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Abstract In this note we formulate a sufficient condition for the quasiconvexity at x �→
λx of certain functionals I (u) which model the stored-energy of elastic materials subject
to a deformation u. The materials we consider may cavitate, and so we impose the well-
known technical condition (INV), due to Müller and Spector, on admissible deformations.
Deformations obey the condition u(x) = λx whenever x belongs to the boundary of the
domain initially occupied by the material. In terms of the parameters of the models, our
analysis provides an explicit λ0 > 0 such that for every λ ∈ (0, λ0] it holds that I (u) ≥ I (uλ)

for all admissible u, where uλ is the linear map x �→ λx applied across the entire domain.
This is the quasiconvexity condition referred to above.

Mathematics Subject Classification 49J40 · 74B20

1 Introduction

Since the seminal work of Ball [3], the phenomenon of cavitation in nonlinear elasticity has
been studied by many authors, with significant advances [9,10,15] having been made in the
case that an appropriately defined surface energy be part of the cost of deforming a material.
In this note we consider the original case of a purely bulk energy
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I (u) =
∫

�

W (∇u(x)) dx, (1.1)

where as usual u : � ⊂ R
n → R

n represents a deformation of an elastic material occupying
the domain � in a reference configuration, and where n = 2 or n = 3. Our goal is to give a
straightforward, explicit characterization of those affine boundary conditions of the form

uλ(x) := λx,

where λ is a positive parameter, which obey the quasiconvexity inequality1

I (u) ≥ I (uλ). (1.2)

In the case of radial mappings [3] it is this inequality which must be violated in order that a
global minimizer of I might cavitate (i.e., where a hole is created in the deformed material),
a crucial ingredient of which is the application of a large enough stretch on ∂� (i.e., taking
λ sufficiently large). When deformations are not restricted to any particular type we are still
interested in whether the quasiconvexity inequality holds for a given λ since it rules out the
possibility that a global energy minimizer cavitates. Thus the largest λ for which (1.2) holds
is sometimes referred to as a critical load. Our chief inspiration for this work is [14], where
bounds for the critical load are given in terms of constants appearing in certain isoperimetric
inequalities. We use a different technique to find an explicit lower bound on the critical load
in the two and three dimensional settings. The main results in this direction are summarised
in Theorems 2.10 and 3.5.

Our method also yields conditions on ∇u for the inequality (1.2) to be close to an equality
in the sense that if δ(u) := I (u) − I (uλ) is small and positive then, in the two dimensional
case ∫

�

min
{|∇u − λ1|2, |∇u − λ1|q} dx ≤ c δ(u), (1.3)

where 1 < q < 2 is an exponent governing the growth of the stored-energy function W
appearing in (1.1). See Theorem 2.11 for the latter. The corresponding condition in three
dimensions is ∫

�

|∇u − λ1|q dx ≤ cδ(u),

where 2 < q < 3: see Theorem 3.6 for details. In both cases the Friesecke, James and Müller
rigidity estimate [8, Theorem 3.1] (see also [5, Theorem 1.1]) is used in conjunction with the
boundary condition to recover information apparently lost in deriving sufficient conditions
for (1.2). We also note that these conditions are invariant under the elasticity scaling in which
a function v(x), say, is replaced2 by vε(x) = 1

ε
v(εx), where ε > 0. This is important in view

of the example in [17, Section 1]. The latter says, among other things, that, in the absence of
surface energy, a deformation which cavitates at just one point in the material can have the
same energy as another deformation with infinitely many cavities.

The setting we work in is motivated by [15] in the sense that we impose condition (INV),
a topological condition which is explained later. Cavitation problems must be posed in func-
tion spaces containing discontinuous functions. In particular, Sobolev spaces of the form
W 1,q(�,Rn) with q ≥ n are not appropriate, since their members are necessarily continu-
ous. In the case q > n this follows from the Sobolev embedding theorem, while if q = n

1 Strictly speaking, this is a W 1,q -quasiconvexity inequality; the term quasiconvexity usually refers to the
case in which I (u) ≥ I (uλ) holds for all Lipschitz u agreeing with uλ on ∂�. See, e.g., [4] for the distinction.
2 This is an oversimplification: see [4, Proposition 2.3] or [17] for full details.
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A simple sufficient condition for quasiconvexity Page 3 of 25 42

then well-known results [18,19], applying to maps u with det ∇u > 0 a.e., imply that u has
a continuous representative. Thus we work in W 1,q(�,Rn), where n− 1 < q < n, and in so
doing we are able to take advantage of existing results, including but not only those of [15].

The stored-energy functions we consider in the two dimensional case have the form

W (A) := |A|q + h(det A)

where 1 < q < 2 and where h : R → [0,+∞] satisfies

(H1) h is convex and C1 on (0,+∞);
(H2) limt→0+ h(t) = +∞ and lim inf t→∞ h(t)

t > 0;
(H3) h(t) = +∞ if t ≤ 0.

In three dimensions the appropriate class of W is detailed in Sect. 3. In both cases we
define a set of admissible deformations

Aλ := {
u ∈ W 1,q(�,Rn) : u = uλ on ∂�, det ∇u > 0 a.e. in �

}
. (1.4)

It is made clear in [3] and [16] that when λ is sufficiently large there are maps u0 belonging
to Aλ of the form

u0(x) = r(|x |) x

|x | ,

with r(0) > 0, such that
I (u0) < I (uλ). (1.5)

The growth of h(t) for large values of t is pivotal in ensuring that such an inequality can
hold. Thus the integrand W is not (W 1,q -)quasiconvex at λ1. The loss of quasiconvexity is
typically associated with so-called cavitating maps like u0, whose distributional Jacobian
Det ∇u0 is proportional to a Dirac mass, a remark first made by Ball in [3].

For later use, we recall that the distributional Jacobian of a mapping in W 1,p(�,Rn), with
p > n2/(n + 1), is defined by

(Det ∇u)(ϕ) = − 1

n

∫
�

∇ϕ · (adj ∇u)u dx,

where ϕ belongs to C∞
0 (�). When u is C2 the distributional Jacobian coincides with the

Jacobian det ∇u. The same is true if, more generally, u ∈ W 1,p(�) with p ≥ n2/(n + 1)

and Det ∇u is a function (see [11]).
The paper is arranged as follows: after a short explanation of notation, we consider the two

and three dimensional cases separately in Sects. 2 and 3 respectively. Subsection 2.1 contains
the bulk of the estimates needed for (1.3); the relevant estimates in the three dimensional case
draw on these results and are presented succinctly in Sect. 3. Along the way, we give a slight
improvement of [20, Lemma 2.15], and, as a byproduct of our work in three dimensions we
are led to a conjecture concerning the quasiconvexity of a certain function which, to the best
of our knowledge, has not yet been considered in the literature.

1.1 Notation

We denote the n×n real matrices by R
n×n and the identity matrix by 1. Throughout, � ⊂ R

n

is a fixed, bounded domain with Lipschitz boundary, B(a, R) represents the open ball in R
n

centred at a with radius R > 0 and S(a, R) := ∂B(a, R). Other standard notation includes
Ln for the Lebesgue measure in R

n .
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The inner product of two matrices A, B ∈ R
n×n is A · B := tr (AT B). This obviously

holds for vectors too. Accordingly, we make no distinction between the norm of a matrix

and that of a vector: both are defined by |ν| := (ν · ν)
1
2 . For any n × n matrix we write

adj A := (cof A)T , while tr A and det A denote, as usual, the trace and determinant of A,
respectively. Other notation will be introduced when it is needed.

2 The two dimensional case

The relevance of the distributional Jacobian to the loss of quasiconvexity can be seen using the
following argument, the first part of which is due originally to Ball [2]. Firstly, the convexity
of A �→ |A|q and of h implies that

W (∇u) ≥ W (λ1) + q|λ1|q−2λ1 · (∇u − λ1) + h′(λ2)(det ∇u − λ2),

which, when u ∈ Aλ, can be integrated over �; the result is

I (u) ≥ I (uλ) + h′(λ2)

∫
�

(det ∇u − det ∇uλ) dx . (2.1)

Clearly, if the integral with prefactor h′(λ2) vanishes, that is if∫
�

(det ∇u − det ∇uλ) dx = 0, (2.2)

then I (u) ≥ I (uλ) follows. This can be ensured, for example, by imposing further conditions
on u guaranteeing that∫

�

f (u(x)) det ∇u(x) dx =
∫
R2

f (y) deg(ū, ∂�, y) dy (2.3)

for any bounded continuous function f , where ū represents the trace of u, here assumed
to possess a continuous representative in order that the degree is well-defined. The idea
behind this originates in Šverák’s work [18], and was later refined by Müller et al. [12].3 As
Šverák remarks in [18], (2.3) clearly excludes cavitation by choosing f with support in the
created cavity. We note that (2.3) is a key ingredient in Šverák’s proof of the existence of a
representative for u that is continuous outside a set of Hausdorff dimension n − p, where
p > n − 1 is the Sobolev exponent appearing in the class A+

p,q he works in: see [18] for
further details of that rich theory. It turns out that the discrepancy between

∫
�

det ∇u dx and∫
�

det ∇uλ dx can be measured using Det ∇u and interpreted in terms of cavitation provided
some additional conditions are imposed on u. To explain this we follow the approach in [14]
and appeal to a result in [15] that is couched in terms of Müller and Spector’s condition
(INV). We now recall the definition of condition (INV), which is stated in terms of a general
dimension n and domain �.

Definition 2.1 [15, Definition 3.2] The map u : � → R
n satisfies condition (INV) provided

that for every a ∈ � there exists anL1-null set Na such that, for all R ∈ (0, dist (a, ∂�))\Na ,
u|S(a,R) is continuous,

(i) u(x) ∈ im T (u, B(a, R)) ∪ u (S(a, R)) for Ln-a.e. x ∈ B(a, R), and

3 One could also produce (2.3) without reference to either of these papers. For example, (2.2) holds whenever
u is continuous, satisfies Lusin’s N -property [i.e., u maps sets of (Lebesgue) measure zero to sets of (Lebesgue)
measure zero], and det ∇u belongs to L1(�). See, for example, [7, Theorem 5.25].
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A simple sufficient condition for quasiconvexity Page 5 of 25 42

(ii) u(x) ∈ R
n\im T (u, B(a, R)) for Ln-a.e. x ∈ �\B(a, R).

The topological image of B(a, R) under the mapping u, im T (u, B(a, R)), is defined
below.

Lemma 2.2 [15, Lemma 8.1] Let u ∈ W 1,q(�;Rn) with q > n−1. Suppose that det ∇u >

0 a.e. in � and that u∗, the precise representative4 of u, satisfies condition (INV). Then
Det ∇u ≥ 0 and hence Det ∇u is a Radon measure. Furthermore,

Det ∇u = det ∇u Ln + m (2.4)

where m is singular with respect to Lebesgue measure and for L1-a.e. R ∈ (0, dist (a, ∂�)),

(Det ∇u) (B(a, R)) = Ln (im T (u, B(a, R))) . (2.5)

Remark 2.3 Under the assumption that the perimeter of im T (u,�) is finite it can be shown
that the singular part of Det ∇u is a sum of Dirac masses. Thus the left-hand side of (2.6)
below is −1× (volume of cavities created by the deformation u). See [15, Theorem 8.4] for
more details.

Remark 2.4 Since m is singular with respect to Lebesgue measure, and in view of Det ∇u ≥
0, it is clear that m ≥ 0.

Reverting to the two dimensional case � ⊂ R
2, the assumption that u ∈ W 1,q(�) for q > 1

implies (by Sobolev embedding) that u|S(a,R) is continuous for L1-a.e. R ∈ (0, dist (a, ∂�)).
Hence, for such R, the topological image

im T (u, B(a, R)) = {
y ∈ R

2\u (S(a, R)) : deg (u, S(a, R), y) = 0
}

is well-defined. Following [14], we extend u by setting it equal to uλ on B(0, M)\�̄, where M
is chosen so that �̄ ⊂ B(0, M), and we assume that the extension satisfies condition (INV)
on B(0, M). It is then straightforward to check, using the definition of the distributional
Jacobian, its representation through [15, Lemma 8.1] and (2.5), that

− m(�̄) =
∫

�

(det ∇u − det ∇uλ) dx (2.6)

Finally, by applying (2.6) to inequality (2.1), we obtain

I (u) ≥ I (uλ) − h′(λ2)m(�̄). (2.7)

It is clear that when h′(λ2) ≤ 0 or m(�̄) = 0 we have I (u) ≥ I (uλ). Summarising the
above, we have the following:

Proposition 2.5 Suppose that W (A) = |A|q + h(det A), where h satisfies (H1)–(H3), and
where q > 1. Let B(0, M) contain �̄ and denote by ue the extension of u to B(0, M)\�
defined by

ue(x) :=
{
u(x) if x ∈ �,

uλ(x) if x ∈ B(0, M)\�.

Assume that ue satisfies the hypotheses of [15, Lemma 8.1] in the case that n = 2. Then if∫
�

det ∇u dx = ∫
�

det ∇uλ dx or if h′(λ2) ≤ 0, the inequality I (u) ≥ I (uλ) holds.

4 See [15, p.13] for a definition of u∗.
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42 Page 6 of 25 J. J. Bevan, C. Ida Zeppieri

The rest of this section handles the case h′(λ2) > 0 and m(�̄) > 0, where m is given
by (2.6), which is the situation not covered by Proposition 2.5. The following is a slightly
improved version of a lemma by Zhang which, although stated here for general n, will only
be needed in the case n = 2.

Lemma 2.6 (Adaptation of [20, Lemma 2.15]) For 1 < q < 2, M > 0, and A, B ∈ R
n×n

with 0 < |A| ≤ M ,

|A + B|q − |A|q − q|A|q−2A · B ≥
{
C1(M, q)|B|2 if |B| ≤ M,

C2(q)|B|q if |B| ≥ M,

The constants C1(M, q) and C2(q) are given by

C1(M, q) = 1

2(2M)2−q
, (2.8)

C2(q) = 1

2(22−q)
. (2.9)

Proof The only part which requires proof is the constant C2(q) since it is larger than the
original version C̃2(q) := 1

2(32−q )
given in [20, Lemma 2.14]. The constant C̃2(q) appears

in [20, Eq. (2.23)] as a prefactor in the estimate
∫ 1

0

(1 − s)|B|2
|A + sB|2−q

ds ≥ C̃2(q)|B|q

under the assumption that |B| ≥ M . Now, in terms of τ := |B|/M ,

(1 − s)|B|2
|A + sB|2−q

≥ (1 − s)|B|2
|M + s|B||2−q

= (1 − s)Mqτ 2

(1 + sτ)2−q

≥ (1 − s)τ 2−q |B|q
(1 + τ)2−q .

Since τ ≥ 1, the quantity τ 2−q

(1+τ)2−q is bounded below by 1/22−q . Upon integration, the lower
bound ∫ 1

0

(1 − s)|B|2
|A + sB|2−q

ds ≥ |B|q
2(22−q)

follows. ��
Let u ∈ Aλ. Applying Lemma 2.6 to A := λ1 and B := ∇u − λ1, we find that with

M := |A| = √
2λ,

|∇u|q ≥ |λ1|q + q|λ1|q−2(∇u − λ1) · λ1 + FM (∇u − λ1) (2.10)

where the function FM : R2×2 → R is defined by

FM (B) :=
{
C1(M, q)|B|2 if |B| ≤ M,

C2(q)|B|q if |B| ≥ M.

Now

|∇u − λ1| ≥ dist (∇u, λSO(2))
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A simple sufficient condition for quasiconvexity Page 7 of 25 42

and since, by polar factorization,

dist (∇u, λSO(2)) =
∣∣∣√∇uT∇u − λ1

∣∣∣ = | (λ1(∇u), λ2(∇u)) − (λ, λ)| ,
where 0 < λ1(∇u) ≤ λ2(∇u) are the singular values of ∇u, we have

|∇u − λ1| ≥ |
 − 
0| . (2.11)

Here, 
 := (λ1, λ2), where we leave out the dependence on ∇u for clarity, and 
0 := (λ, λ).
Next, define fM : R+ → R

+ by

fM (t) := min
{
C1(M, q)t2,C2(q)tq

}
, (2.12)

where C1(M, q) and C2(q) are as in (2.8) and (2.9), respectively.

Remark 2.7 We note that fM is continuous on R
+ and C1(M, q)t2 = C2(q)tq if and only if

t = M . Thus the growth of fM switches from quadratic on [0, M] to q-growth on [M,+∞).
We remark that the continuity is a consequence of the improved (i.e. increased) value for
C2(q) provided in Lemma 2.6. More importantly, a larger value forC2(q) makes our estimate
of the critical load more accurate: see (2.32), for example.

Then, by combining (2.11) and (2.12) with the definition of FM , we obtain

FM (∇u − λ1) ≥ fM (|
 − 
0|).
Therefore, by (2.10),

|∇u|q ≥ |λ1|q + q|λ1|q−2(∇u − λ1) · λ1 + f√2λ(|
 − 
0|).
Integrating this, applying the definition of the stored-energy function W , using∫

�

(∇u − λ1) dx = 0,

and recalling that det ∇u = λ1λ2, gives

I (u) ≥
∫

�

(|λ1|q + f√2λ (|
 − 
0|) + h(λ1λ2)
)
dx . (2.13)

Then in view of the convexity of h we get

I (u) − I (uλ) ≥
∫

�

f√2λ(|
 − 
0|) dx +
∫

�

(
h(λ1λ2) − h(λ2)

)
dx

≥
∫

�

f√2λ
(|
 − 
0|) dx + h′(λ2)

∫
�

(
λ1λ2 − λ2) dx .

As has already been observed, we need only consider h′(λ2) > 0, since Proposition 2.5
covers the case h′(λ2) ≤ 0.

Note that
f√2λ(|
 − 
0|) + h′(λ2)(λ1λ2 − λ2) = Gλ

1 (
) + Gλ
2 (
),

where
Gλ

1 (
) := f√2λ(|
 − 
0|) + h′(λ2)(λ1 − λ)(λ2 − λ) (2.14)

and
Gλ

2 (
) := λh′(λ2)(λ1 + λ2 − 2λ), (2.15)
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42 Page 8 of 25 J. J. Bevan, C. Ida Zeppieri

so that we have

I (u) − I (uλ) ≥
∫

�

Gλ
1 (
) dx +

∫
�

Gλ
2 (
) dx .

The rest of this section is devoted to finding conditions on λ which ensure that
∫

�

Gλ
i (
) dx ≥ 0 for i = 1, 2.

The following result, in which inequality (2.16) is part of [2, Lemma 5.3], allows us to deal
with the term involving Gλ

2 . We give a short elementary proof here to keep the paper self-
contained; we also give a refined version of the estimate (2.16) which provides an ‘excess
term’ [an estimate of the difference between the two sides of the inequality (2.16)]: see (2.17)
below.

Lemma 2.8 Let u ∈ W 1,1(�,R2) satisfy u = uλ on ∂� and suppose that det ∇u > 0 a.e.
in �. Then ∫

�

(
λ1 + λ2

)
dx ≥ 2λL2(�), (2.16)

where 0 < λ1 ≤ λ2 denote the singular values of ∇u. Moreover,∫
�

(
λ1 + λ2 − 2λ

)
dx ≥

∫
�

ψ(u, λ) dx, (2.17)

where

ψ(u, λ) := 2λ2(curl u)2

(
(curl u)2 + max

{
4λ2, (div u)2

}) 3
2 .

Proof We first give a direct proof of (2.16).
The singular value decomposition theorem (see e.g., [6, Theorem 13.3]) yields

∇u = RD(λ1, λ2)Q,

where R, Q ∈ O(2) and

D(λ1, λ2) :=
(

λ1 0
0 λ2

)
.

Hence

tr ∇u = tr (QRD(λ1, λ2)) .

Since QR ∈ O(2), it must be of the form

QR =
(

cos σ ± sin σ

sin σ ∓ cos σ

)
,

therefore

tr ∇u = cos σ(λ1 ∓ λ2).

It can now be checked that

tr ∇u ≤ λ1 + λ2.
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A simple sufficient condition for quasiconvexity Page 9 of 25 42

Then integrating the latter expression over � and using the fact that the weak derivative
satisfies ∫

�

tr ∇u dx =
∫

�

tr ∇uλ dx = 2λL2(�)

yields (2.16).
To prove (2.17), let ξ ∈ R

2×2, denote by λ1(ξ), λ2(ξ) the singular values of ξ and define
the function ϕ : R2×2 → [0,+∞) by

ϕ(ξ) := λ1(ξ) + λ2(ξ). (2.18)

Notice that
ϕ(ξ) =

√
|ξ |2 + 2 det ξ . (2.19)

Then by applying the standard identity

g(1) = g(0) + g′(0) +
∫ 1

0
(1 − s)g′′(s) ds

to the function g(s) := ϕ ((1 − s)λ1 + sξ) defined for s ∈ [0, 1], we obtain

ϕ(ξ) = ϕ(λ1) + tr (ξ − λ1)

+
∫ 1

0
(1 − s)

ϕ2(ω(s))ϕ2(ξ − λ1) − ((ω(s) + cof ω(s)) · (ξ − λ1))2

ϕ3(ω(s))
ds, (2.20)

where

ω(s) := (1 − s)λ1 + sξ for 0 ≤ s ≤ 1.

For later use we note that the term

X (ω(s), ξ − λ1) := ϕ2 (ω(s)) ϕ2(ξ − λ1) − ((ω(s) + cof ω(s)) · (ξ − λ1))2

ϕ3 (ω(s))

can be rewritten as

X (ω(s), ξ − λ1) = (atr (ω(s)) tr (ξ − λ1) − atr(ξ − λ1)tr (ω(s)))2

ϕ3 (ω(s))
. (2.21)

Here, atr(η) denotes the antitrace of any η ∈ R
2×2 and is defined by atr(η) := η12 − η21.

Note that, thanks to (2.21), X (·, ·) ≥ 0 for all ξ and s ∈ [0, 1], so that by letting ξ = ∇u in
(2.20) we obtain an alternative proof of (2.16).

Then (2.17) follows by calculating the terms in (2.21). Letting ξ = ∇u again, we have
ω(s) = λ1 + s(∇u − λ1), and

atr(∇u − λ1) = curl u

tr (∇u − λ1) = div u − 2λ

atr (ω(s)) = s curl u

tr (ω(s)) = s div u + (1 − s)2λ.

This gives

X (ω(s), ξ − λ1) = 4λ2(curl u)2

ϕ3 (λ1 + s(∇u − λ1))
. (2.22)

123



42 Page 10 of 25 J. J. Bevan, C. Ida Zeppieri

Now

ϕ2(η) = (atr(η))2 + (tr (η))2 ,

so we have

ϕ2 (λ1 + s(∇u − λ1)) = s2(curl u)2 + (s div u + 2(1 − s)λ)2 .

Since the function

p : s �→ (s div u + 2(1 − s)λ)2

is convex, its maximum on the interval [0, 1] must be max {p(0), p(1)}. Hence

ϕ2(λ1 + s(∇u − λ1)) ≤ (curl u)2 + max{4λ2, (div u)2}
uniformly in s. Therefore (2.22) gives

X (ω(s), ξ − λ1) ≥ 4λ2(curl u)2

(
(curl u)2 + max

{
4λ2, (div u)2

}) 3
2

.

Inserting this into (2.20), recalling that

λ1 + λ2 − 2λ = ϕ(∇u) − ϕ(λ1),

and carrying out what becomes a trivial integration yields (2.17). ��

We now return to the estimate of Gλ
2 . Indeed, since we are working under the assumption

λh′(λ2) > 0 for every λ > 0, applying Lemma 2.8 gives
∫

�

Gλ
2 (
) dx ≥ 0, (2.23)

as desired.
To deal with the term involving Gλ

1 we find an explicit condition on λ which ensures that
Gλ

1 (
) ≥ 0 holds pointwise for 
 ∈ R
++ where

R
++ := {

x ∈ R
2 : x1, x2 > 0

}
.

Lemma 2.9 The function

Gλ
1 (
) = f√2λ (|
 − 
0|) + h′(λ2)(λ1 − λ)(λ2 − λ)

is pointwise nonnegative on R
++ provided

C1

(√
2λ, q

)
≥ h′(λ2)/2, (2.24)

and
C2(q)

h′(λ2)λ2−q
≥ (q − 1)(q−1)/2q−q/2. (2.25)

Moreover, inequality (2.25) implies (2.24).
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Proof We divide the proof into two parts, the first of which is devoted to proving the suffi-
ciency of (2.24) and (2.25).

Part 1 To shorten notation set Y := h′(λ2). Let 
 − 
0 = (λ1 − λ, λ2 − λ) =
(ρ cos μ, ρ sin μ) and let C1 := C1(

√
2λ, q) and C2 := C2(q), as defined in (2.8) and

(2.9) respectively. Let G(ρ, μ) := Gλ
1 (
) and note that (using (2.12) with M = √

2λ)

G(ρ, μ) =
{
C1ρ

2 + Yρ2 sin μ cos μ if ρ ≤ √
2λ

C2ρ
q + Yρ2 sin μ cos μ if ρ ≥ √

2λ.
(2.26)

Firstly, if ρ ≤ √
2λ then G(ρ, μ) ≥ 0 if and only ifC1 +Y sin μ cos μ ≥ 0 for all μ. Whence

C1 − Y/2 ≥ 0, which is (2.24). We henceforth suppose that (2.24) holds.
Inequality (2.25) essentially prevents G(ρ, μ) from vanishing at any point in R

++ outside
the set B(
0,

√
2λ) ∩ R

++. By symmetry, we need only consider μ ∈ [−π/4, π/4], and
since G(ρ, μ) ≥ 0 if 0 ≤ μ ≤ π/4, we can restrict attention to −π/4 < μ ≤ 0. Moreover,
since G(ρ, 0) is obviously nonegative, we can also exclude μ = 0. Now, in view of (2.24),
the only way G(ρ, μ) can vanish is if ρ ≥ √

2λ. In the region ρ ≥ √
2λ, −π/4 < μ < 0

G(ρ, μ) = C2ρ
q − Y | sin μ cos μ|ρ2,

and since 1 < q < 2, it must be that G(ρ, μ) < 0 for sufficiently large ρ and each fixed μ.
Also, since G(ρ, μ) is continuous and since, by (2.24), G(

√
2λ,μ) ≥ 0, it follows that

ρ̄(μ) := inf
{
ρ ≥ √

2λ : C2ρ
q − Y | sin μ cos μ|ρ2 = 0

}

is well-defined. Thus ρ̄(μ) satisfies

C2ρ̄(μ)q − Y | sin μ cos μ|ρ̄(μ)2 = 0. (2.27)

Now, if the point (ρ̄(μ) cos μ + λ, ρ̄(μ) sin μ + λ) lies in the interior ofR++ then, by making
ρ slightly larger, we ensure G(ρ, μ) < 0. Since −π/4 < μ < 0, the inclusion

(ρ̄(μ) cos μ + λ, ρ̄(μ) sin μ + λ) ∈ R
++

is prevented when and only when
ρ̄(μ) ≥ ρ∗(μ), (2.28)

where ρ∗(μ) satisfies ρ∗(μ) sin μ + λ = 0 and −π/4 < μ < 0.
Using (2.27) and the definition of ρ∗, inequality (2.28) is equivalent to

C2

Yλ2−q
≥ cos μ| sin μ|q−1︸ ︷︷ ︸

=:e(μ)

, (2.29)

where −π/4 < μ < 0. It can be checked that

max
(−π/4,0)

e = (q − 1)(q−1)/2q−q/2, (2.30)

the maximum occurring at μ such that cos2 μ = 1/q . Inequality (2.25) now follows.

Part 2 We prove that (2.25) implies (2.24). First note that dividing both sides of (2.25) by
2(2−q)/2 gives

C1(
√

2λ, q)

Y
≥

(
(q − 1)q−1q−q

22−q

)1/2

︸ ︷︷ ︸
=:y(q)

. (2.31)
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Let γ (q) = 2 ln y(q) and calculate γ ′(q) = ln
(

2
(

1 − 1
q

))
. Now 1 < q < 2, so

2
(

1 − 1
q

)
∈ (0, 1), and hence γ ′(q) < 0 on (1, 2). It follows that y is a decreasing function

of q on (1, 2), and since y(q) → 1
2 as q → 2−, the right-hand side of (2.31) is bounded

below by 1
2 . Hence (2.24) holds. ��

We now draw the preceding discussions together in the following result, whose statement,
in contrast to that of Proposition 2.5, does not rely on the imposition of condition (INV).

Theorem 2.10 Let the stored energy function W : R2×2 → [0,+∞] be given by

W (A) := |A|q + h(det A),

where 1 < q < 2 and h : R → [0,+∞] satisfies (H1)–(H3). Let λ > 0 be such that

1

23−qh′(λ2)λ2−q
≥ (q − 1)(q−1)/2q−q/2. (2.32)

Then any u ∈ Aλ satisfies I (u) ≥ I (uλ).

2.1 Error estimates

In this section we are interested in understanding the properties of those u ∈ Aλ such that
I (u) − I (uλ) is small and positive. Hence we focus on the case h′(λ2) > 0 to which the
results of the previous section apply. Accordingly, we impose the hypotheses of Theorem
2.10 and strengthen inequality (2.32) to read

1

23−qh′(λ2)λ2−q
> (q − 1)(q−1)/2q−q/2. (2.33)

The main result of this subsection is the following.

Theorem 2.11 Assume that (2.33) holds. Then there is a constant c = c(�, λ, q) > 0 such
that for every u ∈ Aλ ∫

�

min
{|∇u − λ1|2, |∇u − λ1|q} dx ≤ c δ(u), (2.34)

where δ(u) := I (u) − I (uλ). Moreover,

λ h′(λ2)

∫
�

2λ2(curl u)2

(
(curl u)2 + max

{
4λ2, (div u)2

}) 3
2

dx ≤ δ(u). (2.35)

The proof of Theorem 2.11 is given in stages below. In view of∫
�

Gλ
1 (
) dx +

∫
�

Gλ
2 (
) dx ≤ δ(u), (2.36)

the idea is that if δ(u) is small then the same must be true of the two (necessarily non-
negative) terms in the left-hand side of (2.36). The first inequality, (2.34), follows from a
smallness assumption on

∫
�
Gλ

1 (
) dx : see Proposition 2.14 below, while inequality (2.35)
is a consequence of small

∫
�
Gλ

2 (
) dx and follows in a straightforward way from (2.17).
We remark that an inequality like (2.35) is not available in the three dimensional case, or

at least we could not derive it. The chief difficulty is the lack of an explicit expression for
λ1(ξ) + λ2(ξ) + λ3(ξ) for ξ ∈ R

3×3: cf. (2.18) and (2.19).
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We now turn to inequality (2.34). To this end we introduce the function g : [0,+∞) →
[0,+∞) defined by

g(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t2

2
if 0 ≤ t ≤ 1,

tq

q
+ 1

2
− 1

q
if t ≥ 1.

(2.37)

For later use we notice that g is convex.

Lemma 2.12 Let (2.33) hold. Then there is a constant c0 = c0(λ, q) > 0 such that

Gλ
1 (
) ≥ c0 g(|
 − 
0|) on R

++ (2.38)

where g is as in (2.37).

Proof It is clear from the last part of the proof of Lemma 2.9 that inequality (2.33) implies
that (2.24) holds with strict inequality. Thus

Gλ
1 (
) ≥ c|
 − 
0|2 if |
 − 
0| ≤ √

2λ (2.39)

for some constant c > 0.
Reusing the notation 
−
0 = ρ(cos μ, sin μ) andG(ρ, μ) := Gλ

1 (
), the case ρ ≥ √
2λ

can be handled as follows. Let ε > 0 and write

G(ρ, μ) = C2ρ
q − Y | sin μ cos μ|ρ2

= (C2 − ε)ρq − Y | sin μ cos μ|ρ2 + ερq ,

where Y := h′(λ2). By applying the reasoning in the proof of Lemma 2.9 to the function

G̃(ρ, μ) := (C2 − ε)ρq − Y | sin μ cos μ|ρ2,

we see that G̃(ρ, μ) ≥ 0 provided

C2 − ε

Yλ2−q
≥ (q − 1)(q−1)/2q−q/2. (2.40)

Inequality (2.33) clearly implies that C2 exceeds the right-hand side of (2.40) by a fixed
amount; thus, if ε > 0 is sufficiently small, inequality (2.40) holds. Hence

Gλ
1 (
) ≥ ε|
 − 
0|q if |
 − 
0| ≥ √

2λ. (2.41)

Inequalities (2.39) and (2.41) are easily combined to give (2.38). ��

We will see that inequality (2.34) is a consequence of the L2 + Lq rigidity estimate [5,
Theorem 1.1], or of [13, Proposition 2.3]. We recall here the following variant (see [1, Lemma
3.1]) which is suitable for our purposes.

Lemma 2.13 Let U ⊂ R
n be a bounded domain with Lipschitz boundary. Let λ > 0 and g

be as in (2.37). There exists a constant c = c(U, λ, q) > 0 with the following property: for
every v ∈ W 1,q(U ;Rn) there is a constant rotation R ∈ SO(n) satisfying

∫
U
g(|∇v − λR|) dx ≤ c

∫
U
g (dist (∇v, λSO(n))) dx .
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Proof Once we observe that, thanks to [8, Theorem 3.1] we can find c = c(U ) > 0 such
that for every w ∈ W 1,2(U ;Rn) there is a constant rotation R ∈ SO(n) satisfying

∫
U

|∇w − λR|2 dx ≤ c
∫
U

dist2 (∇w, λSO(n)) dx,

the proof then closely follows that of [1, Lemma 3.1]. ��
Proposition 2.14 There is a constant c = c(�, λ, q) > 0 such that

∫
�

min
{|∇u − λ1|2, |∇u − λ1|q} dx ≤ cδ(u). (2.42)

Proof Throughout this proof c denotes a generic strictly positive constant possibly depending
on �, λ, and q . By (2.23) and (2.36) we have

∫
�

Gλ
1 (
) dx ≤ δ(u).

Hence on recalling that

|
 − 
0| = dist (∇u, λSO(2)) ,

and by appealing to Lemma 2.12, we get

c0

∫
�

g (dist (∇u, λSO(2))) dx ≤ δ(u).

Then Lemma 2.13 provides us with c > 0 and R ∈ SO(2) such that
∫

�

g(|∇u − λR|) dx ≤ c δ(u). (2.43)

We claim that
|1 − R|2 ≤ c δ(u). (2.44)

By virtue of the convexity of g, combining Jensen’s inequality with (2.43) gives

g

(
1

L2(�)

∫
�

|∇u − λR| dx
)

≤ c δ(u). (2.45)

Set ũ := u/λ and z̃ := 1
L2(�)

∫
�
(ũ − Rx) dx . Then by Poincaré’s inequality together with

the continuity of the trace operator we obtain
∫

∂�

|ũ − Rx − z̃| dH1 ≤ c
∫

�

|∇ũ − R| dx,

and hence, since ũ = x on ∂�, we deduce that∫
∂�

|(1 − R)x − z̃| dH1 ≤ c
∫

�

|∇ũ − R| dx . (2.46)

Arguing as in the proof of [1, Lemma 3.3], we apply [1, Lemma 3.2] to deduce that there
exists a universal constant σ > 0 such that

|1 − R| ≤ σ min
z∈R2

∫
∂�

|(1 − R)x − z| dH1. (2.47)
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Combining (2.46) and (2.47) gives

|1 − R| ≤ c
∫

�

|∇ũ − R| dx

= c

λ

∫
�

|∇u − λR| dx,

and therefore

|1 − R|2 ≤ c

(
1

L2(�)

∫
�

|∇u − λR| dx
)2

. (2.48)

Then to prove (2.44) we need to distinguish two cases.

(i)
∫

�

|∇u − λR| dx ≤ L2(�). By definition g(t) = t2/2 for t ≤ 1, so that (2.45) and

(2.48) immediately yield

|1 − R|2 ≤ c g

(
1

L2(�)

∫
�

|∇u − λR| dx
)

≤ c δ(u).

(ii)
∫

�

|∇u − λR| dx > L2(�) .

When t > 1 we have g(t) > 1/2, then

|1 − R|2 ≤ 2(|1|2 + |R|2)
< c g

(
1

L2(�)

∫
�

|∇u − λR| dx
)

≤ c δ(u),

hence the claim is proved.
We now notice that the convexity of g together with its definition entails

g(s + t) ≤ c
(
g(s) + t2

)
for every s, t ≥ 0

and for some c > 0. Indeed we have

g(s + t) ≤ 2q g
( s + t

2

)

≤ 2q−1(g(s) + g(t)
)

≤ 2q−1
(
g(s) + t2

q

)
.

Then choosing R as in (2.43) and combining the latter with (2.44) implies∫
�

g(|∇u − λ1|) dx =
∫

�

g(|∇u − λR + λR − λ1|) dx

≤ c

(∫
�

g(|∇u − λR|) dx + λ2 |1 − R|2
)

≤ c δ(u). (2.49)

Finally, since we can find c > 0 such that

min{t2, tq} ≤ c g(t) for every t ≥ 0,
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we obtain ∫
�

min
{|∇u − λ1|2, |∇u − λ1|q} dx ≤ cδ(u),

which is the thesis. ��
Remark 2.15 Using (2.27) and the definition of g we obtain

∫
|∇u−λ1|≤1

|∇u − λ1|2 dx ≤ c
∫

�

g(|∇u − λ1|) dx ≤ c δ(u). (2.50)

Then recalling that q < 2, Hölder’s inequality combined with (2.50) yields

∫
|∇u−λ1|≤1

|∇u − λ1|q dx≤ L2(�)1− q
2

(∫
|∇u−λ1|≤1

|∇u − λ1|2 dx
) q

2 ≤ c δ(u)
q
2 .

(2.51)
On the other hand we clearly have

∫
|∇u−λ1|>1

|∇u − λ1|q dx ≤ c
∫

�

g(|∇u − λ1|) dx ≤ c δ(u). (2.52)

Therefore (2.51) and (2.52) together give
∫

�

|∇u − λ1|q dx ≤ c
(
δ(u)

q
2 + δ(u)

)
,

which on applying Poincaré’s inequality finally implies

‖u − uλ‖qW 1,q (�;R2)
≤ c

(
δ(u)

q
2 + δ(u)

)
. (2.53)

If λ satisfies (2.33) then from (2.53) we can conclude that uλ is the unique global minimiser
of I among all maps u in Aλ and, moreover, that uλ lies in a potential well.

3 The three dimensional case

In this section we seek conditions analogous to those obtained in the two dimensional case
ensuring that uλ is the unique global minimizer of an appropriately defined stored-energy
function. For simplicity we focus on the following W : R3×3 → [0,+∞] given by

W (A) := |A|q + γ |A|2 + Z(cof A) + h(det A), (3.1)

where 2 < q < 3, γ > 0 is a fixed constant, Z : R3×3 → [0,+∞) is convex and C1, and h
has properties (H1)–(H3).

Applying [14, Lemma A.1] to A �→ |A|q gives

|∇u|q ≥ |λ1|q + q|λ1|q−2λ1 · (∇u − λ1) + κ|∇u − λ1|q , (3.2)

where
22−q ≤ κ ≤ q21−q . (3.3)

Moreover, we clearly have

γ |∇u|2 ≥ γ |λ1|2 + 2γ λ1 · (∇u − λ1) + γ |∇u − λ1|2. (3.4)

123



A simple sufficient condition for quasiconvexity Page 17 of 25 42

Therefore, by gathering (3.2) and (3.4) and appealing to the convexity of Z and h, we obtain

W (∇u) ≥ W (∇uλ) + q|λ1|q−2λ1 · (∇u − λ1) + κ|∇u − λ1|q
+2γ λ1 · (∇u − λ1) + γ |∇u − λ1|2
+DAZ(cof λ1) · (cof ∇u − cof λ1)

+h′(λ3)(det ∇u − λ3), (3.5)

for any u ∈ Aλ, where Aλ is the class of admissible maps given by (1.4) with n = 3. Integrat-
ing (3.5) and using the facts that both ∇u and cof ∇u are null Lagrangians in W 1,q(�,R3)

for q ≥ 2, we obtain

I (u) − I (uλ) ≥
∫

�

(
κ|∇u − λ1|q + γ |∇u − λ1|2 + h′(λ3)(det ∇u − λ3)

)
dx (3.6)

By analogy with Proposition 2.5 we can deal with the case h′(λ3) ≤ 0 by imposing condition
(INV) on a suitably defined extension of u, as follows.

Proposition 3.1 Suppose that W : R3×3 → [0,+∞] is given by

W (A) := |A|q + γ |A|2 + Z(cof A) + h(det A)

where 2 < q < 3, γ > 0 is a fixed constant, Z : R3×3 → [0,+∞) is convex and C1, and
h has properties (H1)–(H3). Let B(0, M) contain �̄ and denote by ue the extension of u to
B(0, M)\� defined by

ue(x) :=
{
u(x) if x ∈ �,

uλ(x) if x ∈ B(0, M)\�.

Assume that ue satisfies the hypotheses of [15, Lemma 8.1] in the case that n = 3. Then if∫
�

det ∇u dx = ∫
�

det ∇uλ dx or if h′(λ3) ≤ 0, the inequality I (u) ≥ I (uλ) holds.

Proof By (3.6) it is enough to show that h′(λ3)
∫
�
(det ∇u − λ3) dx ≥ 0. The argument

which precedes Proposition 2.5 implies that the integral term is not greater than zero, which
when coupled with the assumption h′(λ3) ≤ 0 easily gives the desired inequality. ��

Let 0 < λ1 ≤ λ2 ≤ λ3 be the singular values of ∇u and define the vectors 
 :=
(λ1, λ2, λ3) and 
0 := (λ, λ, λ). Recall that

|∇u − λ1| ≥ |
 − 
0|;
then (3.6) implies

I (u) − I (uλ) ≥
∫

�

(
κ|
 − 
0|q + γ |
 − 
0|2 + h′(λ3)(λ1λ2λ3 − λ3)

)
dx (3.7)

The next three results are devoted to the case h′(λ3) > 0.

Lemma 3.2 Let W be as in (3.1) and let u ∈ Aλ. Then

I (u) − I (uλ) ≥
∫

�

(Fλ
1 (
) + Fλ

2 (
)
)
dx, (3.8)

where

Fλ
1 (
) := κ|
 − 
0|q + h′(λ3)(λ1 − λ)(λ2 − λ)(λ3 − λ)
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and

Fλ
2 (
) := γ |
 − 
0|2 + λh′(λ3)

∑
i< j

(λi − λ)(λ j − λ).

Proof For brevity we write λ̂i := λi − λ for i = 1, 2, 3. It follows that

det ∇u − λ3 = λ̂1λ̂2λ̂3 + λ
∑
i< j

λ̂i λ̂ j + λ2
3∑

i=1

λ̂i . (3.9)

Inserting this into (3.7) gives

I (u) − I (uλ) ≥
∫

�

(Fλ
1 (
) + Fλ

2 (
)
)
dx + λ2h′(λ3)

∫
�

3∑
i=1

λ̂i dx .

Since the last integral may be written as

∫
�

3∑
i=1

λ̂i dx =
∫

�

(λ1 + λ2 + λ3 − 3λ) dx,

we can apply [2, Lemma 5.3] again to deduce that∫
�

(λ1 + λ2 + λ3) dx ≥ 3λL3(�).

Hence since h′(λ3) > 0, (3.8) holds. ��
By analogy with the strategy leading to Lemma 2.9, we now find conditions on λ in terms

of κ , γ and q ensuring that{
Fλ

1 (
) ≥ 0

Fλ
2 (
) ≥ 0

for every 
 ∈ R
+++,

where R
+++ := {x ∈ R

3 : xi > 0 for i = 1, 2, 3}.
Lemma 3.3 The functionsFλ

1 (
) andFλ
2 (
) are pointwise nonnegative onR+++ provided

κ

h′(λ3)λ3−q
≥ (q − 2)(q−2)/2q−q/2 (3.10)

and
γ

λh′(λ3)
≥ 1

2
. (3.11)

Proof In the following we let Y := h′(λ3) > 0 for brevity. We write

(λ̂1, λ̂2, λ̂3) = ρ(cos φ sin θ, sin φ sin θ, cos θ),

where ρ ≥ 0 and 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π . In terms of ρ, θ and φ we have Fλ
1 (
) =

F1(ρ, θ, φ), where

F1(ρ, θ, φ) := κρq + Yρ3

4
sin 2φ sin 2θ sin θ. (3.12)

Since the singular values of ∇u are ordered as λ1 ≤ λ2 ≤ λ3 the same applies to the λ̂i
for i = 1, 2, 3; hence in particular λ̂1 ≤ λ̂2. The latter implies φ ∈ [π/4, 5π/4]. Now if
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sin 2φ cos θ ≥ 0 then the stated result would be immediate from (3.12). Therefore we assume
sin 2φ cos θ < 0 in what follows, which in view of the restriction π/4 ≤ φ ≤ 5π/4 implies
either that φ ∈ [π/2, π] when cos θ > 0 or that φ ∈ [π/4, π/2]∪[π, 5π/4] when cos θ < 0.
For later use we will let S be the set of (θ, φ) satisfying these restrictions.

Let

ρ̄(θ, φ) := inf {ρ > 0 : F1(ρ, θ, φ) = 0}
and note that ρ̄ is well-defined because, in view of

F1(ρ, θ, φ) = ρq
(

κ − Yρ3−q

4
|sin 2φ sin 2θ sin θ |

)
,

where q < 3, there is always at least one positive solution to the equation F1(ρ, θ, φ) = 0.
Moreover, it is clear that ρ̄ satisfies

4κ

Y
ρ̄q−3(θ, φ) = | sin 2φ sin 2θ sin θ |. (3.13)

Next, let us call ρ∗(θ, φ) ≥ 0 an exit radius if


0 + ρ∗(cos θ sin φ, sin θ sin φ, cos θ) ∈ ∂R+++.

Thus ρ∗ = ρi
∗ > 0 for at least one i , where

λ + ρ1
∗ sin θ cos φ = 0,

λ + ρ2
∗ sin θ sin φ = 0,

λ + ρ3
∗ cos θ = 0.

In order that Fλ
1 (
) ≥ 0 for 
 ∈ R

+++ it should now be clear that ρ̄ must exceed the largest
exit radius, i.e., ρ̄(θ, φ) ≥ max{ρ1

∗, ρ2
∗, ρ3

∗} for each pair (θ, φ) in S. Rearranging this,
we obtain the following sufficient condition:

4κ

λ3−qY
≥ max{s1, s2, s3}, (3.14)

where

s1 := sup
(θ,φ)∈S1

| sin 2φ sin 2θ sin θ |
| cos φ sin θ |3−q

,

s2 := sup
(θ,φ)∈S2

| sin 2φ sin 2θ sin θ |
| sin φ sin θ |3−q

,

s3 := sup
(θ,φ)∈S3

| sin 2φ sin 2θ sin θ |
| cos θ |3−q

.

Here, Si = {(θ, φ) ∈ S : ρi
∗ > 0} for i = 1, 2, 3.

To find s1: Let

m1(θ, φ) := 4| sin φ|| cos φ|q−2| cos θ || sin θ |q−1,

so that s1 = maxS1 m1. Note that ρ1
∗ = −λ(cos φ sin θ)−1 > 0 implies π/2 < φ ≤ π ,

which when combined with the restriction (θ, φ) ∈ S implies φ ∈ [π/2, π] when cos θ > 0
or φ ∈ [π, 5π/4] when cos θ < 0. Thus we need only consider these values of φ when
maximizing m1(θ, φ) over S1. Define f (φ) := | sin φ|| cos φ|q−2 and note that

max
S1

m1 = 4 max
0≤θ≤π

|e(θ)| max[π/2,5π/4] f (φ),

123



42 Page 20 of 25 J. J. Bevan, C. Ida Zeppieri

where the function e is defined in (2.29) and its maximum is given by (2.30). Thus

max
S1

m1 = 4(q − 1)(q−1)/2q−q/2 max[π/2,5π/4] f (φ).

A short calculation shows that f is maximized whenφ satisfies cos φ = − ((q− 2)/(q− 1))
1
2 ,

which is only possible when φ belongs to [π/2, 3π/4]. (It is easy to check that f is monotonic
on [π, 5π/4] and that its maximum in this range is smaller than the maximum over the range
[π/2, π]). Hence

max[π/2,5π/4] f (φ) = (q − 1)
1
2

(
q − 2

q − 1

) q−2
2

, (3.15)

which gives

max
S1

m1 = 4(q − 2)(q−2)/2q−q/2.

To find s2: We claim that s2 = s1. Let

m2(θ, φ) := 4| sin φ|q−2| cos φ|| sin θ |q−1| cos θ |
and note that s2 = maxS2 m2. By definition, (θ, φ) ∈ S2 are such that ρ∗

2 > 0, so sin φ < 0,
from which (given that (θ, φ) ∈ S) it follows that π < φ ≤ 5π/4. We have m2(θ, φ) =
|e(θ)| f̃ (φ), where the function e was defined in (2.29) and

f̃ (φ) = | sin φ|q−2| cos φ|.
It is straightforward to check that the maximum of the function f̃ occurs at φ such that

sin φ = − ((q − 2)/(q − 1))
1
2 and cos φ = −(q − 1)

1
2 , and that consequently max f̃ =

max f , where f is as defined in the previous paragraph. It follows that s2 = s1.
To find s3: We claim s3 = s1. Let

m3(θ, φ) := 2| sin 2φ|| cos θ |q−2 sin2 θ

so that s3 = maxS3 m3. Define r(θ) = | cos θ |q−2 sin2 θ . Note that r is symmetric about
θ = π/2, so it suffices to consider just its restriction to [0, π/2]. A short calculation shows
that the maximum of r occurs at θ satisfying sin2 θ = 2/q . Thus

max
S3

m3 = 4(q − 2)(q−2)/2q−q/2.

Condition (3.10) follows by inserting s1 into (3.14).
Finally, (3.11) follows by writing Fλ

2 in terms of the coordinates 
 = 
0 + ρ(l1, l2, l3)
where l21 + l22 + l23 = 1, giving

Fλ
2 (
) = ρ2 (

γ + λh′(λ3)
(
l1l2 + l1l3 + l2l3

))
.

The minimum of l1l2 + l1l3 + l2l3 among unit vectors (l1, l2, l3) is −1/2. Hence Fλ
2 is

pointwise nonnegative provided (3.11) holds. ��
Remark 3.4 It is worth pointing out that the quadratic term in the definition of W cannot be
omitted if our method of proof is to work. Nor could this be remedied by considering any
adjusted form of F1, F2, such as

F̂1(ρ, θ, φ) := ρqμκ − Yρ3

4
| sin 2φ sin 2θ sin θ |
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and

F̂2(ρ, θ, φ) := ρq(1 − μ)κ + λρ2h′(λ3)
(
l1l2 + l1l3 + l2l3

)
,

for some μ ∈ (0, 1). Indeed, since q > 2, the first term in F̂2 would be dominated by the
term involving l1l2 + l1l3 + l2l3 for sufficiently small ρ, and this would prevent the pointwise
inequality F̂2 ≥ 0.

The foregoing results imply a three dimensional analogue of Theorem 2.10:

Theorem 3.5 Let the stored energy function W : R3×3 → [0,+∞] be given by

W (A) := |A|q + γ |A|2 + Z(cof A) + h(det A),

where 2 < q < 3, Z : R3×3 → [0,+∞) is convex and C1, and h : R → [0,+∞] satisfies
(H1)–(H3). Let λ > 0 be such that

κ

h′(λ3)λ3−q
≥ (q − 2)(q−2)/2q−q/2, (3.16)

where κ is as per (3.3) and
γ

λh′(λ3)
≥ 1

2
. (3.17)

Then any u ∈ Aλ satisfies I (u) ≥ I (uλ).

Let us briefly compare the result of Theorem 3.5 with [14, Theorem 4.1]. The latter
asserts that under suitable smoothness and convexity assumptions on h, a linear deformation
u(x) = Lx , u : � → R

3, is a global minimizer of I provided

h′(det L)|L|3−q ≤ c1

α
.

Here, α and c1 are constants which arise in their careful analysis (see [14, Section 3, Remark
2]). Inequalities (3.16) and (3.17) say, in the particular case L = λ1, that the affine map uλ

is a global minimizer of I provided

h′(det L)|L|3−q ≤ min
{
3(3−q)/2(q − 2)(2−q)/2qq/2κ, 2(3(3−q)/2) λ2−qγ

}
.

Thus our result mirrors that of [14] and it produces constants which are explicit up to the
inequality (3.3) obeyed by κ . In fact,5 κ varies very nearly linearly as a function of q on the
interval [2, 3], the approximation κ(q) ∼ 3 − q + (2 − √

2)(q − 2) being accurate to within
0.025 for q in (2, 3) and exact at the endpoints.

3.1 Error estimates

In the three dimensional case error estimates follow an analogous pattern to those given in
Sect. 2.1, as we now show. Let λ > 0 be such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ

h′(λ3)λ3−q
> (q − 2)(q−2)/2q−q/2,

γ

λh′(λ3)
≥ 1

2
.

(3.18)

5 This observation is due to Dr. J. Deane, to whom the authors express their gratitude.
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Theorem 3.6 Assume that (3.18) holds. Then there is a constant c = c(�, λ, q) > 0 such
that for every u ∈ Aλ ∫

�

|∇u − λ1|q dx ≤ c δ(u), (3.19)

where δ(u) := I (u) − I (uλ).

Proof Throughout this proof c denotes a generic strictly positive constant possibly depending
on �, λ, and q .

The second inequality in (3.18) ensures that∫
�

Fλ
1 (
) dx ≤ δ(u) for every u ∈ Aλ, (3.20)

while the first (strict) inequality in (3.18) yields

Fλ
1 (
) ≥ c|
 − 
0|q onR

+++, (3.21)

for some c > 0. To prove (3.21) we make use of the same notation as in the proof of Lemma
3.3. Let ε > 0 and observe that

Fλ
1 (
) = F1(ρ, θ, φ) = κρq − Yρ3

4 | sin 2φ sin 2θ sin θ |
= (κ − ε)ρq − Yρ3

4 | sin 2φ sin 2θ sin θ | + ερq .

By applying the reasoning in the proof of Lemma 3.3 to the function

F̃1(ρ, θ, φ) := (κ − ε)ρq − Yρ3

4
| sin 2φ sin 2θ sin θ |,

we see that F̃1 ≥ 0 provided

κ − ε

λq−3Y
≥ (q − 2)(q−2)/2q−q/2. (3.22)

Since Y := h′(λ3), by virtue of the first inequality in (3.18), up to choosing ε > 0 sufficiently
small, (3.22) is clearly fulfilled.

Gathering (3.20), (3.21) and recalling that

|
 − 
0| = dist (∇u, λ SO(3)),

we thus obtain ∫
�

dist q (∇u, λ SO(3)) dx ≤ cδ(u) for every u ∈ Aλ. (3.23)

Then invoking the rigidity estimate [8, Theorem 3.1] we find c = c(�) > 0 such that for
every u ∈ Aλ there is a constant rotation R ∈ SO(3) satisfying∫

�

|∇u − λR|q dx ≤ cδ(u) for every u ∈ Aλ. (3.24)

We now claim that
|1 − R|q ≤ c δ(u).

Combining Jensen’s inequality with (3.24) gives
(∫

�

|∇u − λR| dx
)q

≤ c δ(u). (3.25)

123



A simple sufficient condition for quasiconvexity Page 23 of 25 42

Set ũ := u/λ and z̃ := 1
L3(�)

∫
�
(ũ − Rx) dx . Then by Poincaré’s inequality together with

the continuity of the trace operator we obtain∫
∂�

|ũ − Rx − z̃| dH2 ≤ c
∫

�

|∇ũ − R| dx,

and hence, since ũ = x on ∂�, we deduce∫
∂�

|(1 − R)x − z̃| dH2 ≤ c
∫

�

|∇ũ − R| dx . (3.26)

Arguing as in the proof of [1, Lemma 3.3], we apply [1, Lemma 3.2] to deduce that there
exists a universal constant σ > 0 such that

|1 − R| ≤ σ min
z∈R3

∫
∂�

|(1 − R)x − z| dH2. (3.27)

Combining (3.26) and (3.27) gives

|1 − R| ≤ c
∫

�

|∇ũ − R| dx

= c

λ

∫
�

|∇u − λR| dx,

and therefore by (3.24) we achieve

|1 − R|q ≤ c

(∫
�

|∇u − λR| dx
)q

≤ c δ(u), (3.28)

as claimed.
Finally, choosing R as in (3.24) and combining the latter with (3.28) implies∫

�

|∇u − λ1|q dx =
∫

�

|∇u − λR + λR − λ1|q dx

≤ c

(∫
�

|∇u − λR|q dx + λq |1 − R|q
)

≤ c δ(u),

which is the thesis. ��
Remark 3.7 If λ satisfies (3.18), from (3.19) we can conclude that also in this case uλ is the
unique global minimiser of I among all maps u in Aλ and moreover that uλ lies in a potential
well.

We end this section by remarking that condition (3.17) can be removed from the statement
of Theorem 3.5 if a certain conjecture holds, namely that the function

A �→ P(A) :=
∑
i< j

λi (A)λ j (A) − λ

3∑
i=1

λi (A)

is quasiconvex at λ1. [For i = 1, 2, 3, λi (A) denote, as usual, the singular values of A ∈
R

3×3]. Standard results (see, e.g., [6, Theorem 5.39 (ii)]) imply that

A �→
∑
i< j

λi (A)λ j (A)
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is polyconvex and hence quasiconvex, but it remains to be seen whether subtracting the term∑3
i=1 λi (A) destroys the quasiconvexity at λ1. We conjecture that it does not.
To see why the quasiconvexity of P at λ1 might matter, note that from (3.9) we can write

det ∇u − λ3 = λ̂1λ̂2λ̂3 + λ
∑
i< j

λ̂i λ̂ j + λ2
3∑

i=1

λ̂i .

Recalling that λ̂i := λi − λ for i = 1, 2, 3, where each λi is as before, the quadratic and
linear terms in the last line can be expanded and recast as

λ
∑
i< j

λ̂i λ̂ j + λ2
3∑

i=1

λ̂i = λ
∑
i< j

λiλ j − λ2
3∑

i=1

λi ,

whose right-hand side we recognise as λP(∇u). In summary, we have shown that

det ∇u − λ3 = λ̂1λ̂2λ̂3 + λh′(λ3)P(∇u).

Inserting this into (3.6) gives (on dropping the term with prefactor γ , since it will no longer
be needed)

I (u) − I (uλ) ≥
∫

�

(
κ|∇u − λ1|q + h′(λ3)λ̂1λ̂2λ̂3

)
dx + λh′(λ3)

∫
�

P(∇u) dx

=
∫

�

Fλ
1 (
) dx + λh′(λ3)

∫
�

P(∇u) dx .

If P were quasiconvex at λ1 then the second integral would by definition satisfy∫
�

P(∇u) dx ≥
∫

�

P(λ1) dx

for any Lipschitz u which agrees with uλ on the boundary of �. This, when coupled with a
straightforward approximation argument based on the estimate6

|P(A)| ≤ |A|2 + 3λ|A|,
further implies ∫

�

P(∇u) dx ≥
∫

�

P(λ1) dx

for any u in W 1,q(�) with q ≥ 2. Finally, a short calculation shows that P(λ1) = 0, so that
the right-hand side of the last inequality vanishes. Thus the only condition needed in order
to conclude that I (u) ≥ I (uλ) would be (3.16), which ensures the positivity of the integral
involving Fλ

1 .
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6 This estimate follows from the fact that A �→ λi (A) obeys λi (A) ≤ |A|, which follows easily from the
well-known fact that

∑3
i=1 λi

2(A) = |A|2.
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