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Abstract This article derives a method to estimate and

correct the bias error of the shift vector’s absolute length in

the presence of curved streamlines. The main idea is to

identify the most likely streamline with constant curvature

from the second-order shift vector and its gradient. The

work establishes a theoretical framework including the

systematic errors of the first-order and second-order shift

vector’s absolute value and angle. Synthetic images of a

stationary vortex are used to validate the proposed method.

The curvature-correction is also applied to a synthetic flow

field with non-constant curvature to demonstrate its

potential for more realistic flow fields. The results reveal

that second-order accurate vector fields suffer from a

biased shift vector length depending on the streamline’s

curvature and on the shift vector length. The bias error is

negligible for vector fields with a shift vector length below

the streamline curvature radius. For large shift vectors

or strong curvatures, the bias error can be significantly

reduced with the developed method. The approach is very

general and can be applied to any vector field obtained

from window-correlation particle image velocimetry (PIV),

single-pixel ensemble-correlation PIV, particle tracking

velocimetry or optical flow methods. It also works for all

3D extensions of the techniques, such as 3D-PTV or

tomographic PIV.

1 Introduction

Particle image velocimetry (PIV) is a non-intrusive mea-

surement technique that estimates the first-order velocity

field in a plane, or even in a volume, by measuring the

displacement of particles in a certain time interval Dt: Due

to the nature of the recording principle, each measured

velocity vector represents a volume-averaged mean motion

of the discretized and quantized tracer particle’s diffraction

images, rather than the actual velocity of the flow (Adrian

and Westerweel 2010; Raffel et al. 2007). To maximize

the bandwidth of PIV measurements, the dynamic spatial

range (DSR) and the dynamic velocity range (DVR) must

be maximized (Adrian 1997).

Single-pixel ensemble-correlation allows for the reduc-

tion in the averaging volume in two dimensions, compared

to standard window-correlation (Westerweel et al. 2004;

Kähler et al. 2006; Scharnowski et al. 2012). Thus, single-

pixel ensemble-correlation yields a very large DSR, in

particular for low-magnified images (Kähler et al. 2012).

Eckstein and Vlachos (2009) as well as Sciacchitano

et al. (2012) presented methods to improve the accuracy of

PIV evaluation, which results in increased DVR values.

Another possibility to achieve a large DVR, as well as to

get accurate estimations of the velocity and quantities

derived from it, especially for low magnifications, is to

maximize the particle image shift by selecting a sufficiently

large time delay between subsequent illuminations. On the

other hand, a large time separation may cause a bias error

in areas with curved streamlines, as illustrated in Fig. 1.

Wereley and Meinhart (2001) analyzed a method for the

estimation of the shift vectors with second-order accuracy,

and Scholz and Kähler (2006) applied this method to single-

pixel vector fields. To achieve an estimation with higher-order

accuracy, more than two time steps are generally required

S. Scharnowski (&) � C. J. Kähler

Institute of Fluid Mechanics and Aerodynamics,

Universität der Bundeswehr München,

85577 Neubiberg, Germany

e-mail: sven.scharnowski@unibw.de

123

Exp Fluids (2013) 54:1435

DOI 10.1007/s00348-012-1435-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191455106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(Lele 1991). A multi-pulse system, as outlined in Kähler

and Kompenhans (2000), can be combined with a multi-

frame evaluation method. Hain and Kähler (2007) as well as

Persoons and O’Donovan (2011) describe such a method,

developed for PIV, and Cierpka et al. (2012) recently reported

an analogous idea, applicable to PTV. Using either combi-

nation would allow for higher-order accuracy velocity

measurements.

Since multi-pulse techniques require more expensive

equipment, the idea of this paper is to achieve higher-order

accuracy from conventional double-pulse recordings by

estimating the curvature of the particle path from the sec-

ond-order shift vector field. The reconstruction of the

particle path from the local shift vectors and their gradients

is mainly based on the assumption that neighboring

streamlines do not cross. The article is divided into three

main sections. Section 2 discusses the curvature-correction

from an analytical point of view. In Sects. 3 and 4, the

developed method is applied to synthetic PIV data of a flow

fields with constant and non-constant curvature, respec-

tively, in order to verify the theoretical predictions. Finally,

the approach is tested on a realistic flow field from the third

PIV challenge (Sect. 5)

2 Mathematical description

2.1 First-order bias error

The evaluation of double-pulse double-frame PIV images

approximates the path of motion by a straight line, and the

first-order shift vector simply connects the location of

particle images at time t and at time t þ Dt: The straight

line is the shortest possible path; thus, for complex flows,

the actual path is usually longer. Hence, the absolute value

of the estimated shift vector is generally underestimated.

Assuming an actual path with constant curvature, as shown

in Fig. 2, this bias error can be computed from the differ-

ence of the arc length and the secant

dabsDXð1Þ ¼ n � R� DXð1Þ
�
�

�
�

¼ R n� 2 � sin
n
2

� � ð2:1Þ

where R is the radius of the curvature, DXð1Þ
�
�

�
� is the

absolute value of the first-order shift vector and n the arc’s

angle (see Fig. 2). Furthermore, the angle of the estimated

first-order shift vector is biased if the actual path is curved

dangleDXð1Þ ¼ p
2
� arccos

DXð1Þ
�
�

�
�

2 � R

 !

ð2:2Þ

In Eq. 2.2, p/2 is the angle between the tangent of the arc

and the radius, whereas the arccos term is the angle

between the first-/second-order shift vector and the radius.

For nj j\p; Eq. 2.2 can be reduced to

dangleDXð1Þ ¼ n
2

ð2:3Þ

Both the bias of the absolute value and the bias of the angle

depend on the radius of the curved path and on the arc’s

angle. However, these quantities are unknown and cannot

be measured directly.

2.2 Second-order bias error

For second-order accurate PIV evaluation, the first-order

shift vector is moved to the middle position of the start

point and the end point of the vector. This fully compen-

sates for the angular error from Eq. 2.2 in the case of

constant curvature, since the vector is aligned tangentially

to the actual path. However, the vector’s length is still

biased. Furthermore, the vector is pushed to a different

streamline where the actual velocity is generally different.

The bias error of the absolute velocity depends on the

curvature, on the arc’s angle and on the change of the

second-order shift vector’s absolute value perpendicular to

the streamline
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constant 
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Fig. 1 Particle path estimated from the position of the particle image

at time t and t þ Dt
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Fig. 2 Second-order shift vector and curvature-corrected shift vector
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dabsDXð2Þ ¼ n � R� DXð2Þ
�
�

�
�þ dccj j �

o DXð2Þ
�
�

�
�

on

�
�
�
�
�

�
�
�
�
�

¼ R � n� 2 � sin
n
2

� �

þ R � 1� cos
n
2

� �

�
o DXð2Þ
�
�

�
�

on

�
�
�
�
�

�
�
�
�
�

ð2:4Þ

where n is the unit vector perpendicular to the streamline.

As before, the bias depends on the unknown parameters n
and R.

2.3 Curvature-correction

In order to compensate for first- and second-order bias

errors, the parameters n and R must be extracted from the

shift vector field. Neighboring shift vectors that connect

two points on the same streamline can be used to estimate

the flow path’s curvature, as illustrated in Fig. 3. For the

sake of clarity, the second-order shift vector in Fig. 3 is

moved such that its center falls on the original starting

point. The same holds for the neighboring vector and for

the curvature-corrected one.

For the curvature-correction, the main idea is to find a

neighboring vector in the vicinity (r ! 0; see Fig. 3) of the

second-order shift vector such that both vectors connect

two points on the same circle. Under this condition, the

following relation holds between the angles of the vectors

d1 and d2 and the second-order shift vector

b1 þ /� /n ¼ b2 ð2:5Þ

Where / and /n are the angle of the second-order shift

vector and the neighboring vector. The starting point of the

neighboring vector must be close to the starting point of the

shift vector in order to align the vector d1 tangentially to

the circle. Due to the finite vector spacing of PIV data

points, a local (first-order) series expansion for the neighbor-

ing vector

DX 2ð Þ X0; Y0ð Þ þ d1ð Þ ¼ DX 2ð Þ X0; Y0ð Þ þ oDXð2Þ

od1
� d1 þ � � �

ð2:6Þ

is required in order to interpolate between the discrete data

points. The second-order shift vector DX 2ð Þ X0; Y0ð Þ and a

neighboring shift vector that fulfills the condition in

Eq. 2.5 differ by the vector d2 � d1:

DX 2ð Þ X0; Y0ð Þ þ d2 ¼ d1 þ DX 2ð Þ X0; Y0ð Þ þ d1ð Þ ð2:7Þ

In order to find a suitable neighboring shift vector, vectors

surrounding X0; Y0ð Þ are analyzed. For a fixed distance

between the second-order vector and the neighboring

vector, the angle a is varied (see Fig. 3). The angles b1

and b2 depend on a as follows:

b1 að Þ ¼ �u

þ arctan
r � 2 � sin a� VX cos a� VY sin að Þ
r � 2 � cos a� UX cos a� UY sin að Þ

� �

ð2:8Þ

b2 að Þ ¼ u

� arctan
r � 2 � sin aþ VX cos aþ VY sin að Þ
r � 2 � cos aþ UX cos aþ UY sin að Þ

� �

ð2:9Þ

where U0;V0ð Þ are the components of the second-order

shift vector at X0; Y0ð Þ; and UX, UY, VX, and VY are the

partial derivatives with respect to X and Y, respectively.

The angle u is the orientation of the second-order shift

vector. It is important to note that b1 and b2 are not given

explicitly in Eq. 2.8 and 2.9. However, it is possible to

compute b1 að Þ and b2 að Þ for a set of a (ranging from u�
p=2 to uþ p=2) and find the solution for b1 að Þ ¼ b2 að Þ
numerically at fairly low computational cost. Once the

angle b1 is found, the radius R of the circle can be

computed

R ¼
DXð2Þ X0; Y0ð Þ
�
�

�
�

2 � sin n
2

ð2:10Þ

where the arc’s angle is given by

n
2
¼ b1 ð2:11Þ

The sign of R defines the direction of the curvature: If

R [ 0, the streamline follows clockwise rotation, and for

R \ 0, the streamline follows counter-clockwise rotation in

a right-handed system. Finally, from the radius R and the

arc’s angle n, the curvature-correction is applied to the

second-order shift vector field in three steps as follows:

second-order  
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Fig. 3 Curvature-correction by using neighboring, which are con-

nected by the same streamline
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• the second-order vector is shifted toward the streamline

with constant curvature using the shift vector dcc :

dcc ¼ R � 1� cos
n
2

� �� �

� � sin u
cos u

� �

ð2:12Þ

• the second-order shift vector is enlarged from the

tangent’s length to the arc length in order to compen-

sate for the bias error of the absolute value from Eq. 2.1

• the corrected vector field is interpolated to the regular

grid of the second-order vector field

It should be emphasized that the estimation of the angle b1

is based on the gradients of the second-order shift vector

field (see Eqs. 2.8 and 2.9). Thus, for reliable curvature-

correction, the gradients must be estimated accurately first.

For 3D PTV or tomographic PIV, the approach works in

the same way: A neighboring shift vector that fulfills

Eq. 2.5 allows for the curvature-correction. Additionally,

the vectors d1 and d2 from Fig. 3 must lie in the same plane

in order to estimate the most likely path of motion with

constant curvature.

3 Synthetic example: Lamb-Oseen vortex

The Lamb–Oseen vortex is a frequently used vortex model

in fluid dynamics. The circumferential velocity component

Vu of this vortex model is given by the following equation:

VuðrÞ ¼
C

2pr
1� exp

�r2

r2
c

� �� �

ð3:1Þ

where C is the total circulation and rc the vortex core

radius. The radial velocity of a Lamb–Oseen vortex is zero;

thus, the streamlines have a constant curvature. Therefore,

this vortex is well suited to validate the capability of the

developed method. The curvature-correction eliminates (in

theory) the bias error completely due to constant curved

streamlines. Thus, no bias error should be visible after

correction. To demonstrate the performance of the devel-

oped method, synthetic images were generated, as descri-

bed in Sect. 3.1, and evaluated using different methods:

window-correlation for a single pair of PIV images (Sect.

3.2), ensemble-averaged window-correlation (Sect. 3.3)

and single-pixel ensemble-correlation (Sect. 3.4).

3.1 Image generation

The analysis based on synthetic images gives full control of

all simulation parameters without any limitations regarding

their range, and it is possible to detect sensitivities, which

indicate what is relevant and what is not (Kähler et al.

2012; Stanislas et al. 2008); 10,000 synthetic image pairs,

512 9 512 px in size, with a stationary Lamb–Oseen

vortex in the center, were generated for different total

circulations C:
A particle image density of dens = 25 % was applied,

meaning that 25 % of the image area was covered by

particle images. The digital particle image diameter was set

to D = 3 px; hence, the number of particles per pixel was

Nppp ¼ 4 � dens= D2 � pð Þ ¼ 0:035 on average. A Gaussian

particle image shape was assumed

I X; Yð Þ ¼ I0 � exp �8 � X � X0

D

� �2

þ Y � Y0

D

� �2
" #" #

ð3:2Þ

where X0; Y0ð Þ is the randomly chosen center position, and

D is the diameter at 1/e2 of the maximum intensity (4 times

the standard deviation). The maximum intensity of the

particle images was I0 = 214. From Eq. 3.2, the discrete

pixel’s gray values were computed from the integral over

the pixel’s area, corresponding to a sensor fill factor of 1.

Non-uniform pixel response, as outlined in Kähler (2004),

was not considered.

The intensity distribution of the first synthetic PIV frame

A is given by the following equation:

A X; Yð Þ ¼
XP

p¼1

ZXþ0:5

X�0:5

ZYþ0:5

Y�0:5

Ip X; Yð Þdxdy

2

4

3

5 ð3:3Þ

where P and p are the number of particle images and the

corresponding control variable, respectively. On top of the

particle image intensities, a Gaussian noise with zero mean

and a standard deviation of 1 % � I0 were added. Finally, the

intensity distribution was converted into a 16-bit unsigned

integer matrix.

For the second frame, the center positions of the particle

images were shifted such that the distances to the vortex

center remained constant and the arc lengths were pro-

portional to the circumferential velocity from Eq. 3.1. The

image generation was performed using MatLab functions.

3.2 Window-correlation

To analyze the effect of curved streamlines on the accuracy

of the estimated vector fields, single PIV image pairs of

a synthetic vortex are processed. Figure 4a shows an

instantaneous vector field computed with window-correla-

tion using DaVis8.1 (by LaVision GmbH), including multi-

pass evaluation with decreasing window size, iterative

window shifting, image deformation and adaptive Gaussian

window weighting. The interrogation window size was

reduced from 64 9 64 px down to 16 9 16 px, and two

passes were performed for each window size. Furthermore,

an initial shift vector field, computed from the product of a
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constant and the field of a slowly rotating vortex, was used

to overcome the difficulties due to the large shift vector

length and the strong gradients. The background color in

Fig. 4a represents the absolute value of the curvature-cor-

rected shift vector. Shift vectors with first- and second-

order accuracy as well as curvature-corrected ones are

shown in different colors for X = - 4 px. The vortex core

radius and the total circulation were rc = 20 px and

C ¼ 104 px2; respectively. This results in a relatively large

maximum particle image shift of 36 px. Figure 4b shows

the circumferential shift vector component DXU for three

different circulations (C ¼ 1; 000; 5; 000; 104½ � px2) esti-

mated with first- and second-order accuracy and for cur-

vature-corrected vectors using a final interrogation window

size of 8 9 8 px and 16 9 16 px.

It can be concluded from Fig. 4 that for the test case

• for a shift vector length of\3.6 px, the maximum bias

error of first-order and second-order evaluation is

0.01 px which is in the order of (or even below) the

random error

• for regions with large gradients (r \ 30 px), small

interrogation windows are required for reliable velocity

estimations because the bias error due to the spatial

averaging is large compared to the bias error caused by

the curvature

• the curvature-correction results in significantly decreased

bias in the case of large shift vectors for 8 9 8 px

interrogation windows.

3.3 Averaged window-correlation

While instantaneous velocity fields are very important for a

deeper understanding of the flow physics, statistical values,

such as the mean velocity and Reynolds stresses, are

required for the validation of numerical flow simulations

and for the proof of analytical theories in fluid mechanics.

For the estimation of average quantities, the sum-of-cor-

relation approach is more accurate (Wereley and Meinhart

2001). This is because of two reasons: First, the bias error

arising from gradients can be reduced as smaller interro-

gation windows can be applied. Second, the error in esti-

mating the maximum of the correlation is not summed up

as in the case of classical cross correlation analysis.

To analyze the effect of curved streamlines on the

accuracy of estimated shift vector fields by using sum-of-

correlation evaluation, 100 PIV image pairs of a synthetic

vortex were processed. Figure 5a shows an averaged vector

field computed with window-correlation using DaVis8.1

(by LaVision GmbH) with the same processing parameters

as before. Once again, the vortex core radius and the total

circulation were rc = 20 px and C ¼ 104 px2; respectively.

Figure 5b shows the circumferential shift vector compo-

nent for three different circulations, estimated with first-

and second-order accuracy using 8 9 8 px interrogation

windows for the final pass as well as curvature-corrected

results.

Figure 5a, b show that the curvature-correction reduces

the bias error significantly in the case of large shift vectors.

However, for regions with large gradients (r \ 30 px), a

small systematic deviation remains even for the curvature-

correction. This bias is caused by the final size of the

interrogation windows. To reduce this bias error, single-

pixel ensemble-correlation analysis is required.

3.4 Single-pixel ensemble-correlation

Single-pixel evaluation can be used for a large amount of

PIV image pairs and results in significantly improved

spatial resolution (Kähler et al. 2012). This is always of

importance for the analysis of flow fields with strong gra-

dients. Single-pixel ensemble-correlation was first applied

by Westerweel et al (2004) for stationary laminar flows in

microfluidics. In the last years, the approach was extended

for the analysis of periodic laminar flows (Billy et al.
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Fig. 4 Instantaneous curvature-corrected shift vector field computed

with window-correlation (a) and estimated circumferential velocity

component of a simulated Lamb–Oseen vortex (b)
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2004), of macroscopic laminar, transitional and turbulent

flows (Kähler et al. 2006) and for compressible flows at

large Mach numbers (Kähler and Scholz 2006; Bitter et al.

2011). Scholz and Kähler (2006) have extended the high-

resolution evaluation concept also for stereoscopic PIV

recording configurations. Recently, based on the work of

(Kähler et al. 2006), the single-pixel evaluation was further

expanded to estimate Reynolds stresses in turbulent flows

with very high resolution (Scharnowski et al. 2012).

For single-pixel ensemble-correlation, the correlation

functions C(n, w, X, Y) can be computed from a pair of

PIV image sets A(X, Y) and B(X, Y) as follows:

Cðn;w;X; YÞ

¼
P

n AnðX; YÞ � �AðX; YÞ½ � � BnðX þ n;Y þ wÞ � �BðX þ n;Y þ wÞ½ �
rAðX; YÞ � rBðX þ n;Y þ wÞ

ð3:4Þ

where the standard deviation is given by:

rA X; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

X

n

An X; Yð Þ � �A X; Yð Þ½ �2
s

ð3:5Þ

(X, Y) are discrete coordinates of the pixel in question in

both images and (n, w) are the coordinates on the corre-

lation plane. The maximum position of the correlation

function C represents the mean shift vector with first-order

accuracy. Second-order accuracy can be achieved by

moving the first-order vectors to their middle position as

demonstrated in Scholz and Kähler (2006). Furthermore,

the curvature-correction discussed in Sect. 2.3 can be

applied to the second-order vector field (or directly from

the first-order field by applying some modifications to

Eq. 2.8). In the case of a stationary laminar flow, the cur-

vature-correction estimates the most likely streamline with

constant curvature. On the other hand, for turbulent flows,

the curvature-correction estimates the mean path with

constant curvature which is not identical with the actual

streamline of instantaneous vector fields.

In order to analyze the effect of curved streamlines on

the accuracy of estimated shift vector fields using single-

pixel ensemble-correlation, 10,000 synthetic PIV images

were generated and evaluated. Figure 6a shows an aver-

aged vector field computed with single-pixel ensemble-

correlation using Eq. 3.4. As before, the vortex core radius

and the total circulation were rc = 20 px and C ¼ 104 px2;

respectively. Figure 6b shows the circumferential shift

vector component for three different circulations estimated

with first- and second-order accuracy as well as with cur-

vature-correction. Figure 6b shows that the curvature-cor-

rection causes the expected bias error reduction for the

single-pixel evaluation. Furthermore, even for regions with

strong gradients (r \ 30 px), the third-order accurate data

points fit the theoretical curve closely. Thus, the remaining

bias of the window-correlation approach could be elimi-

nated completely, as expected from the theory.

Figure 7 shows the difference of the shift vector’s

absolute value (left) and angle (right) for first-order (top)

and second-order (bottom) accuracy with respect to the

curvature-corrected shift vector. The simple first-order

approximation underestimates the circumferential velocity

(Fig. 7a) and causes a strong inward-facing radial compo-

nent, indicated by the positive sign of the angular bias in

Fig. 7b. The second-order approximation gives the right

values for the shift vector’s angle (Fig. 7d) but the cir-

cumferential component is still biased. Figure 7c shows that

the velocity in the core (r \ 20 px) is overestimated, while

the velocity outside the core is underestimated. The cur-

vature-corrected estimation does not suffer from any bias

error for the tested Lamb–Oseen vortex. These findings are

in agreement with the theoretical predictions in Sect. 2.

Figure 8 shows the relative bias error of the second-

order shift vector’s absolute value with respect to the arc’s

angle n. From the figure, it can be concluded that for the

tested cases, the bias error is negligible for angles smaller
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Fig. 5 Averaged curvature-corrected shift vector field computed with

sum-of-window-correlation (a) and estimated circumferential velocity

component of a simulated Lamb–Oseen vortex (b)
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than n\ 10�. Only for large angles n, which require

strongly curved streamlines, combined with large shift

vectors, are the curvature-correction necessary.

4 Non-constant curvature

So far, the developed method was applied to synthetic shift

vector fields of stationary vortices, where the curvature

along the streamlines is constant. This section analyzes

vector fields with non-constant curvature. Again, synthetic

images are used to have full control of all involved

parameters. The test case is a flow along sinusoidal

streamlines, as shown in Fig. 9. The shape of a streamline

centered at Y0 is given as follows:

YðXÞ ¼ a � sin
X � 2p

b

� �

þ Y0 ð4:1Þ

where a and b are the amplitude and the period,

respectively. The streamline’s curvature 1/R changes

periodically with respect to X

1=R ¼
4 � a � p2 sin 2�p�X

b

� 	

b2 þ 4 � a2 � p2 cos2 2�p�X
b

� 	� 	3=2
ð4:2Þ

At the inflection points, the curvature is zero, where it

reaches values of up to 4 � a � p2=b2 at the extrema of the

sin function in Eq. (4.1). To analyze the effect of this non-

constant curved streamlines on the accuracy of the

estimated shift vector field, synthetic image pairs were

generated, as discussed in Sect. 3.1. A constant shift vector

length DS along the streamlines was simulated. Therefore,

for each point X0; Y0ð Þ; the displacement in the X direction

DX is computed from the curve’s length

DS ¼
ZX0þDX

X0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 � p2

b2
� cos2

2 � p � X
b

� �
s

dX ð4:3Þ

and the displacement in the Y direction from

DY ¼ Y X0 þ DXð Þ � Y DXð Þ ð4:4Þ

using the definition in Eq. (4.1). The resulting shift vector

field is shown in Fig. 9 for a = 20 px and b = 128 px.

X in px

Y
 in

 p
x

 

 

 δ
ab

sΔX
(1

)  in
 p

x

−100 −50 0 50 100
−100

−50

0

50

100

−5

0

5(a)

X in px

Y
 in

 p
x

 

 

 δ
an

gl
eΔX

(1
)  in

 °

−100 −50 0 50 100
−100

−50

0

50

100

−60

−40

−20

0

20

40

60(b)

X in px

Y
 in

 p
x

 

 

 δ
ab

sΔ X
(2

)  in
 p

x

−100 −50 0 50 100
−100

−50

0

50

100

−5

0

5(c)

X in px

Y
 in

 p
x

 

 

 δ
an

gl
eΔX

(2
)  in

 °

−100 −50 0 50 100
−100

−50

0

50

100

−60

−40

−20

0

20

40

60(d)

Fig. 6 Bias error of the shift vector’s absolute value (left) and angle (right) for first-order (top) and second-order (bottom) accuracy using single-

pixel ensemble-correlation
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Synthetic PIV image pairs, 256 9 256 px in size, with

sinusoidal streamlines were generated and evaluated with

averaged window-correlation. Figure 10 shows cross sec-

tion plots of the estimated shift vector length for different

simulated DS ranging from 5 to 50 px. Each point in

Fig. 10 represents the mean displacement (absolute value)

averaged over Y computed from 100 image pairs with sum-

of-window-correlation using a final interrogation window

size of 8 9 8 px.

The upper part of Fig. 10 clearly shows a significant bias

error: The shift vector length is underestimated in regions

with strong curvature. The bias error is largest for large

simulated shift vectors and reaches a maximum of 12 % for

DS ¼ 50 px at the extrema of the sinusoidal function,

which illustrate the importance of this correction for pre-

cise measurements. The curvature-correction, shown in the

lower part of Fig. 10, results in significantly reduced bias

error. The maximum bias error is only 5 %. Similar results

were achieved by applying window-correlation to single

image pairs (resulting in a higher random error) as well as

by applying single-pixel ensemble-correlation to 1,000

image pairs.

The mean bias error, averaged over the image area, as a

function of the shift vector length is illustrated in Fig. 11; it
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can be seen that the curvature-correction results in reduced

bias error for all tested shift vector lengths. Additionally,

the mean random error is shown in Fig. 11. For the aver-

aged window-correlation of the test case, the mean random

error is always lower than the mean bias error. Thus, the

shift vector gradients can be reliably detected, and curva-

ture-correction results in improved accuracy.

Figure 12 shows the normalized maximum bias error as

a function of the arc’s angle n. The curvature at the extrema

of the sinusoidal streamline is relatively large (1=Rmin ¼
4 � a � p2=b2 ¼ 4 � 20 � p2=1282 � 0:05 px �1; Rmin � 20 px);

thus, the second-order accurate shift vectors are strongly

biased. The curvature-correction reduces the maximum

bias error significantly. For arc angles n B 20�, the maxi-

mum bias error of the second-order shift vector is below

1 %, which is likely to be smaller than the random error for

real PIV images. Thus, curvature-correction becomes impor-

tant for n[ 20�.

5 Flow field example

In the following, the curvature-correction is applied to a

realistic flow field example: test case B of the third PIV

challenge (Stanislas et al. 2008). Case B is a synthetic

sequence of 120 images with equidistant time intervals of a

laminar separation bubble. The image size is 1,440 9 688

px, the particle image diameter is around 2 px and the

number of particles per pixel is Nppp = 0.024.

Images 10 and 11 were evaluated with window-corre-

lation using DaVis8.1 (by LaVision GmbH), including

multi-pass evaluation with decreasing window size, itera-

tive window shifting, image deformation and adaptive

Gaussian window weighting. A final interrogation window

size of 16 9 16 px was chosen. The curvature-correction,

as discussed in Sect. 2.3, was applied to the second-order

accurate vector field.

Figure 13a shows the estimated curvature-corrected

shift vector field. The background color in the figure rep-

resents the absolute value of the shift vector, which is

characterized by a very large dynamic range. Additionally,

characteristic streamlines are drawn in Fig. 13a. Several

regions with very strong curvature can be identified from

the streamlines. Thus, the curvature-correction approach

should help to reduce bias errors.

However, the bias does not only depend on the

streamline’s curvature but also on the local shift vector

length. The arc’s angle n (see Fig. 2) is an indicator of the

necessity of curvature-correction. The spatial distribution

of the angle n is illustrated in Fig. 13b. It reaches a

maximum of nmax = 1.75� at X = 1,140 px and Y = 452

px. However, according to the findings of Sects. 3 and 4,

values of n\ 10� result in negligible bias errors. This is

also the case here, as can be seen from the difference of

the shift vector length for the second-order accurate vec-

tors and for the curvature-corrected ones, illustrated in

Fig. 13c. The estimated maximum bias error is 5 orders (!)

of magnitude smaller then the maximum shift vector

length. It can be concluded that the developed method of

curvature-correction does not improve the accuracy for

this particular test case. In order to have a useful correc-

tion, the shift vectors must be much larger (factor of 5 or

more). This would, on the other hand, increase the amount

of loss of paired particle images due to out of plane

motion for this 3D flow field. However, for all volumetric

PIV and PTV techniques, where out of plane loss of pairs

is not possible, this approach can enhance the quality of

the results.
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6 Conclusion

The presented method allows for the estimation and cor-

rection of the bias error due to curved streamlines from PIV

data. This result is of great importance for the accurate

estimation of velocity fields from PIV data acquired at low

optical magnification, as required for high dynamic spatial

range. The developed method was validated by analyzing

synthetic PIV images of a stationary Lamb–Oseen vortex

and of a flow with sinusoidal streamlines. The curvature-

corrected vector fields demonstrated the benefit for standard

window-correlation (instantaneous and ensemble-averaged)

as well as for single-pixel ensemble-correlation. Due to the

curvature-correction, the bias error of the shift vector’s

absolute value and angle is significantly reduced.

The approach is limited to vector fields with low noise

level, since the spatial derivatives of the second-order shift

vector must be estimated reliably in order to perform the

curvature-correction. Furthermore, the detectable curvature

is limited by the averaging area: The interrogation window

size must be significantly smaller than the streamline radius

for reliable second-order accuracy and curvature-correction.

Fig. 13 Test case B2 from the

third PIV challenge (Stanislas

et al. 2008): Velocity

distribution and streamlines (a),

covered angle of streamline

with respect to the local

curvature (b), and difference

between the length of second-

order shift vectors and

curvature-corrected ones (c)
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The accuracy of a second-order accurate shift vector field

that suffers from bias errors due to limited spatial resolution

cannot be improved by applying the curvature-correction.

On the other hand, it was shown that the bias error

due to curved streamlines is usually negligible for flow

fields with moderate shift vector lengths and curvatures

(DX\20 px; n\10�). Thus, it can be concluded that sec-

ond-order accurate PIV evaluation reveals reliable results

for most practical applications. However, for highly accu-

rate measurements of the mean velocity field with up to

single-pixel resolution, the approach outlined in the paper

is recommended to be applied.
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