acceptance criterion. We are interested in the height distribution in the jammed state.
Define Ni (t) := {v : hv(t) = i} and Ni (t) = |Ni (t)|. We study the scaled version of the
vector (N1(n), . . . , NK (n)) and refer to Ni (n)/n as the jamming density of height i .

Again, we assume that the underlying interference graph is an Erdős–Rényi random graph
on n verticeswith independent edge probabilities pn = c/n, andwe use a suitable exploration
algorithm that generates the random graph and the height distribution simultaneously.

Algorithm 2 (Tetris exploration) At time t , we keep track of the set Ak(t) of vertices at
height k, for 0 ≤ k ≤ K , and the set U(t) of unexplored vertices. Initialize by putting
Ak = ∅ for 0 ≤ k ≤ K and U(0) = V . Define A(t) := ⋃

k Ak(t). At time t + 1, if U(t)
is nonempty, we select a vertex v from U(t) uniformly at random and try to pair it with the
vertices of A(t), independently, with probability pn . Suppose that the set of all vertices in
A(t) to which the vertex v is paired, is given by {v1, . . . , vr } for some r ≥ 0, where each
vi ∈ Aki (t) for some 0 ≤ ki ≤ K . Then:
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– When maxi∈[r ] ki ≤ K − 1, set hv(t + 1) = maxi∈[r ] ki + 1, and hu(t + 1) = hu(t) for
all u �= v.

– Otherwise hu(t + 1) = hu(t) for all u ∈ V .

The algorithm terminates at time t = n, when U(t) becomes empty, and outputs the vector
(A1(n), . . . ,AK (n)) and a graph G(n).

Proposition 2 The joint distribution of (G(n),A1(n), . . . ,AK (n)) is identical to that of
(G(n, pn),N1(n), . . . ,NK (n)).

Due to Proposition 2 the desired height distribution can be obtained from the scaled output
produced by Algorithm 2. Define αn

k (t) = Ak(nt)/n as before. Here is then the main result
for the Tetris model:

Theorem 2 (Tetris jamming limit) The process {αn(t)}0≤t≤1 on the graph G(n, c/n) con-
verges in distribution to the deterministic process {α(t)}0≤t≤1 that can be described as the
unique solution of the integral recursion equation

αk(t) =
∫ t

0
δk(α(s))ds, (6)

where

δk(α) =
{(

1 − e−cαk−1
)
e−c(αk+···+αK ), for k ≥ 2,

e−c(α1+···+αK ), for k = 1.
(7)

Consequently, the jamming density of height k converges in distribution to a constant, i.e., for
all 1 ≤ k ≤ K,

Nk(n)

n
d−→αk(1), as n → ∞. (8)

Figure 2 shows the jamming densities of the different heights for K = 2, 3, 4 and increas-
ing average degree c. Observe that in general the jamming heights do not obey a natural
order. For K = 2, for instance, the order of active nodes at heights one and two changes
around c ≈ 4.4707. Similar regime switches occur for large K -values as well. In general, for
relatively sparse graphs with small c, the density of active nodes can be seen to decrease with
the height, possibly due to the presence of many small subgraphs (like isolated vertices or
pair of vertices). But as c increases, the screening effect becomes prominent, and the densities
increase with the height. Related phenomena have been observed for parking on Z [9], and
on a random tree [10]. However, the models considered in [9,10] are different from the ones
considered here in the sense that the heights [9,10] are unbounded (there are no frozen sites
as in this paper). Furthermore, Fig. 3 displays the fraction of active nodes as a function of the
average degree. Notice here also that the jamming constant is increasing with K , as expected.

Theorem 2 also gives the jamming constant α1(1) + · · · + αK (1) for the limiting fraction
of active, or non-zero nodes. For K = 1 this corresponds to the fraction of nodes contained
in the greedy maximal independent set, and as expected, relaxing the hard constraints by
introducing more than one height (K ≥ 2) considerably increases this fraction.

Remark 5 As in the Threshold model, it can be observed that the number of connections to
the set Ai will be distributed approximately as Poi(cαi ). Now, at any step, a selected vertex
v is added toAi if and only if it has a connection to at least some vertex inAi−1, and has no
connections with

⋃K
j=i A j . The probability of this event can be recognized in the function

δk .
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Fig. 2 Jamming densities of the different heights in the Tetris model as a function of c for 0 ≤ c ≤ 20
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Fig. 3 Fraction of active nodes in the Tetris model as a function of c for 0 ≤ c ≤ 10

2.3 Sequential Frequency Assignment Process (SFAP) Model

The SFAP works as follows: Each node can take one of K different frequencies indexed by
{1, 2, . . . , K }, and neigboring nodes are not allowed to have identical frequencies, because
this would cause a conflict. One can see that if the underlying graph G is not K -colorable,
then a conflict-free frequency assignment to all the vertices is ruled out. The converse is
also true: If there is a feasible K -coloring for the graph G, then there exists a conflict-free
frequency assignment. Determining the optimal frequency assignment, in the sense of the
maximum number of nodes getting at least some frequency for transmission, can be seen
to be NP-hard in general (notice that K = 1 gives the maximum independent set problem).
This creates the need for distributed algorithms that generate a maximal (not necessarily
maximum) conflict-free frequency assignment. The SFAP model provides such a distributed
scheme [11]. As in the Threshold model and Tetris model, the vertices are selected one at a
time, uniformly at random amongst those that have not yet been selected. A selected vertex
probes its neigbors and selects the lowest available frequency. When all K frequencies are
already taken by its neighbors, the vertex gets no frequency and is called frozen.

Denote by fv(t) the frequency of the vertex v, and by Ni (t) the set of all vertices using
frequency i at time step t . As before, we are interested in the jamming density Ni (n)/n of
each frequency 1 ≤ i ≤ K . Again we consider the Erdős–Rényi random graph, and the
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exploration algorithm is quite similar to that of the Tetris model, except for different local
rules for determining the frequencies.

Algorithm 3 (SFAP exploration) At time t , we keep track of the set Ak(t) of vertices cur-
rently using frequency k, for 1 ≤ k ≤ K , the set A0(t) of vertices that have been selected
before time t , but did not receive a frequency (frozen), and the setU(t) of unexplored vertices.
Initialize by setting Ak = ∅ for 0 ≤ k ≤ K and U(0) = V . Define A(t) := ⋃

k Ak(t). At
time t + 1, if U(t) is nonempty, we select a vertex v from U(t) uniformly at random and try
to pair it with all vertices inA(t), independently with probability pn . Suppose that the set of
all vertices in A(t) \ A0(t) to which the vertex v is paired is given by {v1, . . . , vr } for some
r ≥ 0, where each vi ∈ Aki (t) for some 1 ≤ ki ≤ K . Then:

– If the set Fv(t) := {1, . . . , K } \ {ki : 1 ≤ i ≤ r} of non-conflicting frequencies is
nonempty, then assign the vertex v the frequency fv(t+1) = minFv(t), and fu(t+1) =
fu(t) for all u ∈ A(t).

– Otherwise set fv(t + 1) = 0, and fu(t + 1) = fu(t) for all u ∈ A(t).

The algorithm terminates at time t = n and outputs (A1(n), . . . ,AK (n)) and a graph G(n).
Again, we can show that this algorithm produces the right distribution.

Proposition 3 The joint distribution of (G(n),A1(n), . . . ,AK (n)) is identical to that of
(G(n, pn), N1(n), . . . ,NK (n)).

Again, define αn
k (t) = Ak(nt)/n.

Theorem 3 (SFAP jamming limit) The process {αn(t)}0≤t≤1 converges in distribution to the
process {α(t)}0≤t≤1 that can be described as the unique solution to the deterministic integral
recursion equation

αk(t) =
∫ t

0
δk(α(s))ds, (9)

where, for all 1 ≤ k ≤ K,

δk(α) = e−cαk
k−1∏

r=1

(
1 − e−cαr

)
. (10)

Consequently, the jamming density at height k converges in probability to a constant,
i.e. for all 1 ≤ k ≤ K,

Nk(n)

n
d−→αk(1), as n → ∞. (11)

It is straightforward to check that the system of equations in (9) has the solution

α1(t) = 1

c
log(1 + ct),

αi (t) = 1

c
log(ecαi−1(t) − cαi−1(t)), for i ≥ 2. (12)

As in the Tetris model, the proportion of nodes with the same frequency is a relevant
quantity. We plot the jamming densities for the first four frequencies for increasing values
of c in Fig. 4a. Observe that in this case the density decreases with the frequency. The total
number of active nodes is given by the sum of the heights, as displayed in Fig. 4b.
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Fig. 4 SFAP model with K = 4

Remark 6 Observe that at each step the newly selected vertex v is added to the set Ak if
and only if v has at least some connections to all the sets A j with 1 ≤ j < k, and has no
connectionswith the setAk . Further, as in the previous cases, since the number of connections
to the setA j , in the limit, is Poisson(cα j ) distributed, we obtain that this probability is given
by the function δk .

Remark 7 In the random graphs literature the SFAP model is used as a greedy algorithm for
finding an upper bound on the chromatic number of the Erdős–Rényi random graph [15,20].
However, the SFAP version in this paper uses a fixed K , which is why Theorem 3 does not
approximate the chromatic number, and gives the fraction of vertices that can be colored in
a greedy manner with K given colors instead.

3 Proofs

In this section we first prove Theorem 1 for the Threshold model. The proofs for Theorems 2
and 3 use similar ideas except for the precise details, which is why we present these proofs
in a more concise form. For the same reason, we give the proof of Proposition 1 and skip the
proofs of the similar results in Proposition 2 and Proposition 3.

3.1 Proof of Theorem 1

Proof of Proposition 1 The difference between the Threshold model and Algorithm 1 lies in
the fact that the activation process in the Thresholdmodel takes place on a given realization of
G(n, pn), whereas Algorithm 1 generates the graph sequentially. To see that (G(n),A(n)) is
indeed distributed as (G(n, pn), I(n)), it suffices to produce a coupling such that the graphs
G(n, pn) and G(n) are identical and I(t) = A(t) for all 1 ≤ t ≤ n. For that purpose,
associate an independent uniform[0, 1] random variable Ui, j to each unordered pair (i, j)
both in the Threshold model and in Algorithm 1, for 1 ≤ i < j ≤ n. It can be seen that if we
keep only those edges for which Ui, j ≤ pn , the resulting graph is distributed as G(n, pn).
Therefore, when we create edges in both graphs according to the same random variablesUi, j ,
we ensure that G(n, pn) = G(n).

Now to select vertices uniformly at random from the set of all vertices that have not been
selected yet, initially choose a random permutation of the set {1, 2, . . . , n} and denote it by
{σ1, σ2, . . . , σn}. In both the Threshold model and Algorithm 1, at time t , select the vertex
with index σt . Now, at time t , Algorithm 1 only discovers the edges satisfyingUσt , j ≤ pn for
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j ∈ A(t). Observe that this is enough for deciding whether σt will be active or not. Therefore,
if σt becomes active in the Threshold model, then it will become active in Algorithm 1 as
well, and vice versa. We thus end up getting precisely the same set of active vertices in the
original model and the algorithm, which completes the proof. ��

We now proceed to prove Theorem 1. The proof relies on a decomposition of the rescaled
process as a sum of a martingale part and a drift part, and then showing that the martingale
part converges to zero and the drift part converges to the appropriate limiting function. Let
ξnk (t + 1) be the number of edges created at step t + 1 between the random vertex selected
at step t + 1 and the vertices in Ak(t). Also, for notational consistency, define ξn−1 ≡ 0, and

let ξn(t + 1) := ∑K−1
k=0 ξnk (t + 1). Recall that an empty sum is taken to be zero. Note that,

for any 0 ≤ k ≤ K − 1,
An
k (t + 1) = An

k (t) + ζ n
k (t + 1), (13)

where
ζ n
k (t + 1) = ξnk−1(t + 1) − ξnk (t + 1) + 1[ξn(t+1)=k] (14)

if ξn(t + 1) ≤ K − 1 and ξnK−1(t + 1) = 0, and ζ n
k (t + 1) = 0 otherwise. To see this,

observe that at time t+1, if the number of new connections to the set of active vertices exceeds
K −1, or a connection is made to some active vertex that already has K −1 active neighbors,
then the newly selected vertex cannot become active. Otherwise, the newly selected vertex
instantly becomes active, and if the total number of new connections to An(t) is j for some
j ≤ K − 1, then ξnk (t + 1) vertices of Ak(t) will now have k + 1 active neighbors, for
0 ≤ k ≤ K − 2, and the newly active vertex will be added to A j (t + 1).

Observe that {An(t)}t≥0 = {(An
0(t), . . . , A

n
K−1(t))}t≥0 is anRK -valued Markov process.

Moreover, for any 0 ≤ k ≤ K − 1, given the value of An(t), ξnk (t + 1) ∼ Bin(An
k (t), pn)

and ξn0 (t + 1), . . . , ξnK−1(t + 1) are mutually independent when conditioned on An(t). Write
An≤r (t) = An

1(t) + · · · + An
r (t). For a random variable X ∼ Bin(n, p), denote B(n, p; k) =

P (X ≤ k) and b(n, p; k) = P (X = k). Now we need the following technical lemma:

Lemma 1 Let X1, . . . , Xr be r independent random variables with Xi distributed as
Bin(ni , p). Then, for any 1 ≤ R ≤ ∑r

i=1 ni ,

E (Xi |X1 + · · · + Xr ≤ R) = ni p
P (Z1 ≤ R − 1)

P (Z2 ≤ R)
(15a)

and

E (Xi (Xi − 1)|X1 + · · · + Xr ≤ R) ≤ ni (ni − 1)p2

P (Z2 ≤ R)
, (15b)

where Z1 ∼ Bin
(∑r

i=1 ni − 1, p
)
and Z2 ∼ Bin

(∑r
i=1 ni , p

)
.

Proof Note that E (Xi |X1 + · · · + Xr = j) = ni j/(n1 + · · · + nr ). Therefore,

E (Xi ) = E (Xi |X1 + · · · + Xr ≤ R)P (X1 + · · · + Xr ≤ R)

+
n1+···+nr∑

j=R+1

E (Xi |X1 + · · · + Xr = j)P (X1 + · · · + Xr = j) . (16)

Thus, since

j

p
∑r

i=1 ni
b

(
r∑

i=1

ni , p; j
)

= b

(
r∑

i=1

ni − 1, p; j − 1

)

(17)
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we get

E (Xi |X1 + · · · + Xr ≤ R)

= ni p

P (X1 + · · · + Xr ≤ R)

(

1 − 1

p
∑r

i=1 ni

n1+···+nr∑

j=R+1

jP (X1 + · · · + Xr = j)

)

= ni p

P (Z2 ≤ R)
(1 − P (Z1 ≥ R)) = ni p

P (Z1 ≤ R − 1)

P (Z2 ≤ R)
. (18)

Further,

ni (ni − 1)p2 = E (Xi (Xi − 1))

≥ E (Xi (Xi − 1)|X1 + · · · + Xr ≤ R)P (Z2 ≤ R) (19)

and the proof is complete. ��

Using Lemma 1 we get the following expected values:

E
(
ξnk (t + 1)1[

ξn(t+1)≤K−1,ξnK−1(t+1)=0
]
∣
∣An(t)

)

= An
k (t)pn(1 − pn)

An
K−1(t)B(An

≤K−2(t) − 1, pn; K − 2), (20)

and thus, for 0 ≤ k ≤ K − 1,

E
(
ζ n
k (t + 1)|An(t)

)

= (An
k−1(t) − An

k (t))pn(1 − pn)
An
K−1(t)B(An

≤K−2(t) − 1, pn; K − 2)

+ b(An
≤K−2, pn; k)(1 − pn)

An
K−1(t), (21)

where An−1 ≡ An
K ≡ 0. For i = (i0, . . . , iK−1) ∈ {1, . . . , n}K , define the drift function

�n
k (i) := E

(
ζ n
k (t + 1)

∣
∣ An(t) = i

)
. (22)

Denote δnk (α) := �n
k (nα) for α ∈ [0, 1]K , and

δn(α) := (δn0 (α), . . . , δnK−1(α)).

Recall the definition of δ(α) = (δ0(α), . . . , δK−1(α)) in (3).

Lemma 2 (Convergence of the drift function) The time-scaled drift function δn converges
uniformly on [0, 1]K to the Lipschitz-continuous function δ : [0, 1]K �→ [0, 1]K .

Proof Observe that δ(·) is continuously differentiable, defined on a compact set, and hence,
is Lipschitz continuous. Also, δn converges to δ point-wise and the uniform convergence is
a consequence of the continuity of δ and the compactness of the support. ��

Recall that An
k (0) = 0 for 0 ≤ k ≤ K − 1. The Doob-Meyer decomposition of (13) gives

An
k (t) =

t∑

i=1

ζ n
k (i) = Mn

k (t) +
t∑

i=1

E
(
ζ n
k (i)|An(i − 1)

)
, (23)
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where (Mn
k (t))t≥1 is a locally square-integrable martingale. We can write

αn
k (t) = Mn

k (�nt�)
n

+ 1

n

�nt�∑

i=1

�n
k (A

n(i − 1))

= Mn
k (�nt�)
n

+ 1

n

∫ �nt�−1

0
�n

k (A
n(s))ds

= Mn
k (�nt�)
n

+
∫ t

0
�n

k (A
n(ns))ds −

∫ t

(�nt�−1)/n
�n

k (A
n(ns))ds

= Mn
k (�nt�)
n

+
∫ t

0
δnk (α

n(s))ds −
∫ t

(�nt�−1)/n
δnk (α

n(s))ds. (24)

First we show that the martingale terms converge to zero.

Lemma 3 For all 0 ≤ k ≤ K − 1, as n → ∞

sup
s∈[0,1]

|Mn
k (ns)|
n

d−→0. (25)

Proof The scaled quadratic variation term can be written as

1

n2
〈Mn

k 〉(�ns�) = 1

n2

�ns�∑

i=1

Var
(
ζ n
k (i)|An(i − 1)

)
. (26)

Now, using Lemma 1 we get,

E
(
ξnk (i)(ξnk (i) − 1)1[

ξn(t+1)≤K−1,ξnK−1(t+1)=0
]
∣
∣An(i − 1)

)

≤ An
k (i − 1)(An

k (i − 1) − 1)p2n(1 − pn)
An
K−1(i−1) ≤ c2 (27)

for all large enough n, where we have used that An
k (i − 1) ≤ n and pn = c/n in the last

step. Thus, there exists a constant C > 0 such that for all large enough n,

E
(
ζ n
k (i)|An(i − 1)

) ≤ C. (28)

Therefore, (26) implies 〈Mn
k 〉/n2 d−→0 and this proves (25). ��

Also, Lemma 2 implies that supn≥1 supx∈[0,1]K |δnk (x)| < ∞ for any 0 ≤ k ≤ K − 1.
Therefore, ∫ t

(�nt�−1)/n
δnk (α

n(s))ds ≤ ε′
n, (29)

where ε′
n is non-random, independent of t, k and ε′

n → 0. Thus, for any t ∈ [0, 1],
sup

s∈[0,t]
∥
∥αn(s) − α(s)

∥
∥

≤ sup
s∈[0,t]

‖Mn(ns)‖
n

+
∫ t

0
sup

u∈[0,s]
∥
∥δn(αn(u)) − δ(α(u))

∥
∥ds + ε′

n . (30)
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Now, since δ is a Lipschitz-continuous function, there exists a constant C > 0 such that
‖δ(x) − δ( y)‖ ≤ C‖x − y‖ for all x, y ∈ [0, 1]K . Therefore,

sup
u∈[0,s]

∥
∥δn(αn(u)) − δ(α(u))

∥
∥ ≤ sup

x∈[0,1]K
∥
∥δn(x) − δ(x)

∥
∥

+ C sup
u∈[0,s]

∥
∥αn(u) − α(u)

∥
∥. (31)

Lemma 2, (30) and (31) together imply that

sup
s∈[0,t]

∥
∥αn(s) − α(s)

∥
∥ ≤ C

∫ t

0
sup

u∈[0,s]
∥
∥αn(u) − α(u)

∥
∥ds + εn, (32)

where εn
d−→0. Using Grőnwall’s inequality [14, Proposition 6.1.4], we get

sup
s∈[0,t]

∥
∥αn(s) − α(s)

∥
∥ ≤ εne

Ct . (33)

Thus the proof of Theorem 1 is complete. ��
3.2 Proof of Theorem 2

The proof of Theorem 2 is similar to the proof of Theorem 1. Again denote An
k (t) = |Ak(t)|,

whereAk(t) is the number of active vertices at height k at time t . Note here that An
0(t) is the

set of frozen vertices. Let ξnk (t + 1) be the number of vertices in Ak(t) that are paired to the
vertex selected at time t + 1 by Algorithm 2. Then, for 1 ≤ k ≤ K ,

An
k (t + 1) = An

k (t) + ζ n
k (t + 1), (34)

where, for k ≥ 2,

ζ n
k (t + 1) =

{
1 if ξnr (t + 1) = 0, ∀r ≥ k, ξnk−1(t + 1) > 0,

0 otherwise,

ζ n
1 (t + 1) =

{
1 if ξnr (t + 1) = 0, ∀r ≥ 1,

0 otherwise,
(35)

Indeed, observe that if j is the maximum index for which the new vertex selected at time
t + 1 makes a connection to An

j (t), and j ≤ K − 1, then v will be assigned height j + 1.
Therefore,

E
(
ζ n
k (t + 1)|An(t)

)

=
{(

1 − (1 − pn)
An
k−1(t)

)
(1 − pn)A

n
k (t)+···+An

K (t), for k ≥ 2,

(1 − pn)A
n
1(t)+···+An

K (t), for k = 1.
(36)

For i = (i1, . . . , iK ) ∈ [n]K , define the drift rate functions
�n

k (i) = �n
k (i) := E

(
ζ n
k (t + 1)

∣
∣ An(t) = i

)
, (37)

and denote δnk (α) = �n
k (nα) for α ∈ [0, 1]K , δn(α) = (δn1 (α), . . . , δnK (α)). Also, let

δ(α) = (δ1(α), . . . , δK (α)) where we recall the definition of δk(·) from (7).

Lemma 4 (Convergence of the drift function) The time-scaled drift function δn converges
uniformly on [0, 1]K to the Lipschitz continuous function δ : [0, 1]K �→ [0, 1].

123



Generalized Random Sequential Adsorption... 1231

The above lemma can be seen from the same arguments as used in the proof of Lemma 2. In
this case also, we can obtain a martingale decomposition similar to (24). Here, the increments
ζ n
k (·) values are at most 1. Therefore, the quadratic variation of the scaled martingale term is
at most 1/n. Hence one obtains the counterpart of Lemma 3 in this case, and the proof can
be completed using similar arguments as in the proof of Theorem 2. ��
3.3 Proof of Theorem 3

As in the previous section, we only compute the drift function and the rest of the proof
is similar to the proof of Theorem 1. Let An

k (t) = |Ak(t)|, where Ak(t) is obtained from
Algorithm 3, and let ξnk (t +1) be the number of vertices ofAk(t) that are paired to the vertex
selected randomly among the set of unexplored vertices at time t + 1. Then,

An
k (t + 1) = An

k (t) + ζ n
k (t + 1), (38)

where, for any 1 ≤ k ≤ K ,

ζ n
k (t + 1) =

{
1 if ξnr (t + 1) > 0, ∀ 1 ≤ r < k, and ξnk (t + 1) = 0,

0 otherwise.
(39)

This follows by observing that the new vertex selected at time t + 1 is assigned frequency
j , for some j ≤ K , if and only if the new vertex makes no connection with An

j (t), and has
at least one connection with An

k (t) for all 1 ≤ k ≤ j − 1. Hence the respective expectations
can be written as

E
(
ζ n
k (t + 1)|An(t)

) = (1 − pn)
An
k (t)

k−1∏

r=1

(
1 − (1 − pn)

An
r (t)

)
, (40)

for 1 ≤ k ≤ K . Defining the functions �, δ suitably, as in the proof of the Tetris model, the
current proof can be completed in the exact same manner. ��

4 Further Research

This paper considers Random Sequential Adsorption (RSA) on the Erdős–Rényi random
graph and relaxes the strict hardcore interaction between active nodes in three different
ways, leading to the Threshold model, the Tetris model and the SFAP model. The Threshold
model constructs a greedymaximal K -independent set. For K = 1 it is known that the size of
themaximum set is almost twice as large as the size of a greedymaximal set [7,12]. From the
combinatorial perspective, it is interesting to study the size of the maximum K -independent
set in random graphs in order to quantify the gap with the greedy solutions. Similarly, in the
context of the SFAP model, it is interesting to find the maximum fraction of vertices that can
be activated if there are K different frequencies. Another fruitful direction is to determine
the jamming constant for the three generalized RSA models when applied to other classes of
random graphs, such as random regular graphs or random graphs with more general degree
distributions such as inhomogeneous random graphs, the configuration model or preferential
attachment graphs.
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