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Abstract We consider the interfacial dynamics of a thin, ferrofluid film flowing down an inclined substrate, under
the action of a magnetic field, bounded above by an inviscid gas. The fluid is assumed to be weakly conducting, and
its dynamics are governed by a coupled system of the steadyMaxwell, Navier–Stokes, and continuity equations. The
magnetization of the film is a function of the magnetic field, and is prescribed by a Langevin function. We make use
of a long-wave reduction in order to solve for the dynamics of the pressure, velocity, and magnetic fields inside the
film. The potential in the gas phase is solved by means of Fourier Transforms. Imposition of appropriate interfacial
conditions allows for the construction of an evolution equation for the interfacial shape, via use of the kinematic
condition, and the magnetic field. We study the three-dimensional evolution of the film to spanwise perturbations by
solving the nonlinear equations numerically. The constant-volume configuration is considered, which corresponds
to a slender drop flowing down an incline. A parametric study is then performed to understand the effect of the
magnetic field on the stability and structure of the interface.

Keywords Fingering · Interface · Interfacial flows · Long-wave approximation · Lubrication theory · Magnetic
fields · Numerical simulations · Stability · Thin films

1 Introduction

Thin film flows are of central importance to numerous industrial, biomedical, and daily-life applications
[1,2]. These include coating flow technology, surfactant replacement therapy, chemical reaction engineering,
heat and mass transfers, and process-intensification applications. The flows can be driven by various sur-
face and body forces such as gravitational, Marangoni (solutal and thermocapillary-driven), centrifugal, inter-
molecular, as well as electromagnetic ones. We focus in this paper on the dynamics of ferrofluids, which
are colloidal-based fluids comprising nanosized magnetic particles, stabilzed by surfactants in a viscous liq-
uid. The body forces in ferrofluids arise due to polarization from the presence of a magnetized material in
a magnetic field [3]. Thus, these fluids can be manipulated via an externally imposed magnetic field [4–
6], with applications in rotary-shaft seals [3], pharmaceuticals [7], self-assembly [8], and biomedical settings
[9,10].
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Free surface flows involving ferrofluids have received some attention in the literature, starting with the lin-
ear stability analysis of Cowley and Rosensweig [11] who demonstrated the presence of the so-called nor-
mal field instability (NFI). This corresponds to the transition of a magnetic film of initially uniform thickness
into an array of hexagonal, crest-like structures in the presence of a magnetic field oriented perpendicularly to
the film. The NFI, which occurs beyond a critical value of the magnetic induction, has since been studied by
Zelazo and Melcher [12] who showed that normal and tangential magnetic fields are destabilizing and stabiliz-
ing, respectively. More recently, Müller [13] showed that viscosity can delay the onset of NFI, and Gollwitzer
et al. [14] found good agreement with the work of Cowley and Rosensweig [11] through a Langevin function
for the relationship between magnetization and the magnetic field; a similar function will be used in the present
paper.

For thin film flows, Joo [15] used the long-wave approximation to derive a nonlinear evolution equation for the
ferrofluid film accounting for weak magnetic effects. Moulton and Pelesko [16] used a combination of lubrication
theory and experiments to study ferrofluid film drainage. In thesemodels, magnetic effects are accounted for through
the inclusion of Maxwell’s stresses at the interface and in the bulk. The relation between the magnetic field and
the magnetization in the case of ferrofluids is either linear [12] or, for sufficiently large magnetic fields, nonlinear
[6]; in the former case, it is possible to rationalise ferrofluid flows by analogy with their electrified counterparts
[17–21].

The instabilities exhibited by flows involving thin films and slender drops have been well studied [1,2]. In
situations where the film, or drop, flow down an incline, a front develops at the film/drop leading edge, which
is unstable to spanwise perturbations, under certain conditions. Investigations of the front dynamics tend to fall
into either the ‘constant-flux’ [22] or ‘constant-volume’ [23] cases. For the case of a constant-volume of fluid
released on an inclined plane, a capillary ridge forms behind a contact line, and eventually becomes unstable
to spanwise perturbations. Over time, finger-like structures form, and it was first shown by Huppert [24] that
the shape of the patterns can be determined by the contact line dynamics. Also, the presence of the contact line
creates a paradox when the no-slip boundary condition is used, leading to multivalued velocity fields [25,26].
To overcome this issue, it is common to apply a slip condition, or include a precursor film ahead of the contact
line.

The presence of a ferrofluid in the fingering instability problem will lead to a new effect that has not
yet been explored. Due to the magnetic particles that are dispersed within the fluid, a Maxwell pressure
is generated following the application of a magnetic field. It is possible to examine the effect of a mag-
netic field on the fingering instability of a thin film or slender drop using the long-wave approximation
[1,2] to couple the interfacial dynamics to the Maxwell stresses. Using this approach, the case of a highly
conducting ferrofluid with a nonlinear magnetic susceptibility was investigated by Conroy and Matar [6]
who found that the magnetic field has a destabilizing effect and led to a complex surface structure that
increased in amplitude with increasing magnetic pressure; this work, however, was restricted to two-dimensional
flows.

In this paper, we extend the model developed by Conroy and Matar [6], for the long-wave evolution of a
ferrofluid film, to three dimensions. We solve the resultant equations numerically using pseudo-spectral methods,
and investigate the spanwise instability of a falling drop down an inclined plane; the magnetic effects enter through
a Maxwell pressure. We find that increasing the Maxwell pressure causes the front velocity and the amplitude of
the ridge formed at the advancing contact line to increase. We also find magnetic effects to be destablizing leading
to finger-formation, with their growth rate increasing with the Maxwell pressure. In addition, the fingers develop
spike-like structures that continue to advance downstream from the initial point of deposition. The amplitude of
these structures was also found to increase with magnetic field strength.

The rest of the paper is organized as follows. In Sect. 2, we formulate the three-dimensional model for a thin
ferrofluid film in a magnetic field, and use long-wave theory to derive a single equation for the interface. In Sect. 3,
we provide a discussion of the numerical solutions of this equation, focusing on the stability characteristics of the
interface. Finally, in Sect. 4, we provide concluding remarks.
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2 Formulation

We consider the dynamics of a ferrofluid film with magnetization M on a solid, rigid, and impermeable plane,
inclined at an angle θ to the horizontal. We use a rectangular coordinate system (x, y, z) to model the film flow
in which the wall is located at z = −zw. The interface, which has a constant surface tension γ , is defined by
z = S(x, y, t), and separates the film from the surrounding gas. Far away from the film, a magnetic field is applied
in a direction normal to the inclined plane. The substrate beneath the film is assumed to be maintained at a constant
magnetic field Hw. Here, we consider the constant-volume configuration, corresponding to a drop placed on a
substrate, with a thin precursor film used to relieve the stress singularity at the moving contact lines.

2.1 Governing equations

The governing equations describing ferrofluid films were presented previously in the work of Conroy and Matar
[6]; thus, we only provide the dimensionless form, suitably extended to three dimensions. We scale the vertical
dimension with the initial film height, zw, as (z, S) = zw(ž, Š), the horizontal dimensions as (x, y) = L(x̌, y̌),
the fluid velocity as (u, v, w) = V (ǔ, v̌, δw̌), the pressure as p = p̌μV L/z2w, and time as t = ť L/V ; here,
L is a characteristic lateral extent, V is a scale for the velocity to be defined later, μ is the fluid viscosity, and
δ ≡ zw/L � 1 is a small parameter, which will be used as the basis for the asymptotic reduction to be carried out
below. The magnetic film in each layer is scaled as Hi = H∞Ȟi , the magnetic potential as φi = H∞zwφ̌i , and
the magnetization as Mi = H∞M̌i , where i = 1 and 2 for the film and gas, respectively, and H∞ is the incident
magnetic field. Henceforth, we drop the check decoration for the dimensionless quantities.

In the film (contained in a domain defined by −1 ≤ z ≤ S) and surrounding gas (z ≤ S), the magnetic field can
be defined in terms of the potential as Hi = −(δφi x , δφiy, φi z), where the magnetic potential, φi , is determined
from
(
(1 + βF)φ1z

)
z + δ2

(
(1 + βF)φ1x

)
x + δ2

(
(1 + βF)φ1y

)
y

= 0, −1 ≤ z ≤ S, (1)

φ2zz + δ2
(
φ2xx + φ2yy

) = 0, z ≥ S, (2)

in the film and surrounding gas, respectively. The parameter βF is related to the dimensionless magnetization
defined from the relationship

M1 = β

(
coth(ξ ′H1) − 1

ξ ′H1

)
H1

H1
= βF(H1)H1, (3)

where β = Ms/H∞, ξ ′ = ξH∞ = 3χ0H∞/Ms, χ0 is the initial susceptibility, Ms is the saturation magnetization,
Hi = (φ2

i z + δ2φ2
i x + δ2φ2

iy)
1/2, Mi = βF(φ2

i z + δ2φ2
i x + δ2φ2

iy)
1/2.

For the free surface, z = S(x, y), we define the normal and tangential vectors

n = (−δSx ,−δSy, 1)√
1 + δ2S2x + δ2S2y

, tx = (1, 0, δSx )√
1 + δ2S2x

, ty = (0, 1, δSy)√
1 + δ2S2y

, (4)

as well as the normal and tangential jump conditions from Eqs. (1) and (2) in dimensionless form:

(1 + βF)
(
φ1z − δ2Sxφ1x − δ2Syφ1y

)
=

(
φ2z − δ2Syφ2y − δ2Sxφ2x

)
, (5)

Sxφ1z + φ1x = Sxφ2z + φ2x , (6)

Syφ1z + φ1y = Syφ2z + φ2y . (7)

At the wall, z = −1, we fix the magnetic field as was done by [27], which is different from the model of [6]. The
appropriate condition in this case for a flat surface is
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(1 + βF)φ1z = Hw = δ H̄w, (8)

where we have set the substrate magnetic field to a small value so that it appears in the leading-order terms to be
discussed in the next section. Far from the film, the magnetic field is H2 → H∞ as z → +∞.

The dimensionless momentum and continuity equations are

Re δ
(
ut + wuz + uux + vuy

) = −px + δQHΩx + ∇2u + G, (9)

Re δ
(
vt + wvz + uvx + vvy

) = −py + δQHΩy + ∇2v, (10)

Re δ3
(
wt + wwz + uwx + vwy

) = −pz + δQHΩz + δ2∇2w − δG cot(θ), (11)

wz + ux + vy = 0, (12)

where ∇2 = ∂2z + δ2(∂2x + ∂2y ), and the dimensionless Maxwell pressure reads

Ω = − β

ξ ′ ln
(

Hξ ′

sinh(Hξ ′)

)
. (13)

Here, the dimensionless groups appearing in the momentum equation are defined as

Re = ρV zw
μ

, QH = μ0H2∞zw
μV

, G = ρgz2w sin θ

μV
, (14)

and represent the Reynolds number wherein ρ is the fluid density, a magnetic parameter in which μ0 (not to be
confused with the viscosity) is the magnetic permeability, and a gravitational parameter, respectively.

At the interface, the normal and tangential stress balances are
∥
∥∥n · T f · t

∥
∥∥ = 0, (15)

∥
∥∥n · T f · n

∥
∥∥ = −QH δ

1

2
(M · n)2 + δ3Ca−1K, (16)

where Ca = μV/γ is the capillary number, γ is the surface tension, and K is the curvature of the interface:

K = − (1 + δ2S2y)Sxx − 2δ2Sx Sx Sxy + (1 + δ2S2x )Syy

(1 + δ2S2x + δ2S2y)
3/2 , (17)

and the fluid stress is

T f = −pI + 1

2
δ

μi

μw

(
(∇u) + (∇u)T

)
. (18)

Finally, the dimensionless kinematic condition is

St + uSx + vSy = w, (19)

and, at the substrate surface, z = −1, u = v = w = 0 corresponding to the no-slip and no-penetration conditions.

2.2 Long-wave approximation

We seek a solution to the magnetic potential for a large effective magnetic permeability of the ferrofluid. In this
way, the film, as viewed from the outer field, resembles a magnetized sheet. With this assumption, we take the
order of magnitude of the dimensionless groups as β = O(1) and ξ ′ = O(1) − O(10) as discussed in [6]. The
surrounding gas region is not slender so we re-scale as z = z̃δ−1 [19]. We now set the velocity scale to V = δ3γ /μ

so that the capillary number in Eq. (16) is Ca = μV/γ = δ3, and the capillary pressure term in this equation is
of order unity. We also set Q̄H = δ2QH so the Maxwell pressure is of the same order as the capillary pressure. In
addition, we take ξ ′ = ξ̄ /δ, F = F̄δ−1, and H∞ = 1+ δH1(x). Therefore, the magnetization term is expanded as
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(1+βF) = δ−1(δ +β F̄) and Eqs. (1) and (2) for the magnetic potential in the ferrofluid film and gas, respectively,
become
(
(δ + β F̄)φ1z

)
z + δ2

(
(δ + β F̄)φ1x

)
x + δ2

(
(δ + β F̄)φ1y

)
y = 0, −1 ≤ z ≤ S, (20)

φ2z̃ z̃ + φ2xx + φ2yy = 0, z̃ ≥ δS. (21)

The far-field boundary condition is

φ2z̃ = H∞/δ, z̃ → +∞, (22)

and the interfacial conditions corresponding to Eqs. (5), (6) are expressed as

(δ + β F̄)
(
φ1z − δ2Sxφ1x − δ2Syφ1y

)
|S = δ2

(
φ2z̃ − δSxφ2x − δSyφ2y

)|δS, (23)

(Sxφ1z + φ1x )|S = (δSxφ2z̃ + φ2x )|δS, (24)

(Syφ1z + φ1y)|S = (δSyφ2z̃ + φ2y)|δS . (25)

The substrate conditions corresponding to Eqs. (7), (8) are now re-written as

(δ + β F̄)φ1z|−1 = δ2 H̄w, (26)

where the solid wall is at z = −1.
We now expand the potential in a perturbation series of the form φi = φi0 + δ2φi1 + · · · (for i = 1 and 2),

which is asymptotically valid in the limit of δ → 0, and collect terms of equal powers of δ. The idea is that we are
determining the linear solution and its perturbation in powers of a small parameter δ2 (for more details, see Hinch
[28]). From Eq. (20), the potential to leading-order (i.e. the equation with order δ0) is β F̄φ10z = c(x, y) in the
film, where c(x, y) = 0 from the boundary conditions. Integrating again, the potential is only a function of x and
y, φ10 = φ10(x, y), and is determined from the next order of the expansion. Also to leading-order φ10|S = φ20|δS
from Eq. (24), |H1| = δ(φ2

10x + φ2
10y)

1/2 and

F̄ =
(
coth (ξ̄ (φ2

10x + φ2
10y)

1/2)

(φ2
10x + φ2

10y)
1/2

− 1

ξ̄ (φ2
10x + φ2

10y)

)

, (27)

which is only a function of x and y.
For the order δ2 equation, the potential in the film to the next order is determined from the following set of

equations:

φ11zz = − 1

F̄

(
F̄φ10x

)
x − 1

F̄

(
F̄φ10y

)
y, (28)

β F̄
(
φ11z − Sxφ10x − Syφ10y

)|S = (
φ20z̃

)|δS, (29)

β F̄φ11z|−1 = H̄w. (30)

Integrating Eq. (28) once with respect to z, inserting into the above boundary conditions, and subtracting we get

φ20z̃ |δS − H̄w = −β F̄
(
Sxφ10x + Syφ10y

) − β F̄

(
1

F̄

(
F̄φ10x

)
x (1 + S) + 1

F̄

(
F̄φ10y

)
y(1 + S)

)
, (31)

which is a condition for the horizontal gradient of the potential.
The potential in the outer gas is more easily determined through subtracting the outer magnetic field by defining

φ20z̃ = Φ20z̃ + H∞/δ. The equations for the new variable are

Φ20z̃ z̃ + Φ20xx + Φ20yy = 0, z̃ ≥ δS, (32)

with the following far-field and interfacial conditions, respectively, given by

Φ20z̃ = 0, z̃ → +∞, (33)

Φ20|δS = φ10|S − H∞S. (34)
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We solve Laplace’s equation in the gas phase by using the Fourier transform defined as

φ̂(k̂x , k̂y) =
∫ ∞

−∞

∫ ∞

−∞
Φ(x, y, z) ei(k̂x x+k̂y y) dx dy, (35)

Φ(x, y, z) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
φ̂
(
k̂x , k̂y

)
e−i(k̂x x+k̂y y) dk̂x dk̂y, (36)

where k̂x and k̂y are the wavenumbers in the x and y-directions, respectively. Here, the integrations are taken to
infinity in x and y; however, it is possible to integrate the function Φ over a finite domain provided it is periodic
at the boundaries. In this analysis, we assume that the surface height, velocity, pressure and magnetic potential
have periodic boundary conditions in the x–y plane, and perform the integrations over a finite domain. Laplace’s
equation in Fourier space becomes

φ̂2z̃ z̃ − k̂2φ̂2 = 0, (37)

where k̂2 = k̂2x + k̂2y .
Using the boundary conditions far from the film, Φ2z̃ = 0 as z̃ → +∞, and the condition given by Eq. (34), the

potential in spectral space is

φ̂2 =
(
φ̂10 − ̂SH∞

)
e−k̂ z̃, (38)

where ̂SH∞ is the Fourier transform of the product of S and H∞ and the derivative of Eq. (38) at δS = 0 is

φ̂2z̃ = −k̂
(
φ̂10 − ̂SH∞

)
. (39)

In the dimensionless momentum equations, we take Re = O(1) and expand in powers of δ (e.g. u = u0 + δu1
+ · · · ). The continuity and momentum equations to leading order are

u0x + v0y + w0z = 0, (40)

p0z = Q̄HΩ0z − Ĝ, (41)

p0x = Q̄HΩ0x + u0zz + G, (42)

p0y = Q̄HΩ0y + v0zz, (43)

where Ĝ = δG cot(θ) and

Ω0 = −β

ξ̄
ln

(
(φ2

10x + φ2
10y)

1/2ξ̄

sinh((φ2
10x + φ2

10y)
1/2ξ̄ )

)

. (44)

At the interface z = S(x, y), the normal and tangential jump conditions to leading-order are

p0 = − Q̄H

2
(H20 · n − H10 · n)2 − (Sxx + Syy), (45)

u0z = 0, (46)

v0z = 0. (47)

where (H20 · n − H10 · n)2 = δ−1 + 2(H1(x) + Φ20z̃) and δ have been retained here for completeness; however,
it will be eliminated later when we take the derivative of this quantity. Integrating the leading-order momentum
equations, and using the interfacial (air–film interface located at z = S(x, y, t)) and no-slip boundary conditions at
z = −1, yields the following expressions for the film pressure, and streamwise and spanwise velocity components,
respectively:

p0 = Q̄HΩ0 − Ĝ(z + 1) + K (x, y), (48)

u0 = (Kx − G)

(
1

2
(z + 1)2 − (S + 1)(z + 1)

)
, (49)

v0 = Ky

(
1

2
(z + 1)2 − (S + 1)(z + 1)

)
. (50)
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From the kinematic condition, the interface evolves according to

St − 1

3

[
(S + 1)3(Kx − G)

]

x
− 1

3

[
(S + 1)3Ky

]

y
= 0, (51)

where the two-dimensional function K (x, y) is

K (x, y) = Q̄H

(
β

ξ̄
ln

(
(φ2

10x + φ2
10y)

1/2ξ̄

sinh((φ2
10x + φ2

10y)
1/2ξ̄ )

)

− 1

2
δ−1

)

− Q̄H
(
(H1(x) + Φ20z̃)

) − Sxx − Syy + ĜS. (52)

Here, we have defined H∞ = 1 + δH1(x). Note that the presence of the O(δ−1) in the expression for K (x, y) is
inconsequential since Kx and Ky (rather than K (x, y)) are required to form u and v, respectively. In Eq. (52), the
vertical derivative of the magnetic potential is

Φ20z̃(x, y, z) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
k̂
(

̂SH∞ − φ̂10

)
e−i(k̂x x+k̂y y) dk̂xdk̂y, (53)

where the potential φ̂10 comes from Eq. (31) transformed to Fourier space.

3 Results

The governing equations describing the flow of a thin ferrofluid in a magnetic field are given by Eqs. (31), (39), (51),
and (52). The dimensionless groups governing the process are: the saturation magnetization relative to the outer
magnetic field, β, the magnetic parameter, Q̄H , the scaled initial susceptibility, ξ̄ , and the gravitational numbers G,
and Ĝ = δG cot(θ). For typical laboratory conditions, using magnetite as the suspended particles, we can assume
the following parameter values: Ms ≈ 1.5 × 104 A/m, ξ ≈ 2 × 10−4 − 5 × 10−4 m/A, and H∞ ∼ Ms [14]. The
order of magnitude for the dimensionless groups are then: β = O(1), ξ̄ = O(1) − O(10), and Q̄H = O(1). The
effect of the magnetic and fluid dynamics parameters were studied by [6]. Here, we focus on the magnetic field
strength Q̄H , and fix the other parameters to β = 1, ξ̄ = 5,G = 0.50, and Ĝ = 0.25.

3.1 Linear stability analysis

It is instructive to analyse the linear stability for a flat interface in order to gain insight into the dynamics of a
ferrofluid film near instability onset. We do this by linearizing the governing equations about the uniform base state
S = 0 and φ = φb (a constant) using normal modes of the form:

S = S′ = S̄ eωt+ikx x+ iky y, φ − φb = φ′ = φ̄ eωt+ikx x+ iky y . (54)

Here, kx and ky are the wavenumbers in the x and y-directions, respectively; S̄ and φ̄ are constants to be determined
below; and S′ and φ′ are the perturbations about the base state. Introducing the expansions into Eqs. (31) and (39)
and retaining terms on the order of the perturbation, the magnetic potential is expressed as

φ̄ = S̄ − Hw/k

1 + kβξ̄/3
, (55)

with the magnetic potential being linearly related to the interface height and k2 = k2x + k2y . We take Hw = 0 for
simplicity, and from Eqs. (51) and (52), the real part for the dispersion relation is obtained as

3ωr = Q̄Hk
3
(
1 − 1

1 + kβξ̄/3

)
− k4 − Ḡk2. (56)

The first term is positive so the magnetic field is destabilizing, whereas capillary forces always stabilize the film for
sufficiently large k as found by [6,11,29]. The dispersion relation, for ky = 0 and kx = k, is displayed in Fig. 1,

123



260 D. Conroy, O. K. Matar

Fig. 1 Dispersion relations for Q̄H = 2.5, 3, 3.5, 4, corresponding to the lowest to highest curves, respectively. The rest of the
parameters are ξ̄ = 5, β = 1,G = 0.0, and Ĝ = 0.25

Fig. 2 Maximum growth rate,ωmax, and the most dangerous mode, kmax, as a function of Q̄H ; the dash-dot line corresponds to Eq. (57).
The remaining parameters are ξ̄ = 5,G = 0.0, and Ĝ = 0.25

showing the wavenumber band for instability. The result is similar to the electrohydrodynamic case [17], where the
electric field, for a perfectly conducting viscous film, was also found to be destabilizing.

In the large βξ̄k limit, we simplify the dispersion relation as ω = Q̄Hk3/3− Q̄Hk2/βξ̄ −k4/3− Ḡk2/3. Taking
the derivative of this equation with respect to k and setting it to zero, we obtain the location of the maximum growth
rate as

kmax = 3

8
Q̄H + 1

2

√
9

16
Q̄2

H − 6
Q̄H

βξ̄
+ 2Ḡ. (57)
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Fig. 3 The parametric dependence of the spatial development of the interface S on Q̄H for the two-dimensional case in the absence of
spanwise perturbations at a dimensionless time of t = 80. Here, ξ̄ = 5, β = 1,G = 0.5, and Ĝ = 0.25

Since we only want the real part of the expression, the jump occurs at

Q̄H = 16

3

1

βξ̄
+ 1

2

√(
32

3

1

βξ̄

)2

+ 128

9
Ḡ. (58)

In Fig. 2, the maximum growth rate and the most dangerous mode are shown as a function of Q̄H and β. The
most dangerous mode exhibits a jump followed by a linear increase with Q̄H . The large βξ̄k solution from Eq. (57)
is in close agreement with the full solution even for moderate values of β. The prediction of the jump in kmax from
Eq. (58) is also very good for sufficiently large βξ̄k.

3.2 Numerical results

We solve the governing equations using pseudo-spectral methods with a sufficiently large number of modes in
the x–y direction. Typically, we use 256 × 64 modes in the simulations without any discernible difference in the
results with half or double the number of modes. Two-dimensional Fast Fourier Transforms are used for the basis
functions and the boundary conditions are periodic. The thin film equations are discretized in time using an explicit
RK-3 method, and the magnetic field equations are solved using an iterative method. Domain decomposition is
used to parallelize the code using MPI-2. With this technique, the spatial domain is broken up into strips along the
y-direction with each processor computing ny/n p × nx points, where ny is the number of modes in the y-direction,
n p the number of processors and nx the number of modes in the x-direction. The main MPI communications occur
in the FFT routines in order to perform the two-dimensional integrations. We checked that mass conservation is
maintained in the computations and that the solution remains unchanged with the increasing resolution. A precursor
film is used to avoid the contact line stress singularity with a thickness that is sufficiently small. For an initial
profile, we use a Gaussian distribution: S(x, y, 0) = S f + exp(−(x − x0)2/3). Here, S f = −0.98 (the precursor
film thickness is then 0.02) is the location of the precursor film, and we take x0 = 5 unless otherwise specified.
Given the initial surface profile, we obtain the initial magnetic potential by solving Eq. (31). In addition, we use
periodic boundary conditions at the ends of the x–y domain for S(x, y, t) and φ10(x, y, t).

3.2.1 Two-dimensional unperturbed case

First, we investigate the case of a two-dimensional (2D) flow in the absence of imposed spanwise perturbations,
which will be used in the subsequent stability analysis to be discussed below. In Fig. 3, we show snapshots of the
spatial development of the interface S at t = 80 for three different values of Q̄H , including the non-magnetic case,
with ξ̄ = 5, β = 1,G = 0.5, and Ĝ = 0.25 held constant. For all values of Q̄H considered (including Q̄H = 0,
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Fig. 4 Parameteric
dependence of the
steady-state value of S on
Q̄H for a three-dimensional
axisymmetric drop
spreading on a flat substrate
in the presence of a
magnetic field. Here,
ξ̄ = 5, β = 1, and
G = 0.0 = Ĝ = 0.0. We
also use the same initial
Gaussian profile for the
surface height with x0 = π

as expected), the drop forms a capillary ridge near the advancing ‘contact line’ located at the downstream leading
edge, and a long tail which extends back to the initial drop location. The magnetic field creates a jump in φ10x ,
causing an increased pressure at the peak. As a result, the drop accelerates and the capillary ridge steepens and
increases in height. In addition, for the largest values of Q̄H examined, a ‘secondary’ ridge appears in the tail region
with a trough forming between this and the ‘primary’ ridge at the leading edge. To isolate the effect of Q̄H (from
those associated with the gravitational acceleration) on the primary ridge structure, we examine briefly the case of
a drop on a flat substrate in the presence of a magnetic field. The drop structure is initialized by the same Gaussian
profile as that used to generate the results in Fig. 3, and the simulation is carried out until a steady-state solution
is reached. As shown in Fig. 4, for increasing values of Q̄H , the peak height of the drop, Smax, increases, and the
drop narrows due to mass conservation, forming spike-like structures.

The time evolution of the maximum height of the drop, Smax, and that of the spatial location corresponding to
Smax, xh , are plotted in Fig. 5. For the non-magnetic case, Q̄H = 0, Smax decreases with time starting from t = 0 as
it spreads down the inclined plane. When the magnetic pressure is applied, i.e. for Q̄H > 0, Smax increases initially
as the surface is pulled in the direction of the incident magnetic field but later decreases as the constant volume
drop flows down the incline. It is also evident from Fig. 5 that the spreading is accelerated via the application
of the magnetic field through inspection of the temporal evolution of xh which increase with Q̄H for all t values
considered.

A semilogarithmic plot of xh vs. t shown in Fig. 3c reveals that the spreading of the drop exhibits a power-law
behaviour with a well-defined exponent at large times. In all of the cases shown, the exponent is similar for different
values of Q̄H although the slope is a little steeper for larger vales of the magnetic pressure. It appears from the
power-law exponent that the motion of the ridge down the incline is dominated by gravity despite the presence of
the magnetic field for all the Q̄H investigated. Neglecting magnetic and capillary effects in Eq. (51), and taking
into consideration spreading in the x−direction only, we have St +

[
G

(
S + 1)3

)]
/3 ∼ 0. The continuity constraint

then leads to xh ∼ t1/3, which is in agreement with the numerically determined exponents (see Fig. 5).

3.2.2 Single spanwise mode

We now examine the stability of the 2-D states discussed in the foregoing. We perform the stability analysis by
perturbing a 2-D simulation at time tp, which occurs at a time where the front is sufficiently developed. The front
position is perturbed by applying a spanwise disturbance, which is added to the right-hand-side of Eq. (51) expressed
by

f p = A0 cos(kp y)Ga(t)Sx , (59)

where A0 is the amplitude, kp is the wavenumber, and Ga(t) is a Gaussian function of time that is centred at
t = tp. In the absence of perturbations, the front is stable for very long times, as has been verified numerically. The
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(a)

(b)

(c)

Fig. 5 Temporal evolution of the maximal interface height, Smax, (a) and its spatial location, xh , (b) for Q̄H = 0, 2.5, 4. A log-
log plot of xh vs t is shown in (c). The straight solid lines in panel (c) correspond to a power-law of the form xh = atn , where
n ∼ (0.34, 0.34, 0.38), and a ∼ (2.24, 2.44, 2.29) for Q̄H = 0, 2.5, 4, respectively. The rest of the parameters remain unchanged from
Fig. 3

simulations are performed in a moving reference at the speed v f , which was shown by [22] not to affect the results.
We also note that in this case, the front is stable to spanwise perturbations in the absence of a Maxwell pressure.

In order to avoid the complications associated with the temporally evolving base state in the linearized form
of the governing equations, we determine the rate of growth of the spanwise stability numerically. To do this, we
define a scaled spanwise ‘energy’, Et , and a corresponding growth rate, ωt , as

Et =
∫
S2y(x, y, t)dx dy∫
S2y(x, y, tp)dx dy

, ωt = 1

Et

∂Et

∂t
. (60)

This expression is similar to that used by [30], except that we are using the derivative of the interface in the spanwise
direction Sy to represent the growth in energy of the perturbation. It is important to note that our approach does not
correspond to a linear stability analysis: we have not linearized Eq. (51), and indeed the amplitude of the imposed
perturbation given by Eq. (59), although initially small, is permitted to grow such that the disturbance can enter
into the nonlinear regime. Thus, ωt does not correspond to the growth rates that can be obtained from a linear
stability analysis (except perhaps over a limited time duration in which the perturbation has grown exponentially
in amplitude yet its amplitude has remained sufficiently small so that we are still in the linear regime).

The values of Et and ωt are tracked during the course of the simulation from tp onwards for a given value of
kp, as shown in Fig. 6a, b. It is seen clearly that Et and ωt undergo an increase with time for t > tp indicating
disturbance growth, with both growth measures increasing with Q̄H , which highlights the destabilizing effect of the
imposed magnetic field. From Fig. 6b, it is evident that following the initial rapid increase, the disturbance growth
rate decreases at later times; in the case of Q̄H = 2.5, ωt appears to asymptote to a constant value.

In Fig. 6c, we plot numerically constructed ‘dispersion relations’ showing the dependence of ωt on kp at t = 30
for Q̄H = 2.5, 3, with all other parameters remaining unchanged from those used to generate Fig. 3. It is seen clearly
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(a) (b)

(c) (d)

Fig. 6 Stability of the two-dimensional solutions to spanwise disturbances. Temporal evolution of the disturbance ‘energy’, Et , and
growth rate, ωt , are shown in (a, b), respectively, for Q̄H = 2.5 (dashed line) and Q̄H = 3.0 (solid line). Numerically constructed
‘dispersion relations’ for Q̄H = 2.5 (dashed line), and Q̄H = 3 (solid line) are shown in (c) for t = 30. The parametric dependence of
ωt on tp for Q̄H = 3.0, and t = 25 (solid line), t = 30 (dotted line), and t = 35 (dashed line) is shown in (d). In (c) and (d), the circles
correspond to the numerical solution, and the lines represent the interpolated values. Here, A0 = 1 × 10−3 (see Eq. (59)); the rest of
the parameters remain unchanged from Fig. 3

that the dispersion curves are structurally similar to those shown in Fig. 1, associatedwith the linear stability of a film
of uniform thickness, and exhibit low- and high-wavenumber cut-off ‘modes’, as well as a ‘most dangerous mode’ at
an intermediate kp value. Increasing the value of Q̄H leads to an increase in the wavenumbers associated with both
the cut-off and most dangerous modes, as well as a rise in growth rate for the range of ‘unstable’ wavenumbers. This
further highlights the fact that magnetic effects exert a destabilizing influence on the dynamics. In Fig. 6d, we also
show the effect of the perturbation start time, tp, on ωt for Q̄H = 3.0, and t = 25, 30, 35. For the range of tp values
shown, ωt decreases with t (see also Fig. 6b) but appears to be relatively insensitive to tp for tp > 10. This result
shows that the growth rates are not that sensitive to the perturbation start time even though the two-dimensional base
state is evolving as the constant volume fluid spreads out and thins. Because the unperturbed flow is evolving with
time there is a strong dependence in ωt with time as shown in Fig. 6b. This result is in contrast with the constant
flux configuration, where the unperturbed film reaches a steady state and the initial growth rate is a weak function
of time.

In Fig. 7, we plot the spatiotemporal evolution of the interface associated with the application of a spanwise
perturbation. At t = tp = 10, the drop has already spread down the incline, forming a capillary ridge at the
downstream leading edge, and has just interacted with a spanwise, cosine perturbation of kp = 1 in its path. Due
to the Maxwell pressure, the perturbation grows, as indicated by the results presented in Fig. 6, giving rise to a
pronounced hump at the leading edge of the spreading drop. Since the magnetic field is oriented normal to the
substrate, the peak of the hump is pulled in the wall-normal direction and a spike-like structure forms (see the
surface plot associated with t = 100 in Fig. 7). With the increasing time, the perturbed interface acquires the shape
of a long finger, and the hump decreases in amplitude due to mass conservation. The large decrease in the amplitude
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Fig. 7 Surface plots of the spatiotemporal evovlution of the interface in the x–y plane at t = 10, 36, 100, and 200 (from top to bottom)
for kp = 1 and Q̄H = 3.0. The domain size is 2πk−1

p × 6π and the rest of the parameters are unchanged from Fig. 3

Fig. 8 Surface plots (top
views) of the interface in the
x–y plane at a
dimensionless time of
t = 120. Here kp = 0.5
(bottom), kp = 1 (middle),
kp = 1.5 (top) and
Q̄H = 3. The domain size
is 2πk−1

p × 6π , and the rest
of the parameters are
unchanged from Fig. 3

of the finger over time is due to the spreading of a constant volume of fluid. In the constant-flux configuration, we
expect to get a similar finger structure except that the height will probably not decrease as much over time.

Surface plots (top views) of the interface for different spanwise perturbation wavenumbers are shown in Fig. 8.
Here, kp = 0.5, 1, 1.5, Q̄H = 3, and the rest of the parameters remain unchanged from Fig. 3. Since the domain
size was chosen to fit one spatial period, only one complete finger is shown in each of the panels. The diameter of
the head appears to have a similar size, in the x–y plane for all three kp values. In addition, the shoulder of the front
is smaller for increasing values of kp. The growth of the finger length with time, defined as the streamwise distance
between the thickened finger hump and the finger root, is shown in Fig. 9 for kp = 0.5, 1 and 1.5 and Q̄H = 3.
The fastest growing mode at early times occurs for kp = 1.5, which is consistent with the results presented in
Fig. 6c. The finger growth at larger times is clearly much larger for kp = 1, and we see an acceleration phase for
intermediate values of time, followed by a slower period that is likely due to the decrease in volume in the hump of
the thickened finger.
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Fig. 9 Temporal evolution of the finger length, the streamwise distance between the thickened finger hump and its root, x f − xr , for
Q̄H = 3, with the rest of the parameters remaining unchanged from Fig. 3

Fig. 10 Surface plots (top
views) of the interface in the
x–y plane for multiple
spanwise modes at a
dimensionless time of
t = 150. The domain size is
4π × 6π , and the parameter
values are choosen to be
Q̄H = 2.5 (top), 3 (middle),
and 3.5 (bottom), and the
rest of the parameters are
unchanged from Fig. 3

3.2.3 Multiple spanwise modes

Next, we investigate the stability of the film to a large set of spanwise modes. In this way, the most dangerous mode
will be naturally selected with the higher wavenumber content dampened by capillarity. In reality, the distribution
of the perturbation will be non-uniform and environmentally dependent, but since the distribution is unknown, and
we are interested in the self selection process, we use a uniform distribution. Also, we initiate the instabilities after
a time tp following [22], since the time at which noise is imparted on the fluid is unknown.

Surface plots of the interface are shown at t = 150 in Fig. 10 for Q̄H = 2.5, 3, 3.5. For small values of Q̄H ,
the interface profile looks similar to the non-magnetic case, consisting of a relatively smooth profile with thickened
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ridges at the leading edge. For large values of Q̄H , the drop velocity increases, and the tips of the fingers develop into
spike-like structures. Also, for increasing Q̄H , the number of fingers increase indicating that the most dangerous
wavelength decreases with a stronger magnetic field.

4 Conclusions

In this paper, we have investigated the dynamics of a thin drop of a ferrofluid spreading down an inclined plane in
the presence of a magnetic field oriented in a wall-normal direction. We have developed a model of the flow using a
long-wave analysis for a viscous fluid accounting for Maxwell stresses. The magnetic field equations were solved
for a relatively large magnetic permeability, and a magnetization that was assumed to be a nonlinear function of the
magnetic field using a spectral technique. The stress singularity at the moving contact lines was relieved through the
use of a thin precursor layer. For two-dimensional flow, we have shown that the spreading process is accompanied
by the formation of a thickened ridge at the advancing contact line. With the increasing magnetic field strength,
another hump is seen to develop upstream of the ridge. The spreading is observed to follow a power-law, which is
consistent with gravity-driven spreading for the range of parameters investigated in the present study.

We have also examined the stability of the interface to the applied perturbations. We have derived a dispersion
relation for the case of a flat ferrofluid film, which demonstrates the destabilizing effects of the magnetic field in the
linear regime. We have also studied the stability of the two-dimensional spreading drops to spanwise perturbations
of either single or multimodes, and shown that significant growth takes place leading to the formation of long
fingers with spike-like ridges; the latter become particularly pronounced with increasing magnetic field strength.
The results of this work will shed light on how magnetic fields can be used to manipulate fluids, which will be
relevant to microfluidics and lab-on-a-chip applications.
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