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Abstract Drought is one of the most devastating effects of
global climate change. Leaves contribute significantly to the
management of water deficit and plant adaptation to drought
stress. In this study, we compared the transcriptomes of leaves
of two genotypes of Paulownia fortunei with different drought
tolerances. Solexa sequencing and qRT-PCR were used for gene
expression analysis and validation.Variations in leaf growthwere
found between drought-treated andwell-watered samples in both
genotypes. Drought-treated samples from diploid and autotetra-
ploid P. fortunei cultivars showed inward leaf rolling and smaller
blade size compared with the well-watered ones. High through-
put transcriptome sequencing generated 266,700,100 high-
quality reads representing 110,586 unigenes from the leaves.
The drought-treated samples responded to water deficiency by
inducing various genes and pathways, such as photosynthesis,
carbon fixation in photosynthetic organisms, stress response,
plant hormone signal transduction, and flavonoid pathways.
Regulatory genes, such asWRKY, and transcription factors, such
as NAC, known for leaf development under drought stress, were
highly expressed in the drought-treated samples, and so were the
genes related to compatible solutes (sugars, sugar alcohols, ami-
no sugars, amino acids, or betaine), hormones, and various

transporters. This study illustrates changes in the expression
pattern of genes induced in response to drought stress and
provides a comprehensive and specific set of drought-
responsive genes in P. fortunei.
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Introduction

Plants are constantly exposed to water limitation, which neg-
atively affects plant development and growth; therefore, un-
derstanding the mechanism of plants’ water use will provide
molecular basis for the development of plant varieties that are
better adapted to drought stress. Leaf plays an important part
in adaptability of plants to water stress (Terzi et al. 2009; Guo
et al. 2004; Luo et al. 2010). Leaves of plants in water-
deprived environments show reduced transpiration, which
results from a variety of sources, including closure of stomata
pores, leaf rolling, and withering. In such cases, one of the
major responses of plants to water deprivation at the molecular
level is the induction of drought-responsive and drought-
tolerant genes (Ashoub et al. 2013).

To gain a comprehensive perspective on the molecular
mechanisms and related genes underlying drought tolerance,
one of the most effective methods is to study the genome-wide
transcriptional patterns under drought stress. In recent studies,
gene expressions in leaves undergoing water deprivation have
been comprehensively studied in the model plant Arabidopsis,
in crops such as rice and maize, and in other herbaceous plants
(Wilkins et al. 2010; Wang et al. 2011; Zheng et al. 2010; Pratt
et al. 2005). By contrast, there have been few studies on
woody plant species. In the recent years, many works referred
to the transcriptomic responses to drought stress of Populus
species. Some of those studies have focused on the
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identification of genes induced by stress (Caruso et al. 2008;
Bae et al. 2010), while others examined the expression pattern
and function of specific genes (Bae et al. 2009, 2011; Chen
et al. 2011). Exhaustive transcriptome studies using massive
sequencing have also been published (Hamanishi and
Campbell 2011). Although not in the same depth as in poplar,
transcriptomic response to drought has also been studied in
other tree species, such as Jatropha curcas, Quercus spp.,
Picea, and Pinus (Sapeta et al. 2013; Gimeno et al. 2009;
Costa et al. 2010; Gailing et al. 2009).

The identified drought-induced genes from these
transcriptomic analyses can usually be classified into three
large groups based on their biological roles: (1) genes
encoding proteins that function in abiotic stress tolerance,
(2) genes encoding regulatory proteins, and (3) genes involved
in growth and development (Upadhyaya et al. 2013; Tuteja
et al. 2011; Aranda et al. 2012). The first group comprises
genes encoding chaperones, sugar and proline transporters,
compatible solutes (e.g., glycine betaine and proline),
osmotin, late embryogenesis abundant proteins, mRNA-
binding proteins, water channel proteins, ion channels, key
enzymes for osmolyte biosynthesis, detoxification enzymes
(e.g., superoxide dismutase (SOD), glutathione peroxidases,
peroxidases, catalases, and peroxiredoxins) and various pro-
teases. The regulatory protein genes in the second group
include transcription factors (such as AP2/EREBP, WRKY,
MYB, NAC, DREB/ CBF, zinc finger, bHLH, and
bZIP/AREB/ABF as proteins), which are involved in the
regulation of downstream genes, protein kinases, protein
phosphatases, enzymes involved in phospholipid metabolism,
and the components of calcium-coupled phosphoprotein cas-
cades and other proteins regulating RNA metabolism and
stability (such as DEAD box RNA helicases), translation
(ribosomal proteins), and protein degradation (proteases/pro-
tease inhibitors, ubiquitin ligase). The third group includes
genes encoding cell components and various hormones such
as auxin and cytokinin, which serve as regulators of plant
growth and development.

Paulownia fortunei is a fast-growing hardwood species
grown in dry, marginal areas. It is a native species to Asia
with a history of over 2,000 years and has also been intro-
duced into Europe, America, and Australia (Krikorian 1988;
Lyons 1993). In most planting areas, Paulownia is produced
in regions where water is limited (Lyons 1993). Such envi-
ronmental conditions suggest a high potential for genetic
adaptation to water stress in this species. Understanding the
molecular mechanisms of the response and adaptation of
Paulownia to drought stress is of prime importance.

Natural P. fortunei is a diploid (2n=40) plant. Polyploid
plants display many improved properties (Adams et al. 2003),
and to investigate whether this also applies to Paulownia, a
system of in vitro plantlet regeneration from the leaves of
tetraploids (4n=80) of P. fortunei was established (Yang

et al. 2007b). The tetraploid has improved characteristics
compared with the diploid, including improved drought toler-
ance. A detailed physiological study on tetraploids and diploid
has also been conducted (Fan et al. 2007).

In the current study, we report the expression profiling of
the leaves of two genotypes of P. fortunei, diploid, and auto-
tetraploid under well-watered and drought-treated conditions,
respectively, using Illumina’s Solexa sequencing. We identi-
fied various stress-responsive genes and inherent biochemical
pathways that reflect the probable mechanisms of the adaptive
advantage of the drought-treated samples. In drought-prone
areas in Asia, PF4W75 is potentially a better selection because
of their ability to withstand drought.

Materials and methods

Plants

All plant materials used in the study were obtained from the
Institute of Paulownia, Henan Agricultural University, Zheng-
zhou, Henan Province, China. The tissue culture seedlings of
diploid and tetraploid P. fortunei were cultured for 30 days
before being clipped from the roots. Samples were transferred
into nutrition blocks containing normal garden soil for 30 days.
Samples with the same growth consistency were then trans-
ferred individually into nutrition pots of 30 cm in diameter
with trays underneath. Each pot was filled with the same
amount of ordinary garden soil for each plant. After 50 days,
the tissue culture seedlings with the same growth consistency
were subjected to drought treatment in a water control exper-
iment according to the method of Zhang et al. (2013). Diploid
and tetraploid Paulowniawith 25 and 75 % relative soil water
contents were named PF2W25 and PF2W75, PF4W25 and
PF4W75, respectively.

Physiological responses of diploid and tetraploid Paulownia
to drought stress

After 3, 6, 9, and 12 days (wilting state), respectively, the
second pairs of leaves from the growing apex of the young
sprout of the plants were picked from the drought-treated
samples. The corresponding diploid leaf samples were
renamed PF2W25-3D, PF2W25-6D, PF2W25-9D, and
PF2W25-12D, respectively, while the corresponding tetra-
ploid ones were renamed PF4W25-3D, PF4W25-6D,
PF4W25-9D, and PF4W25-12D, respectively. The well-
watered samples were picked after 12 days only. At least three
parallel samples were prepared for each condition. The rela-
tive water content was measured by DryingWeighingMethod
(Liu and Liu 2011). The chlorophyll content was measured by
Ethanol Method. The superoxide dismutase (SOD) activity
was measured by Pyrogallol Autoxidation Method. The
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soluble protein content was measured by Coomassie Brilliant
Blue Method. The proline content was measured by Potenti-
ometric Titration Method. The methods adopted above were
according to the methods by Lu and Li (2012).

Construction of Paulownia cDNA libraries

For each condition, approximately 8 mg of leaves were ho-
mogenized in liquid nitrogen with a pestle. Total RNA was
extracted from the cells using the TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), followed by RNA purification using an
RNeasy MiniElute Cleanup Kit (Qiagen, Dusseldorf, Germa-
ny), according to the manufacturer’s protocol. A NanoVue
UV–vis spectrophotometer (GE Healthcare Bio-Science,
Uppsala, Sweden) was used to quantify RNA by measuring
the absorbance at 230, 260, and 280 nm. An absorbance ratio
of OD260/280 and OD260/230 was taken into account for
assessing the purity of all RNA samples. The integrity of RNA
was checked by 1 % agarose gel electrophoresis. After total
RNA extraction and DNase I treatment, magnetic beads with
Oligo (dT) were used to isolate the mRNA. After mixing the
fragmentation buffer, the mRNA was fragmented into short
fragments. cDNA was then synthesized using the mRNA
fragments as templates. Short fragments were purified and
suspended with No. 15012547 elution buffer in TruSeq™
RNA sample prep kit (Catalog No. RS-930-2001) (Illumina,
SanDiego, CA, USA) for end reparation and single nucleotide
A (adenine) addition. The short fragments were then connect-
ed with No. 15013688–15013695 adapters in TruSeq™ RNA
sample prep kit. Suitable fragments are selected for the PCR
amplification as templates. During the quality control steps,
Agilent 2100 Bioanaylzer (Agilent Technologies, Palo Alto,
CA, USA) and ABI StepOnePlus Real-Time PCR System
(ABI, New York, NY, USA) were used for quantification
and qualification of the sample library. Finally, the library
was sequenced using Illumina HiSeq™ 2000 (Illumina).

Bioinformatics analysis

Base calling was used to transform image data output from the
sequencing machine into sequence data. These data are called
raw reads and are stored in the fastq format. Raw reads were
filtered to remove reads containing adapters, unknown or low-
quality bases. The data used in this publication have been
deposited in the NIH Short Read Archive database (http://
www.ncbi.nlm.nih.gov/sra) and are accessible through SRA
accession number SRP030466 (Alias: PRJNA221355). The
short reads assembly program Trinity (Grabherr et al. 2011)
was used for de novo transcriptome assembly.

The sequences output by Trinity were termed unigenes.
When multiple samples from the same species are sequenced,
unigenes from each sample’s assembly can be further proc-
essed for sequence splicing and redundancy removal with

sequence clustering software to generate the longest possible
non-redundant unigenes, which are called all-unigenes. After
gene family clustering, the unigenes were divided into two
classes. One class is clusters, which have the prefix CL
followed by the cluster ID. In clusters, the similarity among
the unigenes is >70 %. The other class is singletons, which
simply have the prefix unigene.

BLASTX alignment (e-value <0.00001) between unigenes
and protein databases including non-redundant protein data-
base (NR) (ftp://ftp.ncbi.nih.gov/blast/db/nr), Swiss-Prot
(http://www.ebi.ac.uk/swissprot/), Kyoto Encyclopedia of
Genes and Genomes (KEGG) (http://www.genome.jp/kegg/),
and clusters of orthologous groups (COG) (http://www.ncbi.
nlm.nih.gov/COG/) were performed. The sequence directions
of unigenes were decided by the best alignment results in these
databases. If different databases generated conflicting results,
the sequence direction of a unigenes was decided in priority
order of NR, Swiss-Prot, KEGG, and COG. When a unigene
could not be aligned to any of the above databases, the
software ESTScan (Iseli et al. 1999) was used to decide its
sequence direction.

Unigene function annotation

After aligning the unigene sequences to the protein databases,
they were aligned to nucleotide databases nt (e-value <1.0E−
5) by blastn. Proteins, along with their protein functional
annotations, that had the highest sequence similarity with the
given conceptual translation of the unigenes were retrieved.
KEGG annotation permitted pathway annotation of unigenes.
The unigenes were also aligned to the COG database to
predict and classify the possible functions of the unigenes.

Unigene GO classification

The Blast2GO program (Conesa et al. 2005) was used to
obtain GO annotation of the unigenes. To understand the
distribution of the functions of the genes in P. fortunei at the
macro level, GO functional classification was performed for
all unigenes using the WEGO software (Ye et al. 2006).

Protein coding sequence prediction

The unigenes were initially aligned by BLASTX (e-value
<1.0E−5) to protein databases in the priority order of NR,
Swiss-Prot, KEGG, and COG. Proteins whose ranks were
highest in the blast results were retrieved to decide the coding
sequences (CDSs) of the unigenes. The CDS were then trans-
lated into amino acid sequences with the standard codon table.
Thus, both the nucleotide sequences (5′–3′) and amino se-
quences of the unigene CDSs were acquired. ESTScan (Iseli
et al. 1999) was used to scan unigenes that could not be
aligned to any database, producing nucleotide sequence (5′–
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3′) direction and amino sequence of the predicted coding
region.

Unigene expression difference analysis

The fragments per kb per million fragments (FPKM)
method was used to identify differentially expressed
genes (DEGs) (Mortazavi et al. 2008). A rigorous algo-
rithm was developed to identify genes differentially
expressed between two samples by Audic and Claverie
(1997). The threshold p-value in multiple tests was
determined using the false discovery rate (FDR) method
(Broberg 2005). A threshold FDR <0.001 and an abso-
lute value of log2Ratio >1 were used to judge the
significance of differences in gene expression. DEGs
were then subjected to GO functional analysis and
KEGG pathway analysis.

Gene ontology functional enrichment analysis for DEGs

GO analysis provides GO functional classification anno-
tation functional enrichment analysis for DEGs. First, all
the DEGs were examined for each term of the Gene
Ontology database (http://www.geneontology.org/), and
the gene numbers for each GO-term were calculated.
To identify significantly enriched GO terms in DEGs,
a hypergeometric test was used. The calculated p-value
was subjected to Bonferroni correction, taking a
corrected p-value ≤0.05 as a threshold. GO terms ful-
filling this condition were defined as significantly
enriched GO terms in DEGs in the context of the whole
transcriptome background. This analysis identified the
main biological functions associated with the DEGs.
The GO functional enrichment analysis also integrated
the clustering analysis of expression patterns to easily
determine the expression patterns of DEGs annotated to
the given GO-term.

KEGG pathway analysis for DEGs

Pathway enrichment analysis retrieved significantly enriched
pathways associated with DEGs in the context of the whole
transcriptome background. The formula for calculating the p-
value was similar to that used in the GO analysis. TheQ-value
was defined as the FDR analog of the p-value. After multiple
testing correction, we chose pathways withQ-values ≤0.05 as
significantly enriched in DEGs.

Quantitative real-time PCR analysis of DEGs

The RNA samples from the leaves of the PF2W75, PF4W75,
PF2W25-12D, and PF4W25-12D samples were extracted
with Trizol (Sangon, Shanghai, China). The RNA was then

precipitated with isopropanol. Purified and concentrated RNA
was denatured and first-strand cDNAs for all the samples were
synthesized using a PrimeScript RT reagent Kit (Takara, Da-
lian, China). Potential genes related to drought response were
chosen. The primers were designed with Beacon Designer,
version 7.7 (Premier Biosoft International, Ltd., Palo Alto,
CA, USA). The cDNAs were then amplified in a Bio-Rad
CFX96TM Real-Time System (Bio-Rad, Hercules, CA,
USA) with SYBR Premix Ex Taq TM II (Takara, Dalian,
China). The following PCR parameters were used: 50 °C for
2 min, 95 °C for 30 s followed by 40 cycles of 94 °C for 15 s
and 60 °C for 1 min. Three replicates were analyzed for each
gene. The average threshold cycle (Ct) was normalized and
the relative expression changes were calculated using the
2−△△Ct method. The 18S rRNA of Paulownia was chosen as
an internal reference gene for normalization.

Results

Comparative studies on physiological responses of diploid
and tetraploid Paulownia to drought stress

With 25 and 75 % relative soil water contents, the physiolog-
ical responses of tetraploids and diploid Paulownia plants to
drought stress tolerance were studied. In the tetraploid and
diploid Paulownia plants, the changing trends of leaf physio-
logical and biochemical indexes were consistent with aggra-
vation of drought stress (Fig. 1). The water and chlorophyll
contents of the leaves decreased during drought stress. The
water and chlorophyll contents of the drought-treated plants
leaves were higher than those of the well-watered plants in
both the tetraploids and diploids. The SOD activity and solu-
ble protein content initially increased and then decreased. The
soluble sugar and proline contents increased during drought
stress, with higher levels in the tetraploids than in the diploids
(Fig. 2) (Zhang et al. 2013).

Solexa sequencing and sequence assembly

Table 1 summarizes the results of Solexa sequencing
and the distribution of clean tags. A total of
296,101,954 raw reads were sequenced in the library
of four samples. After filtering out low-quality data with
Q20 percentages up to 97.5 %, 266,700,100 clean reads
with 24,003,009,000 nt of clean nucleotides remained in
the total library. The PF2W25-12D library showed the
highest ratio of clean reads to total reads. These short
reads were assembled into 605,754 contigs using Trini-
ty, with a mean contig length of 310 bp. These contigs
were further assembled into unigenes. After further pro-
cessing for sequence splicing and redundancy removal,
110,586 unigenes were generated, with a mean length of
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Fig. 1 Tissues used for the
transcriptome analysis. a
PF2W75 well-watered diploid, b
PF2W25-12D 12 days drought-
treated diploid, c PF4W75 well-
watered tetraploid, d PF4W25-
12D 12 days drought-treated
tetraploid

Fig. 2 Effects of drought stress on P. fortunei physiology. PF2 diploid
P. fortunei, PF4 autotetraploid P. fortunei. a Effect of drought stress on
leaf relative water content. b Effect of drought stress on leaf chlorophyll
content. c Effect of drought stress on leaf SOD activities. d Effect of

drought stress on leaf soluble protein content. e Effect of drought stress on
leaf soluble sugar content. f Effect of drought stress on leaf proline
content
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922 bp. The N50 (medium of the length) of the all-
unigene libraries was 1,523 bp. Among these unigenes,
50,890 were shorter than 500 bp, and 36,347 were
longer than 1,000 bp. The length distribution of these
contigs and unigenes is shown in Supplementary
Fig. S1. The gap distribution of unigenes was analyzed
to identify the data quality. No unigenes showed any
gaps, demonstrating the high quality of the assembly.
The e-value distribution and similarity distribution of
the all-unigenes against nr database are shown in
Fig. 3a, b, respectively. Experiment pipeline of sequenc-
ing is shown in Supplementary Fig. S2a.

Annotation of the predicted proteins

The full genome sequence for P. fortunei is not available. All-
unigene sequences were first aligned by BLASTX to protein
databases including NR, Swiss-Prot, KEGG, and COG, with a
cutoff e-value of 1.0E−5, and proteins whose sequence sim-
ilarities were the highest were retrieved. A total of 72,586
distinct sequences, which comprised 65.6 % of all the
unigenes, had a match with the known proteins in the database
(Supplementary Table S1). The majority of sequences (about
46.1 %) had strong homology with Vitis vinifera (Fig. 3c).
Among the matched unigenes, 12.8 % has a best match to
sequences from Ricinus communis, followed by Populus
trichocarpa (10.7 %), Glycine max (5.9 %), Medicago

truncatula (2.1 %), Nicotiana tabacum (2.0 %), Solanum
lycopersicum (1.8 %), and other plant species.

Unigene function annotation

To predict and classify the possible functions of the
unigenes, COG assignments were used. Based on se-
quence homology, 29,510 unigenes, which comprised
26.69 % of all the unigenes, were annotated and could
be divided into 25 specific categories (Fig. 4). The
general function category containing 9,532 unigenes
(8.62 %) was the largest, followed by transcription
(5,359, 4.85 %), replication, recombination and repair
(4,376, 3.96 %), posttranslational modification, protein
turnover, and chaperones (4,179, 3.78 %), signal trans-
duction mechanisms (3963, 3.58 %), translation, ribo-
somal structure, and biogenesis (3,918, 3.54 %), and
carbohydrate transport and metabolism (3,519,
3.18 %). The smallest group had only six unigenes
(0.0054 %), which belonged to the group of the nuclear
structure. Three ontologies were divided for gene ontol-
ogy (GO) analysis of the unigenes: molecular function,
cellular component, and biological process. A total of
59,572 unigenes (53.87 % of total) were categorized
into 57 functional groups. Cell and cell part were the
two largest groups, both containing 47,808 unigenes. In
the cellular component groups’ virion and virion part,

Table 1 Overview of the sequencing and assembly

PF2W75 PF4W75 PF2W25-12D PF4W25-12D

Statistics of data production

Number of clean reads 64,267,788 67,074,340 66,552,344 68,805,628

Total nucleotides (nt) 5,784,100,920 6,036,690,600 5,989,710,960 6,192,506,520

Q20 percentage (%) 97.45 % 97.45 % 97.57 % 97.47 %

N percentage 0.00 % 0.00 % 0.00 % 0.00 %

GC percentage (%) 46.92 % 47.27 % 45.68 % 46.32 %

Contigs

Number of contigs 139,372 141,810 162,224 162,348

Total nucleotides (nt) in contigs 43,683,972 45,573,011 49,377,829 48,777,613

Average length of contigs (nt) 313 321 304 300

Length of N50 (bp) 503 472 461 456

Unigenes

Number of unigenes 76,950 94,034 97,232 92,772

Total nucleotides (nt) in unigenes 53,834,403 54,457,691 74,391,848 65,686,297

Length of N50 (bp) 932 863 932 863

Average length of unigenes (bp) 700 579 765 708

All-unigenes

Number of all-unigenes 110,580

Total nucleotides (nt) in all-unigenes 101,972,540

Length of N50 (bp) 1523

Average length of all-unigenes (bp) 922
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only two unigenes for each were predicted (Supplemen-
tary Fig. S3).

Unigene metabolic pathway analysis

The KEGG annotation system was used to conduct the
unigene metabolic pathway analysis. A total of 44,154
unigenes, which comprised 39.93 % of all the unigenes, were
mapped to 128 KEGG pathways. The metabolic pathway
group, which comprised 10,364 unigenes (23.47 %), repre-
sented significantly more unigenes than any other pathways,
such as biosynthesis of secondary metabolites (11.38 %),
plant–pathogen interaction (5.61 %), plant hormone signal
transduction (4.92 %), spliceosome (3.96 %), RNA transport
(3.78 %), endocytosis (3.37 %), and glycerophospholipid
metabolism (3.18 %) (Supplementary Table S2). Experiment
pipeline of bioinformatics analysis is shown in Supplementary
Fig. S2b.

Transcripts encoding specific genes associated
with the drought response

The four samples were evaluated in two pairwise compari-
sons: PF2W25-12D vs. PF2W75 and PF4W25-12D vs.
PF4W75. Genes found to have significant expression differ-
ences in each comparison were identified (Fig. 5). The results
suggested that in the PF2W25-12D vs. PF2W75 comparison,
the expression of 30,704 genes was significantly different
(Supplementary Table S3). Among these genes, 18,407 were
up-regulated and 12,297 were down-regulated. Among the
top ten up-regulated unigenes, only three could be aligned to
genes encoding proteins with known functions in GenBank.
Among the top ten down-regulated genes, five could be
identified (Supplementary Table S4). In the comparison of
PF4W25-12D and PF4W75, 19,383 DEGs were identified,
among which 9,529 were up-regulated and 9,854 were down-
regulated. After that, 10,383 genes consistently differentially
expressed in both of the two comparisons were retrieved

Fig. 3 Characteristics of homology search of Illumina sequences against
the nr database. a The e-value distribution of BLAST hits for each unique
sequence with a cutoff e-value of 1.0E−5. b Similarity distribution of the

top BLAST hits for each sequence. c Species distribution is shown as a
percentage of the total homologous sequences with an e-value of at least
1.0E−5
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(Supplementary Table S5). The molecular functions of the
5,483 common DEGs are listed in Supplementary Table S6.

Comparison of gene expression profiles among the different
samples

DEGs were further characterized by GO classification into
three groups: biological process, cellular component, and
molecular function. The results of each comparison showed
high consistency with genes involved in cellular component,
which mainly concentrated in the cell category (15,479 genes
in PF2W25-12D vs. PF2W75; 9,623 genes in PF4W25-12D
vs. PF4W75) and cell part category (15,479 genes in
PF2W25-12D vs. PF2, 9,623 genes in PF4W25-12D vs.
PF4W75). In the comparison of PF2W75 and PF2W25-12D,
12,648 and 12,168 biological process genes were involved in
cellular process and metabolic process, respectively. In the
comparison of PF4W25-12D vs. PF4W75, the numbers were
8,099 and 7,910 (PF4W25-12D vs. PF4W75). Finally, 9,915
genes (PF2W25-12D vs. PF2W75) and 6,312 genes
(PF4W25-12D vs. PF4W75) were involved in catalytic activ-
ity (Supplementary Figs. S4 and S5). In the KEGG analysis,
the most number of DEGs were related to metabolic pathways
in the two comparisons. The number of genes differently
expressed was significantly higher than in the other pathways

(Supplementary Tables S7 and S8). The KEGG analysis of the
5,162 common DEGs in both comparisons is listed in Sup-
plementary Table S9.

Confirmation of candidate drought response genes
by qRT-PCR

To confirm the reliability of Solexa/Illumina sequencing tech-
nology, eight genes from both diploid and tetraploid samples
were randomly selected for quantitative RT-PCR assays. The
results showed that except the auxin-induced protein X10A in
tetraploid samples, the rest were consistent between the quan-
titative real-time PCR (qRT-PCR) and the transcriptome anal-
yses. In both the tetraploid and diploid Paulownia plants, the
changing trends of gene expression were consistent with
aggravation of drought stress (Fig. 6). All the primers used
for the qRT-PCR analysis, potential gene functions, and
amplicon sizes are shown in Table 2. For the gene which
showed the inconsistency between qRT-PCR and tran-
scriptome, it was likely attributable to the fact that tran-
scriptome was more sensitive in the detection of low-
abundant transcripts and small changes in gene expression
than qRT-PCR method. The results indicated the validity of
the sequencing method.

Fig. 4 Classification of the clusters of orthologous groups (COG) (http://www.ncbi.nlm.nih.gov/COG/) for the transcriptome of P. fortunei all-unigenes;
29,510 unigenes (26.69 % of the total) were annotated and divided into 25 specific categories
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Fig. 5 Statistics of differentially
expressed genes in each pairwise
comparison. Red bars represent
the up-regulated genes, while blue
bars represent the down-regulated
ones. PF4W25-12D 12 days
drought-treated tetraploid,
PF4W75 well-watered tetraploid,
PF2W25-12D 12 days drought-
treated diploid, PF2W75 well-
watered diploid

Fig. 6 Quantitative RT-PCR analysis of candidate drought response
genes. CL4426 a peptide/nitrate transporter, CL10709 a dehydrin,
CL5735 a flavonoid glycosyltransferase, CL8793 a glycine-rich protein
precursor, Unigene28894 an alcohol dehydrogenase, Unigene18828 a
chlorophyll A/B binding protein, CL2903 a disease resistance response
protein, CL6055 an auxin-induced protein X10A. 18S rRNAwas used as
the internal reference gene. For each group, the highest expression level
was considered as 100 %, and other samples were normalized

accordingly. Standard error of the mean for three technical replicates is
represented by the error bars. a PF2W25-12D 12 days drought-treated
diploid, PF2W25-9D 9 days drought-treated diploid, PF2W25-6D 6 days
drought-treated diploid, PF2W25-3D 3 days drought-treated diploid,
PF2W75, well-watered diploid. b PF4W25-12D 12 days drought-treated
tetraploid, PF4W25-9D 9 days drought-treated tetraploid, PF4W25-6D
6 days drought-treated tetraploid, PF4W25-3D 3 days drought-treated
tetraploid, PF4W75 well-watered tetraploid
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Discussion

Until recently, little molecular genetics and genomic
research has focused on the family Paulownia spp.
The lack of genetic information on this plant repre
sents a large obstacle to studying the mechanisms of
its ability to resist water stress. Analysis of the Paulownia
transcriptome and its expression profile data is essential to
extending the genetic resources for this species. Using the
RNA-seq technique, the present study identified a series of
genes whose expression is altered between drought-treated
and well-watered samples of P. fortunei as well as identifying
several associated pathways.

Morphological features of the drought-treated
and well-watered samples

The drought-treated (PF2W25-12D and PF4W25-12D)
and well-watered samples (PF2W75 and PF4W75)
showed significant variations in leaf structure under
control and drought stress. The leaves in PF2W25-12D
and PF4W25-12D showed adaptive phenomena such as
inward rolling and smaller size of the leaves, which
would limit water loss by evaporation through
restricting the exposed leaf surface. The same phenom-
enon under drought stress has been reported previously
(Galmes et al. 2013; Ashoub et al. 2013). Thus, leaves
play an important role in preserving the physiological
normal state of plants during drought stress.

Genes encoding proteins that function in drought tolerance

Based on their biological functions, the drought-induced genes
were associated with proteins that function in response to
drought. Proteins involved in carbohydrate metabolism, such
as sucrose, hexose, pentose, and sugar alcohols, comprised a
large part. It is reported that the accumulation of nonstructural
sugars strongly correlates with osmotic stress tolerance (Oliver
et al. 2010). This could be explained by the fact that sugars
permit the cell components to tolerate desiccation, which pro-
tects the plant against drought. Among the sugars, starch and
trehalose are the storage carbohydrates that are mostly involved
in this process. This group also includes genes involved in the
detoxification of aldehydes through alcohol metabolism (Sup-
plementary Table S9). This is in line with the observed accu-
mulation of ethanol in conifer seedlings under water deficiency
(Manter and Kelsey 2008). Within the group of genes encoding
proteins that function in drought tolerance, the ones related to
amino acids (e.g., proline), lipids, and fatty acid metabolism,
which could be involved in the synthesis and accumulation of
compatible solutes during water stress, are also included. The
induction of methionine synthase transcripts were observed in
both differentially expressed accessions. Increases in methio-
nine synthase protein content under salt stress in barley (Narita
et al. 2004) and in the roots of wild watermelon under water
stress have also been reported (Yoshimura et al. 2008). How-
ever, another study showed that genes encoding enzymes of
methionine synthesis showed no significant differences be-
tween drought-tolerant and drought-sensitive samples (Xu and
Huang 2010). Changes of various free amino acids have been

Table 2 Primers of quantitative RT-PCR analysis of candidate drought response genes

Potential gene function Size (bp) Primer Sequence

Peptide/nitrate Transporter 912 CL4426.Contig1 GGCTGGTCTAGTTAATGAT

CL4426.Contig1-r AATGGTACAAGTATAAGAGAAC

Dehydrin 1041 CL10709.Contig1 TGGCTTATTATTACAACTATT

CL10709.Contig1-r GAGTGATGGAGAAGATTA

Flavonoid Glycosyltransferase 1700 CL5735.Contig1 GTGATAAGTGGACCAACAG

CL5735.Contig1-r AGACGAGTAGAAGGATTGAA

Glycine-rich protein precursor 585 CL8793.Contig1 TAGCAGAGGTGTGAGAGT

CL8793.Contig1-r GTTCAACAGCAACATTACTACT

Alcohol dehydrogenase 1701 Unigene28894 AGTTATCTCCATCTATCAG

Unigene28894-r ATCAACATATCTACAATAAGG

Chlorophyll A/B binding protein 1016 Unigene18828 CCGATTCGTTCAATACACAT

Unigene18828-r AACTTGGCAACTCACTTG

Disease resistance response protein 714 CL2903.Contig2 GATGTAGACCTGGAACTT

CL2903.Contig2-r CACCCTTACTGAAATGAC

Auxin-induced protein X10A 1080 CL6055.Contig1 CAACTCCAAATACCCACCTT

CL6055.Contig1-r AAACCTCGTATCCTACCCATA

r reverse primer
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found in Arabidopsis and rice plants under several abi-
otic stresses (Ndimba et al. 2005; Yan et al. 2005). The
activation of methionine synthase is an initial response
to drought because increased flux through the pathway
provides a source of methyl groups for secondary me-
tabolism compounds that provide adaptive advantages to
samples. Thus, the increase or maintenance of high
levels of methionine synthase may reflect more active
methylation and osmoregulant metabolism.

Another important group of genes encode transporter pro-
teins. Transport processes are very important in the mobiliza-
tion and accumulation of solutes and hormones. Furthermore,
these processes play an important part in cell detoxification
pathways during adaptation to drought. Thus, sugar trans-
porters, such as hexose transporters, are involved in the mod-
ification of osmotic pressure (Wanke and Kolukisaoglu 2010).
Anion, sodium, and solute–cation symporter transmembrane
transporters, calcium–cation, and anion–anion antiporters de-
serve special mention. These channels, whose expression is
induced by water stress, mediate water flux, which can main-
tain proper water balance within and outside both the plasma
membrane and the vacuole membrane. Some studies have
been done on this protein family in woody species, and their
role during water stress has been suggested (Almeida-
Rodriguez et al. 2010; Berta et al. 2010). Other transporters
of secondary metabolites, organic acids, L-glutamate, carbox-
ylic acid, acidic amino acid, cationic amino acid, arginine, L-
lysine, myo-inositol, dicarboxylic acid, and auxin all belong to
this group.

Genes encoding regulatory proteins in response to drought

Regulatory proteins are known to play an important part in
plant response and adaption to abiotic stresses. Transcription
factors, such as WRKY and MYB, and regulatory proteins
such as some calcium-binding proteins, nucleic acid-binding
proteins, serine/threnine proteins, zinc finger proteins known
for leaf development under drought stress were highly
expressed in PF2W25-12D and PF4W25-12D samples. Some
secondary metabolites, such as flavonoids, were also up-
regulated in the two accessions. In a report about the

physiological and molecular responses of Populus canadensis
to drought, the stress was applied to young rooted cuttings by
PEG 6000 application over 30 days. Genes encoding tran-
scription factor MYB2 was identified (Caruso et al. 2008).
Chang et al. (1996) identified several water deficit stress-
inducible genes from Pinus taeda L. Two putative drought-
induced proteins were involved in calcium and nucleic acid
binding. In the cloned and identified drought-induced genes in
maritime pine roots, serine/threnine protein kinase, RAS-
related protein, and ring zinc finger protein also acted as
regulatory elements response to drought (Dubos and
Plomion 2003). Several studies have also indicated that fla-
vonoids increase in plants under stress (Yang et al. 2007a),
which is in accordance with the results of the current study.

Genes involved in growth and development in response
to drought

A part of the identified DEGs in the present study encoded
cell components and various hormones such as auxin and
cytokinin, which serve as regulators of plant growth and
development. In the research of P. taeda L. (Chang et al.
1996), putative drought-induced proteins which are in-
volved in lignin biosynthesis and cell wall modification
were reported. The well-described ABA-dependent path-
way in plants’ response to drought uses ABA as the main
phytohormone (Christmann et al. 2006). ABA is known to
act as an endogenous messenger in drought response and
adaption processes. It is induced by water deficit, which
triggers major alterations to gene expression patterns in
plant cells. Besides, it contributes to other important pro-
cesses like plant growth, development, or seed dormancy
(Hirayama and Shinozaki 2007). In the present study, some
of the DEGs were annotated as being involved in crosstalk
among ABA and other important phytohormones, such as
ethylene, auxin, zeatin, and brassinosteroid. Ethylene was
reported to be involved in almost all kinds of abiotic stress-
es, including drought (Lu et al. 2007). A series of genes
encoding enzymes in the zeatin biosynthesis pathway was
found to be elevated in both PF2W25-12D and PF4W25-
12D accessions (Fig. 7). A research on the effect of water

Fig. 7 Zeatin biosynthesis pathway inP. fortunei. Up-regulated expressed genes in both PF2W25-12D and PF4W25-12D are in red boxes. Double solid
line plasma membranes of the leaf of P. fortunei. Dashed line nuclear membranes of the leaf cell
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deficit on the transcriptome of the Populus cambial region has
also reported the same results (Berta et al. 2010). How drought
stress is perceived by the ABA signal is still largely unknown,
which needs to be investigated further. In our study, a series of
ABA synthesis-related enzymes and transporters was found in
the drought-induced samples. It has been reported that water-
scarce conditions can trigger an immediate hydraulic signal,
which may activate ABA biosynthesis over a great distance
(Christmann et al. 2007). The signal can then activate en-
zymes like cytochrome P450 to catalyze ABA synthesis only
a few minutes after the signal is received (Okamoto et al.
2009). ABA transporters are also important during drought
response processes. Recent studies have shown that on per-
ception of a signal, ABA is synthesized primarily in vascular
tissues and then exported to other cells in the plant. The family
of ATP-dependent ABC transporters can stimulate the absorp-
tion of ABA. This mechanism is useful in the rapid distribu-
tion of ABA hormone to the surrounding tissues (Kang et al.
2010; Kuromori et al. 2010).

Plasticity of the genes identified in response to drought

Although certain genes are regulated in a similar way among
different plant species, there are many genes that are observed to
have significantly different expression patterns among different
species or, occasionally, in the same species under different
experimental conditions (Stern et al. 2007; Narsai et al. 2010).
Relatively low correspondence of the related genes may be
partially explained by genome transcriptional reprogramming
induced by drought stress being very plastic: multiple pathways
may be activated in parallel in drought conditions and these
pathways can confer drought tolerance independently or syner-
gistically. It is also possible that the observed differences reflect
different developmental stages, tissue types, or even experimen-
tal procedures. Some of the DEGs in this study did not show any
similarity with sequences in the databases; therefore, they rep-
resent potentially novel proteins that are associated with the
specific plant responses to water stress.
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