
DOI 10.1007/s11005-013-0669-7
Lett Math Phys (2014) 104:299–309

Non-Commutative Rational Yang–Baxter Maps

ADAM DOLIWA1,2

1Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8,
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Abstract. Starting from multidimensional consistency of non-commutative lattice-modified
Gel’fand–Dikii systems, we present the corresponding solutions of the functional (set-
theoretic) Yang–Baxter equation, which are non-commutative versions of the maps aris-
ing from geometric crystals. Our approach works under additional condition of centrality
of certain products of non-commuting variables. Then we apply such a restriction on the
level of the Gel’fand–Dikii systems what allows to obtain non-autonomous (but with cen-
tral non-autonomous factors) versions of the equations. In particular, we recover known
non-commutative version of Hirota’s lattice sine-Gordon equation, and we present an inte-
grable non-commutative and non-autonomous lattice modified Boussinesq equation.
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1. Introduction

Let X be any set, a map R : X ×X satisfying in X ×X ×X the relation

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12, (1.1)

where Ri j acts as R on the ith and jth factors and as identity on the third, is
called Yang–Baxter map [12,29]. If additionally R satisfies the relation

R21 ◦ R = Id, (1.2)

where R21 = τ ◦ R ◦ τ and τ is the transposition, then it is called reversible Yang–
Baxter map.

In this paper we study properties of a non-commutative version of the maps
arising from geometric crystals [13,18,28]. In particular we will demonstrate the
following result.
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THEOREM 1.1. Given two assemblies of (non-commuting in general) variables x =
(x1, . . . , xL) and y = (y1, . . . , yL), for k =1, . . . , L define polynomials

Pk =
L−1∑

a=0

⎛

⎝
a−1∏

i=0

yk+i

L−1∏

i=a+1

xk+i

⎞

⎠

= xk+1 . . . xk+L−1 + yk xk+2 . . . xk+L−1 +· · ·+ yk . . . yk+L−2, (1.3)

where subscripts in the formula are taken modulo L. If the products α = x1x2 . . . xL

and β = y1 y2 . . . yL are central (i.e. they commute with all the variables xi and y j )
then the map

R : (x, y) �→ (x̃, ỹ), x̃k =Pk xkP−1
k+1, ỹk =P−1

k ykPk+1, k =1, . . . L , (1.4)

is reversible Yang–Baxter map.

It is easy to see that the products α= x1 . . . xL and β = y1 . . . yL are conserved by
the map R. This can be used to reduce the number of variables. For example, in
the simplest case L =2 define x = x1, y = y1 to get a parameter dependent reversible
Yang–Baxter map R(α,β) : (x, y) �→ (x̃, ỹ)

x̃ =
(
αx−1 + y

)
x

(
x +βy−1

)−1
, ỹ =

(
αx−1 + y

)−1
y
(

x +βy−1
)

, (1.5)

which in the commutative case is equivalent to the FIII map in the list given in [2].
In recent studies on discrete integrable systems, the property of multidimensional

consistency [1,24] is considered as the main concept of the theory. Roughly speak-
ing, it is the possibility of extending the number of independent variables of a
given nonlinear system by adding its copies in different directions without creating
this way inconsistency or multivaluedness. It is known [2,27] how to relate three-
dimensional consistency of integrable discrete systems with Yang–Baxter maps.
There is also a well-known connection between Yang–Baxter maps and the braid
relations.

Non-commutative versions of integrable maps or discrete systems [4,7,22,25,26]
are of growing interest in mathematical physics. They may be considered as a
useful platform for thorough understanding of integrable quantum or statistical
mechanics lattice systems, where the quantum Yang–Baxter equation [3,20] plays
a role.

In Section 2, we use three-dimensional consistency of non-commutative
Kadomtsev–Petviashvilii (KP) map to construct corresponding Yang–Baxter maps
following ideas of [18,19] applied there in the commutative case. It turns out that
we can construct the solutions under periodicity and centrality (of certain prod-
ucts of the variables) assumptions. Then in Section 3 we consider implication
of the centrality assumption on the level of the non-commutative modified lat-
tice Gel’fand–Dikii equations. In the simplest case, we recover non-autonomous
version of non-commutative Hirota’s sine-Gordon equation [4]. We present also
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an integrable non-commutative and non-autonomous lattice modified Boussinesq
equation.

Remark. Throughout the paper we will work with division rings of (non-
commutative) rational functions in a finite number of (non-commuting) variables.
This approach is intuitively accessible, see however [5] for formal definitions.

2. Non-Commutative Rational Realization of the Symmetric Group

2.1. KP MAPS

Consider the linear problem of the non-commutative KP hierarchy [6,9,16,19,26]

φk+1(n)−φk(n +εi )=φk(n)ui,k(n), k ∈Z, n ∈Z
N , i =1, . . . , N , (2.1)

here φk : Z
N →D

M , and D is a division ring, and εi ∈Z
N has 1 at ith place and all

other zeros. The potentials ui,k :ZN →D satisfy then the compatibility conditions

u j,kui,k( j) =ui,ku j,k(i), ui,k( j) +u j,k+1 =u j,k(i) +ui,k+1, 1≤ i �= j ≤ N , (2.2)

where we write ui,k( j)(n) instead of ui,k(n + ε j ), and we skip the argument n. In
consequence we obtain the transformation rule

ui,k( j) = (ui,k −u j,k)
−1ui,k(ui,k+1 −u j,k+1), i �= j, (2.3)

which can be written as a non-commutative discrete KP map

(ui , u j ) �→ (ui( j), u j (i)), ui = (ui,k), k ∈Z.

PROPOSITION 2.1. [9,10] The non-commutative discrete KP map is three-
dimensionally consistent, i.e. both ways to calculate ui( jl) give the same result, see
Figure 1.

Remark. Three-dimensional consistency of the non-commutative discrete KP map
is a consequence [9] of the four-dimensional consistency of the so called Desargues
maps [8].
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Figure 1. The discrete KP map and its three-dimensional consistency.
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To make connection with the Yang–Baxter maps consider N -cube graph, whose
vertices are identified with binary sequences of length N with two vertices con-
nected by an edge if their sequences differ at one place only. The shortest paths
from the initial vertex (0,0, . . . ,0) to the terminal one (1,1, . . . ,1) can be identified
with permutations: a permutation σ ∈SN corresponds to the path with subsequent
steps in directions (εσ(1),εσ(2), . . . ,εσ(N )). The symmetric group acts then on paths
by the left natural action ρ.πσ = πρσ . Given initial weights ui , i = 1, . . . , N , on
edges connecting the initial vertex (0,0, . . . ,0) with the vertex εi , by the KP map
we attach a weight to each edge of the cube graph. Each such path gives then a
sequence of weights wσ , for example, wId = (u1, u2(1), . . . , uN (1,2,...,N−1)). We are
interested in maps rσ from the reference weights wId to weights wσ . In particular,
we study maps ri , i =1, . . . , N −1, which correspond to transpositions σi = (i, i +1)

generating the symmetric group SN and satisfying the Coxeter relations [17]

σ 2
j = Id, involutivity

σ jσ j+1σ j =σ j+1σ jσ j+1, braid relations

σiσ j =σ jσi for |i − j |>1, commutativity.

In order to find such maps ri we have to find the so-called first companion map

(ui , u j (i)) �→ (u j , ui( j)),

where we use variation of the terminology of [2,27] where Yang–Baxter maps were
studied in relation to multidimensionally consistent edge-field maps,

2.2. THE FIRST COMPANION MAP AND THE CENTRALITY ASSUMPTION

We will concentrate on deriving the first companion map, which we temporarily
denote by r : (x, y) �→ (x′, y′), where by (2.2)

x ′
k y′

k = xk yk, y′
k + x ′

k+1 = yk + xk+1. (2.4)

For �∈Z+ define polynomials

P(�)
k =

�∑

a=0

⎛

⎝
a−1∏

i=0

yk+i

�∏

i=a+1

xk+i

⎞

⎠

= xk+1xk+2 . . . xk+� + yk xk+2 . . . xk+�−1xk+� +· · ·+ yk yk+1 . . . yk+�−2xk+�

+ yk . . . yk+�−2 yk+�−1,

which satisfy the recurrence relations

P(�)
k =P(�−1)

k xk+� +
�−1∏

i=0

yk+i =
�∏

i=1

xk+i + ykP(�−1)

k+1 , (2.5)

where by definition P(0)
k = 1. By P(�)′

k denote analogous polynomials for primed
variables.
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LEMMA 2.2. Assume that x ′
k, y′

k satisfy equations (2.4) then P(�)′
k =P(�)

k .

Proof. For � = 1 we have just the second of Equations (2.4). For � ≥ 1 notice
that by (2.4) the product

∏�−1
i=0 (yk+i + xk+i+1) is equal to its primed version. It

splits into the sum of P(�)
k and the part with summands containing the factors

. . . xk+p yk+p . . . with possible p =1, . . . , �−1. We group such unwanted terms into
(disjoined) parts depending on the smallest p. Such a part has the structure

P(p−1)
k xk+p yk+p

�−1∏

i=p+1

(yk+i + xk+i+1),

which due to the induction assumption and Equations (2.4) is equal to its primed
version, therefore both cancel out.

From now on, we assume L-periodicity condition: xk+L = xk, yk+L = yk . Define
Pk =P(L−1)

k , then Lemma 2.2 and recurrence relations (2.5) imply

Pk xk +
L−1∏

i=0

yk+i =
L∏

i=1

x ′
k+i + y′

kPk+1,

L∏

i=1

xk+i + ykPk+1 =Pk x ′
k +

L−1∏

i=0

y′
k+i .

Notice that if we would impose the additional normalization condition

L∏

i=1

x ′
k+i =

L−1∏

i=0

yk+i ,

L−1∏

i=0

y′
k+i =

L∏

i=1

xk+i , (2.6)

then Equations (2.4) could be solved as

x ′
k =P−1

k ykPk+1, y′
k =Pk xkP−1

k+1. (2.7)

However, Equations (2.7) and condition (2.6) are not compatible for general
non-commuting variables. The above procedure of getting solutions works if we
make additional centrality assumptions which state that α=∏L

i=1 xi and β =∏L
i=1 yi

commute with other elements of the division ring.

LEMMA 2.3. Under the centrality assumptions the products
∏L

i=1 xk+i and∏L
i=1 yk+i do not depend on the index k. Moreover

Pk xk − ykPk+1 =α −β, (2.8)

which means that the above expression is central and independent of index k as well.
In particular Pk xk commutes with ykPk+1.

Proof. The first part follows from identities

L∏

i=1

xk+i = (x1 . . . xk−1)
−1 α (x1 . . . xk−1),

L∏

i=1

yk+i = (y1 . . . yk−1)
−1 β (y1 . . . yk−1),
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where we used also the periodicity assumption. The second part is implied by
Equations (2.5).

PROPOSITION 2.4. Under the centrality assumption the expressions for x ′
k and y′

k
given by (2.7) provide the unique solution of Equations (2.4) supplemented by the nor-
malization conditions α′ =β and β ′ =α.

Proof. Notice that by Lemma 2.3 x ′
k and y′

k given by (2.7) satisfy the normal-
ization condition. Then also both expressions

y′
k + x ′

k+1 − yk − xk+1 = (Pk xk − ykPk+1
)P−1

k+1 +P−1
k+1

(
yk+1Pk+2 −Pk+1xk+1

)

and

x ′
k y′

k − xk yk =P−1
k

(
ykPk+1 Pk xk −Pk xk ykPk+1

)P−1
k+1

vanish due to Lemma 2.3.

COROLLARY 2.5. The first companion map (x, y) �→ (x′, y′) given above is involu-
tory.

COROLLARY 2.6. The problem of finding the first companion of the KP map in
the periodic reduction can be considered as a refactorization problem A(x)A( y) =
A(x′)A( y′), where the matrix

A(x)=

⎛

⎜⎜⎜⎜⎜⎜⎝

−x1 0 · · · 0 λ

1 −x2 0 . . . 0

0 1
. . .

...
... −xL−1 0
0 0 . . . 1 −xL

⎞

⎟⎟⎟⎟⎟⎟⎠
(2.9)

with the central spectral parameter λ is the L-periodic reduction of the discrete
non-commutative KP hierarchy (Gel’fand–Dikii system) linear problem (2.1) studied
in [9].

2.3. REALIZATION OF COXETER RELATIONS UNDER THE CENTRALITY ASSUMPTION

Consider again a sequence (w1,w2, . . . ,wN ) of weights along a shortest path in
N -cube from the initial to the terminal vertex, each weight is a sequence w j =
(w j,1, . . .w j,L) of non-commuting variables satisfying the centrality assumption that
the product α j =w j,1w j,2 . . .w j,L commutes with all w j,k . As we already have men-
tioned the symmetric group SN acts in natural way on the paths and thus on the
weights. To make use of results of Section 2.2 define polynomials
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Figure 2. Second companion map as a Yang–Baxter map.

P j,k =
L−1∑

a=0

⎛

⎝
a−1∏

i=0

w j+1,k+i

L−1∏

i=a+1

w j,k+i

⎞

⎠ , (2.10)

where the second index should be considered modulo L.

PROPOSITION 2.7. Define the rational maps r j , j = 1, . . . , N − 1, of the non-
commuting variables w j,k, j =1, . . . , N , k =1, . . . , L,

r j (w j,k) =P−1
j,k w j+1,k P j,k+1, (2.11)

r j (w j+1,k)=P j,k w j,k P−1
j,k+1, (2.12)

r j (wi,k) =wi,k for i �= j, j +1. (2.13)

If we assume centrality of the products α j =∏L
i=1 w j,i then the maps r j satisfy the

Coxeter relations

r2
j =Id, r j ◦ r j+1 ◦ r j=r j+1 ◦ r j ◦ r j+1, ri ◦ r j = r j ◦ ri for |i − j |>1.

Proof. The commutativity part is clear from definition of the maps. Involutiv-
ity part comes from Corollary 2.5, and the braid relations follow from the path-
interpretation and uniqueness of the companion map subject to normalization con-
ditions (2.6). Equivalently, we can use the unique refactorization interpretation
given in Corollary 2.6, and follow the argumentation presented in [29].

COROLLARY 2.8. The action of r j on the central elements αi is

r j (α j )=α j+1, r j (α j+1)=α j , r j (αi )=αi for i �= j, j +1. (2.14)

COROLLARY 2.9. We can consider the division ring D as a division algebra over a
fixed subfield k of its center. Therefore we can state the centrality condition as α j ∈k.

COROLLARY 2.10. Define second companion map R =τ ◦r , i.e. R :(x, y) �→(x̃, ỹ)=
( y′, x′), see Fig. 2 then by (2.7) we obtain formulas (1.4). Due to well-known rela-
tion [29] between realizations of the Coxeter relations and reversible Yang–Baxter
maps we proved in this way Theorem 1.1.
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3. Non-Commutative Gel’fand–Dikii Systems with the Centrality Condition

In [9,10] we studied periodic reductions of the discrete KP hierarchy under two
extreme assumptions about non-commutativity/commutativity of dependent vari-
ables. Results of Section 2.2 suggest to consider an analogous centrality condi-
tion on the level of Equations (2.2). By simple calculation we obtain the following
result.

PROPOSITION 3.1. In the L-periodic reduction ui,k+L =ui,k of the non-commutative
KP system (2.2) assume centrality of the products Ui = ui,1ui,2 . . .ui,L . Then the
products ui,kui,k+1 . . .ui,k+L−1 do not depend on index k, and Ui is a function of ni

only

Ui( j) =Ui , j �= i. (3.1)

Using the above result, one can obtain non-autonomous non-commutative dis-
crete equations of the modified Gel’fand–Dikii type. It is known [9] that the first
part of Equations (2.2) implies existence of potentials ρk such that ui,k =ρ−1

k ρk(i),
while the second part gives the corresponding vertex form of the non-commutative
discrete KP hierarchy

(ρ−1
k( j) −ρ−1

k(i))ρk(i j) =ρ−1
k+1(ρk+1(i) −ρk+1( j)), k ∈Z/(LZ), i �= j. (3.2)

Then we replace one of the functions ρi by others and the central non-autonomous
factors. To make connection with known results, it is convenient to define central
functions Fi = (Ui )

1/L of the corresponding single variables ni , and then consider
the central function G defined by compatible system G(i) = FiG. We remark that
such G is a product of functions of single variables.

In the simplest case L =2 define, like in [9], a function x by ρ1 = xG. Then

ui,1 =ρ−1
1 ρ1(i) = x−1x(i)Fi , and ui,2 =ρ−1

2 ρ2(i) = x−1
(i) xFi ,

which inserted in Equations (3.2) produces the non-commutative Hirota (or dis-
crete sine-Gordon or lattice modified Korteweg–de Vries) equation studied
in [4,14,15]

(
x−1
( j)Fi − x−1

(i) F j

)
x(i j) =

(
x−1
(i) Fi − x−1

( j)F j

)
x . (3.3)

Remark. To recover the equation in the form studied in [4] notice that after extract-
ing x−1

( j) the expressions in brackets commute, and use inverses of the non-autono-
mous factors Fi .

For L =3 define unknown functions x and y by equations

ρ1 = xG, ρ3 = y−1G, G(i) =FiG
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which allows to find

ρ−1
2 ρ2(i) =ui,2 = x−1

(i) xy(i)y−1Fi .

Making such substitution in (3.2) for k = 1 and k = 3 we obtain the following
non-commutative integrable two-component system (equation for k = 2 is then its
consequence)

(
x−1
( j)Fi − x−1

(i) F j
)
x(i j) =

(
x−1
(i) xy(i)Fi − x−1

( j) xy( j)F j
)
y−1,

(
y( j)Fi − y(i)F j

)
y−1
(i j) = x−1(x(i)Fi − x( j)F j

)
.

Next, by elimination of the field x we obtain integrable non-commutative and non-
autonomous (with central non-autonomous coefficients Fi ) version of the lattice
modified Boussinesq [23] equation

[(
y( j)Fi − y(i)F j

)−1
y−1
(i j)

]

(i j)
− y

(
y−1
(i) Fi − y−1

( j)F j
)

=
[

y(i j)
(
y( j)Fi − y(i)F j

)−1
(

y(i)F2
i − y( j)F2

j

)
y−1

]

(i)

−
[

y(i j)
(
y( j)Fi − y(i)F j

)−1
(

y(i)F2
i − y( j)F2

j

)
y−1

]

( j)
.

4. Concluding Remarks

We presented a non-commutative rational Yang–Baxter map obtained from the
non-commutative discrete KP hierarchy subject to periodicity and centrality con-
straints. The corresponding integrable systems, which generalize the non-
commutative non-autonomous Hirota’s sine-Gordon equation [4] have been also
considered. In particular we have obtained an integrable non-commutative and
non-autonomous lattice modified Boussinesq equation. We remark, see [9,10], that
three-dimensional consistency of the equations considered here is a consequence of
four-dimensional compatibility of the non-commutative Hirota’s discrete KP sys-
tem [8], where the counterpart of the functional Yang–Baxter equation is the func-
tional pentagon equation [11]. Since the solutions of the pentagon equation pre-
sented in [11] allow for quantization (understood as a reduction from the non-
commutative case by adding certain commutation relations preserved by the inte-
grable evolution), we expect that also the non-commutative rational Yang–Baxter
map obtained above can be quantized in such a way also. It would be instruc-
tive to understand various applications of the Hirota discrete KP systems and its
reductions reviewed in [21] from that perspective.
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