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ABSTRACT 

Implementation and Validation of the ζ-f and ASBM Turbulence Models 

Dustin Van Blaricom Quint 

 

 The use of Computational Fluid Dynamics (CFD) tools throughout the engineering 

industry has become standard.  Simulations are used during nearly all steps throughout 

the life cycle of products including design, production, and testing.  Due to their wide 

range of use, industrial CFD codes are becoming more flexible and easier to use.  These 

commercial codes require robustness, reliability, and efficiency.  Consequently, linear 

eddy viscosity models (LEVM) are used to model turbulence for an increasing number of 

flow types.  LEVM such as k-ε and k-ω provide modeling with little loss of 

computational efficiency and have proven to be robust.  The LEVM that are most 

common in CFD tools, however, are not adequate for accurate prediction of complex 

flows.  This includes flows with high streamline curvature, strong rotation and separation 

regions.  Unfortunately, due to their ease of use in the commercial CFD tools, the models 

are used frequently for complex flows.  Modifications have been made to LEVM such as 

k-ε in order to improve modeling, but generally, the modifications have only improved 

modeling of less complex flows.  More advanced LEVM models have been developed 

using elliptic relaxation equations to help resolve these issues. 

The ν
2
-f model was developed to better capture flow physics for complex flows while 

being applicable to general flows.  It is generally considered one of the most accurate 

LEVMs.  It does, however, have issues with stability and robustness.  Several 

improvements have been proposed.  One of the most notable is its reformulation into the  
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ζ-f model which offers several improvements while maintaining accurate flow prediction.  

The model improvement is still limited by being a LEVM.  While models, such as 

differential Reynolds stress models, do exist which are able to capture relevant flow 

physics in complex flows, modeling difficulties make them impractical for use in a 

commercial CFD code. 

 Algebraic Reynolds stress models have attempted to bridge this gap with varying 

levels of success.  The models express the Reynolds stress tensor as a function of 

different higher level tensors.  This is the same process used to derive non-linear eddy-

viscosity models which add extra high-order terms to the Boussinesq approximation. 

According to Kassinos and Reynolds, however, this technique is fundamentally flawed.  

These models fail to capture all relevant information about the turbulence structure.  The 

Reynolds stresses capture information regarding the turbulent componentiality, i.e. 

velocity components of turbulence.  The dimensionality, which carries information 

regarding the direction of turbulent eddies, is not modeled, however.  Kassinos and 

Reynolds constructed a structure-based model which attempts to capture turbulent 

componentiality and dimensionality by expressing the Reynolds stress tensor as a 

function of one-point turbulence structure tensors.  Their original model introduced 

hypothetical turbulence eddies which could be averaged and then used to relate the eddy-

axis transport equation to the proper structure tensors.  The ideas behind this model were 

adapted into several different models including the R-D model and the Q-model.  These 

formulations were able to accurately capture the flow physics for many complex flow 

types especially those with mean rotation.  These resulting models, however, were overly 
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complicated for application in commercial CFD codes.  These structure-based models 

later resulted in the development of the algebraic structure based model (ASBM). 

 The ASBM was developed in order to ensure computational efficiency while 

capturing relevant turbulence physics.  The ASBM uses an algebraic model for the eddy 

statistics which is constructed from the local mean deformation and two turbulent scales.  

The original turbulent scales used were the turbulent kinetic energy and the large scale 

vorticity.  Although the model was calibrated specifically for use with the turbulent 

kinetic energy and large scale vorticity transport equations, the algebraic model can be 

used in conjunction with any scalar transport equations as long as the field distribution of 

turbulent kinetic energy and turbulence time scale can be obtained.  Based on its 

formulation, the ASBM, used in combination with any scalar transport equations, should 

be applicable to most commercial CFD codes. 

The objective of this work was to implement the ζ-f model and ASBM, coupled with 

k-ε and v
2
-f,  in the commercial CFD solver FLUENT and validate its performance for 

canonical turbulent flows including a subsonic turbulent flat-plate, S3H4 2D hill, and 

backward-facing step.  Each turbulent flow was evaluated using various turbulence 

models including Spalart-Allmaras, k-ε, k-ω, k-ω-SST, v
2
-f, ζ-f and two ASBM 

formulations and compared against experimental results.  The ζ-f model produced 

improved results for both the flat plate and backward facing step as compared to all two-

equation or less turbulence models and showed similar predictive capabilities to the v
2
-f 

model.  It had difficulties predicting attached flow past the S3H4 2D hill just as the v
2
-f 

model.  This, however, was expected due to its basis on the v
2
-f model.  The model was 

also more stable than the v
2
-f model during calculation of the turbulent flat plate but 



 

 

 

 

 

vii 

showed no improvement in robustness for the more complex backward facing step.  The 

semicoupled (linear eddy viscosity model based) v
2
-f-ASBM’s predictive capabilities 

were comparable to the two equation models for the turbulent flat plate case.  It 

performed surprisingly well for the backward facing step and matched the experimental 

data within experimental uncertainty.  The model did, however, have problems predicting 

the S3H4 2D hill just as the with the v
2
-f model.   
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I. Introduction 

A. Motivation  

The computational methods for turbulent flows have been a perplexing problem for 

over a century.  Its mystery is not only due to its lack of general analytic solution, but 

also the necessity to accurately capture its behavior.  Turbulent flow is present in 

countless engineering applications which require simulation to further improve predictive 

performance and even initial design.  Simulations are used during nearly all steps 

throughout the life cycle of products including design, production, and testing.  

Unfortunately, turbulence is very complex and varies greatly depending on application 

due to the presence of complex spatial and temporal interactions.  While the motion of 

viscous fluids can be solved completely as described by the Navier-Stokes equations, 

simulation requires extensive computation resources which are out of reach for most 

applications. Since there are no general analytic solutions for turbulence and full 

computational solutions are too expensive, models have been developed based on 

mathematical principles and experimental results.   

 Modeling is achieved by first simplifying the multitude of both spatial and temporal 

scales present in turbulent flow.  The complex flow is averaged in some way which 

greatly reduces the number of turbulent scales affecting the mean flow.  The averaging of 

information essentially discards turbulent scale information and their effects are instead 

expressed through a new term, the Reynolds stress tensor.  These Reynolds stresses 

define the turbulent interaction with the mean flow.  Unfortunately, these Reynolds 
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stresses are also unknown.  The modeling of this tensor is thus the goal of turbulence 

modeling. 

 One accepted and widely used technique for modeling the Reynolds stress tensor 

was proposed over 100 years ago by Boussinesq.  This approximation, known as the 

Boussinesq hypothesis, is based on the assumption that turbulent shearing stresses are 

related to the rate of mean strain through a scalar turbulent viscosity, commonly referred 

to as an eddy viscosity.  Thus, the eddy viscosity, usually defined analogously with 

kinetic theory, must be modeled in order to solve the closure problem.  Models utilizing 

this assumption, linear eddy viscosity models (LEVM), are most widely used for 

engineering purposes due to their simplicity and accuracy for simple flows.  Since the 

assumption does not always hold true, however, LEVM are still limited. 

 Linear eddy viscosity turbulence model techniques began as seemingly simple 

relations based on kinetic theory, experimental results and convenience.  These simple 

zero equation models, including mixing length models and Baldwin-Lomax, are 

applicable for simple flows which are similar to flows in which the models were tailored 

to represent.  Accuracy, however, is sacrificed for simplicity.  More computationally 

expensive models were developed basing the turbulent viscosity on the turbulent kinetic 

energy, a measurable quantity that is easily interpreted physically.  A transport equation 

for the turbulent kinetic energy can be developed based on the Navier-Stokes equations, 

cementing its applicability.  Multiple models have been developed with this transport 

equation.  These include one equation models utilizing algebraic relations to model 

unknown terms, two equation models which introduce a second transport equation to 

model unknowns, and more.  Generally, with increasing number of equations, the model 
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becomes more versatile.  One of the most versatile and well used LEVM is the v
2
-f 

model.  It seems though, that with better predictive capabilities come sacrifices in 

robustness and ease of use.  What is truly desired then is a model which offers robust 

predictive capabilities on a myriad of flows.  Popovac has attempted this through the 

modification and reformulation of a normalized v
2
-f model. 

While LEVMs are the most widely used in industry, constant sensitization to varying 

flow types, combined with the use of the Boussinesq hypothesis, are deterrents for use in 

increasingly complex flows.  More complex models which abandon the linear eddy 

viscosity approach model each of the Reynolds stresses individually.  These Reynolds 

stress models, while accounting for more complex flow phenomena, are computationally 

expensive requiring an additional five transport equations for two dimensional flow.  The 

goal then is to develop a model which captures relevant flow characteristics, models the 

Reynolds stresses accurately, and remains relatively inexpensive computationally.  

Kassinos, Reynolds, and coworkers have been developing a model which will capture 

relevant flow characteristics while maintaining computational efficiency. 

B. Objectives 

In order to improve the predictive capabilities and robustness of CFD, new turbulence 

models are formulated and tested regularly.  It is difficult, however, for newly developed 

models to become widespread due to their limited application to commercial CFD 

solvers.  While predictive capability is important, usability and computational expense 

can play a large roll in determining a model’s usefulness.   The objective of this work is 

to implement the ζ-f model and ASBM in the commercial CFD solver FLUENT and 

validate its performance for canonical turbulent flows including a subsonic turbulent flat-
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plate, S3H4 2D hill, and backward-facing step.  Each turbulent flow is evaluated using 

various turbulence models including Spalart-Allmaras, k-ε, k-ω, k-ω-SST, v
2
-f, ζ-f and 

two ASBM formulations and compared against experimental results.   

C. Validation Cases 

When implementing any new idea or process, it is important to ensure that 

implementation behaves as expected.  Generally, it is best to segregate properties of the 

idea and test them separately to help decouple any complexities.  For turbulence 

modeling, it is best to calculate the simplest possible generic flow with one dominating 

effect.  It is also important to use widely accepted cases in order to provide the 

development community with a reference to compare against.  The following cases are 

well documented in literature and have been used extensively as test cases.  Each of the 

models implemented will be validated on these reference test cases to demonstrate the 

correct implementation of the turbulence model in FLUENT.  The implemented models’ 

accuracy will also be evaluated against experimental data and previously validated 

models. 

1. Turbulent Flat Plate 

One of the simplest as well as most well documented turbulent flows is the turbulent 

flat plate.  The case has been extensively studied at high Reynolds numbers and many 

formulas have been proposed for the skin friction as well as the boundary layer profile.  

Accurate prediction of this case is the basis for accurate prediction on more complex 

geometries and flows.  In the case of aerospace applications, the proper prediction of skin 

friction is especially important.  The skin friction has been predicted experimentally but 

there is also accepted momentum integral analysis which accurately predicts the skin 
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friction coefficient based on Reynolds number.  The power law theory will be used as a 

comparison for skin friction coefficient on the flat plate.  It is defined as 

 
1/7

0.027

Re
f

x

C   (1) 

The self similar boundary layer on a turbulent flat plate has also been extensively 

studied.  The near wall region has been separated into three distinct layers known as the 

linear sublayer, the buffer region, and the log region.  The linear sublayer follows a linear 

relationship based on non-dimensionalized velocity and wall distance.  The log region, of 

course, follows a logarithmic relation.  The buffer region is a smooth connector of the 

two.  The non-dimensionalized variables are defined below. 

 
*

u
u



   (2) 

 

*y
y





   (3) 

where ν
*
 is the wall-friction velocity defined as 

 
* w


  (4) 

and τw is the wall shear stress.  The three layers are then respectively defined by 
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for 5

smooth connection for 5 30 
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ln for 30 350
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  
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 
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 (5) 

where κ = 0.41 and B = 5.0.  The three layers have been defined in a composite formula 

which covers the entire wall related region.  This formula, called Spaldings formula, is 

presented below. 
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   

 
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 
 

 (6) 

The boundary layer profile can also be compared against the experimental data of 

Wieghardt. 

There has also been extensive study of the Reynolds stress profiles throughout the 

boundary layer.  Klebanoff presented data for a flat plate at a Reynolds number of Rex = 

4.2x10
6
.  This data will be used for comparison of the Reynolds stresses.  Figure 2 below 

shows the Reynolds stress profiles within the boundary as determined by Klebanoff. 

 

Figure 2.  Non-dimensionalized Reynolds stress at Rex=4.2e6 by Klebanoff. 

2. Backward Facing Step 

The backward facing step is a canonical test case due to its relative simple geometry 

but difficult to capture flow physics.  Its main purpose is to study the effects of separation 

and reattachment.  While the geometry is simple, the case is actually very 

computationally expensive due to the required mesh refinement in the step region.  The 
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point of separation is defined by the geometry at the step.  The reattachment position, 

however, is dependent on the Reynolds number based on step height, Reh.  Generally, 

turbulence models have a difficult time accurately predicting the reattachment length.   

The flow can be defined by different regions.  Under the step a primary separation 

region is formed along with a secondary region in the corner.  The secondary region is 

rarely captured in CFD.  Between the primary bubble and the mean flow, a shear layer is 

formed which generates large amounts of turbulent shear stress.  After the reattachment 

point, there is a zone considered the recovery zone which is also hard to predict with 

turbulence modeling.  The recovery zone, however, will not be examined.  The geometry 

and flow can be seen below in Figure 3. 

 
Figure 3.  Backward facing step geometry and defining flow characteristics. 

The backward facing step calculations were formed with an expansion ration of H/h = 

3 with a Reynolds number of Reh = 5000 where Reh is defined as 

 
0Reh

U h


  (7) 



 

 

 

 

 

8 

where h is the step height.  Experimental data from Jovic and Driver is used to validate 

the implemented turbulence models.  Velocity profiles from the experiment are shown 

below in Figure 4.  

 

Figure 4. Velocity profiles for a backward facing step by Jovic and Driver. 

3. S3H4 2D Hill 

The S3H4 2D hill case helps show the effects of streamline curvature and the 

potential for separation helps display the sensitivity of turbulence models.  The hill 

geometry is defined by Kim et al. where SxHy denotes the maximum slope of 0.x and a 

height of y.  The hill geometry is defined as 

 

1

1 cos
2 2

H x
y

L

    
    

    

 (8) 

where the half length of the hill, L1, is defined as 

 1
2

H
L

S
  (9) 

The hill geometry is displayed below in Figure 5. 
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Figure 5. S3H4 2D Hill Geometry by Kim et al. 

The S3H4 hill is the last hill, as the slope and height increase, which does not produce 

a separation bubble in the region behind the hill.  The hill displays high streamline 

curvature which generally results in equilibrium assumptions of turbulence models not 

being valid.  Therefore, the prediction of flow near the hill can be difficult.  Velocity 

profiles over the hill by Kim et al. are displayed below in Figure 6. 

 

Figure 6. Velocity profiles over the S3H4 hill by Kim et al. 

The experiment was conducted with a boundary layer height Reynolds number of 7.  

The boundary layer height Reynolds number is defined as  
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where δ is the boundary layer height.  To mimic this in CFD, a power law profile was 

used as the inlet condition for velocity with the proper boundary layer height.   
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II. Turbulence Modeling 

In Computational Fluid Dynamics closure of the laminar Navier-Stokes equations is 

possible and relatively simple due to the generally large scales defining flow 

characteristics.  This allows for computationally inexpensive meshes to accurately 

represent the flow.  The scales of turbulent flow, however, are relatively small and 

therefore require extremely computationally expensive meshes to accurately capture flow 

phenomena.  To give an example of the extreme refinement, scales as small as the 

Kolmogorov scales must be resolved in the mesh.  This method is referred to as direct 

numerical simulation (DNS).  DNS requires large amounts of resources, including money 

and time, to reach a solution as the number of computational operations is proportional to 

the Reynolds number of the simulation to the third power.  Only the simplest geometries 

at lower Reynolds numbers can generally be solved using DNS.  In order to accurately 

model more complex flows and geometries, only the larger scales are resolved and the 

small turbulent scales are instead modeled.  This is achieved through the Reynolds-

Averaged Navier-Stokes equations which introduces extra unknowns.  These unknowns 

are then modeled through the use of turbulence modeling. 

A. Governing Equations  

The Reynolds-Averaged Navier-Stokes (RANS) equations are used to obtain flow 

solutions in the CFD solver FLUENT for turbulent flow.  These equations are derived 

from the fundamental equations of fluid dynamics which include conservation of mass, 

conservation of momentum, and conservation of energy better known as the full Navier-
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Stokes equations.  While the full Navier-Stokes equations present a method to solve the 

instantaneous flow variables, the RANS equations solve for the time-averaged or Favre-

averaged quantities for incompressible and compressible flows respectively.  The 

turbulent fluctuations are used to model turbulence in the flow.  To begin the derivation 

of the RANS equations, each instantaneous flow variable, denoted arbitrarily as ψ, is split 

into its time-averaged and fluctuating values as follows 

       (11) 

where the bar denotes time-averaging and the prime denotes fluctuating values.  The 

time-average is defined as 

 
0

0

1 t T

t
dt

T
 



   (12) 

where T is a large period of time compared to the relevant period of fluctuation. 

This expression for the instantaneous flow variable can then be substituted into the 

full Navier-Stokes equations and simplified based on the basic integral relation.  The 

time-averaged continuity equation can be simplified rather easily and can be written in 

Cartesian tensor form as: 

   0i

i

u
t x




 
 

 
 (13) 

 The momentum equation, however, is not so simply formulated.  It requires the 

manipulation of both the averaged quantities and fluctuating quantities.  The time-

averaged momentum equation can be written in Cartesian tensor form as: 
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 (14) 

The turbulent inertia, labeled laminar and turbulent, behave as stresses where the 

laminar portion represents the Newtonian viscous stress and the turbulent portion 

represents an apparent turbulent stress tensor commonly denoted as the Reynolds stress 

tensor.  Because this new term is never negligible in any turbulent flow, it is imperative 

to solve for this term.  Unfortunately, this is the cause of analytical difficulties for 

turbulent flows.  This tensor introduces nine new terms and six unknowns due to 

symmetry that need to be accounted for in order to obtain an accurate solution.  There is, 

however, as of yet, no analytic solution for this tensor.  It can only be defined by detailed 

knowledge of turbulent structure.  Its components relate to both the fluid physical 

properties and local flow conditions.  Empirical approaches have been attempted with 

varying levels of success.  Most popularly, however, a scalar quantity, the eddy viscosity, 

is used to partially represent the Reynolds stresses.  This technique is known as the 

Boussinesq approximation. 

 The Boussinesq approximation is used to compute the Reynolds stress tensor using 

an eddy viscosity and also the mean strain-rate tensor.  This approximation, more 

accurately an assumption, is based on the fact that the turbulent inertia is represented by a 

combination of the Newtonian viscous stress and the Reynolds stress tensor.  By 

representing the turbulent contribution to this inertia similarly to that of the laminar 

contribution, the effect of turbulence on the momentum flux follows the behavior of 
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momentum flux on a molecular scale.  The Boussinesq approximation for the Reynolds 

stress tensor is defined as: 
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 (15) 

where the turbulent viscosity, μt, is defined given a specific turbulence model  Some form 

of this approximation is used in all linear eddy viscosity models (LEVM).  Due to its 

simplicity and overall stability when executed within a solution scheme, the Boussinesq 

approximation along with various LEVM are used widely.  While the Boussinesq 

approximation is based in physical understanding, it does have limits and these limits are 

exacerbated in complex flow regimes.   

 The Boussinesq approximation is fundamentally flawed in complex flow regimes 

due to the linearization of the relationship between the Reynolds stresses and the strain 

rate.  Defined by a scalar quantity, it is unable to define or even represent complex 

turbulent structure.  In 2D flow, this is exemplified by the dominance of R12, the coupling 

of the fluctuating velocities in the x and y direction, in the boundary layer, which is not 

captured by the approximation.  The Boussinesq approximation assumes that the eddy 

viscosity is isotropic. Expressed mathematically, 

 
2 2 2 2

3
u v w k         (16) 

Generally speaking, this component of turbulence structure is rarely accounted for and 

can actually be quite important to accurately capture flow.  Thus more advanced 

approximations of the Reynolds stresses need to be used to better capture flow behavior. 
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B. Common Turbulence Models  

The most commonly used turbulence models in industry as well as in commercial 

CFD codes generally utilize the Boussinesq approximation.  They are computationally 

inexpensive and very robust.  While there are varying levels of accuracy in flow 

prediction depending on the model used, the models generally produce acceptable results.  

Some models, however, were developed for specific flow types and are used beyond their 

intended purpose.  This is the major shortcoming of most turbulence models.  The most 

common turbulence models are presented below which will also be used as comparison 

to the models presented in this thesis. 

1. Spalart-Allmaras Model 

The Spalart-Allmaras model was developed by Spalart and Allmaras in 1992 in order 

to fill the need for an accurate, extremely computationally inexpensive, and robust model.  

The model is a one equation model created based heavily on experimental results and 

motivated by flaws with existing turbulence models.  First, the model was meant to 

replace the zero equation models such as the Baldwin-Lomax model by increasing 

robustness with little increase in computational expense.  Second, it was designed to 

predict nearly as accurately as common two equation models, such as the k-ε model, 

while avoiding the use of strong source terms which tend to delay convergence.  Lastly, 

many two equation models require boundary layer meshes to be resolved to within the 

viscous sublayer which can be more computationally expensive.  The Spalart-Allmaras 

model was developed to allow for less resolved meshes and thus fewer resources.  It was 

also created specifically for aerospace applications including those subject to the adverse 

pressure gradients. 
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The Spalart-Allmaras model utilizes one additional transport equation in order to 

model turbulent effects.  The transport variable represents the undamped turbulent eddy 

viscosity and is denoted by   where the tilde is not a Favre averaged quantity.  The 

transport equation is defined as follows 
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 (17) 

where P  is the production of turbulent viscosity, Y  is the destruction of turbulent 

viscosity, μ is the dynamic viscosity, and   and Cb2 are model constants to be defined.   

The turbulent viscosity, μt, used in the Boussinesq approximation is computed using a 

viscous damping function as 

 1t f   (18) 

where fν1 is a viscous damping function defined as 
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 (19) 

with ν as the kinematic viscosity and Cν1 representing a calibrated constant. 

The production of turbulent viscosity is defined as 
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where d is the distance from the wall, Ω is a scalar measure of the deformation tensor, Cb1 

is a calibrated constant, and κ is the von Karman constant commonly used to define the 

log region of boundary layer flow which is approximately equal to 0.41.  The original 

Spalart-Allmaras model defined Ω as the magnitude of mean rotation rate tensor as 

described below 

 2 ij ij     (21) 

where Ωij is the mean rotation rate tensor, 
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 (22) 

Spalart and Allmaras justified the use of the mean rotation rate tensor based on the claim 

that for wall bounded flows, turbulence is found only where vorticity is generated near 

walls.  Other definitions of for the scalar measure of the deformation tensor have been 

proposed, however. 

The destruction of turbulence term is modeled as 
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where fw is another viscous damping function defined as 
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and Cw1, Cw2, and Cw3 are calibrated constants which can vary. 
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As stated before, the model was created for aerospace applications with adverse 

pressure gradients and thus predicts very well for simple attached flows without 

separation regions.  In more complex flows, however, especially those with separation, 

the model predicts poorly and can even become less robust than the common two 

equation models.  This is also true in flows with high streamline curvature such as 2D 

hills and more advanced airfoil geometries.  Wilcox also shows that the Spalart-Allmaras 

model predicts free shear regions poorly.  He concluded that it should not be used for jet-

like free shear layers although this will not be studied here.  Also, the model is coupled to 

mean flow through the Boussinesq approximation which is unable to properly capture 

Reynolds stress anisotropy which is increasingly important in complex flows. 

2. k-ε Model 

The k-ε model is a two equation model with initial development stemming back to the 

origins of turbulence models.  The standard k-ε model was developed by Launder and 

Sharma and includes calibrated closure coefficients.  References to the “standard” model 

refer to the specific set of constants determined by aforementioned authors.  The model is 

a canonical model that is often criticized but still widely used.  It utilizes transport 

equations for the turbulent kinetic energy, k, and the turbulence dissipation rate, ε.  The 

turbulent kinetic energy equation is derived directly from contracting the differential 

equation of the Reynolds-stress tensor and is purely mathematical.  The ε transport 

equation, however, is derived through physical reasoning and matching the form of the 

turbulent kinetic energy due to the lack of experimental data related to the exact transport 

equation.  Wilcox criticizes this method stating, “the relation between the modeled 

equation for ε and the exact equation is so tenuous as not to need serious consideration.”  
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Despite this criticism, the model generally predicts well.  The transport equations are 

displayed below. 
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In the transport equations above, μt is the turbulent viscosity and C1ε, C2ε, and C3ε are 

calibrated constants.  Within the diffusive terms on the right side of the transport 

equations, σk and σε are the turbulent Prandtl numbers for k and ε respectively.  Pk 

represents the production of turbulent kinetic energy and is modeled as 
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where 

 2 ij ijS S S  (31) 
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YM accounts for compressibility and is defined as 
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where 
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  (34) 

Lastly, the effects of buoyancy are represented by Gb.  For all simulations in this work 

buoyancy effects were neglected, however.  The constants were previously calibrated 

such that the model matches experimental data for both air and water. 

While the model was calibrated to match experimental data, its performance on flows 

extending beyond that which it was calibrated for can be lacking.  It is well known that 

the ad hoc formulation of the turbulence dissipation equation leads to poor prediction for 

wall bounded adverse pressure gradient flows.  Again the Boussinesq approximation 

limits its applicability to complex flows where Reynolds stress anisotropy becomes more 

dominate.  To extend the model to more flows, damping functions can be applied which 

of course improve prediction for certain problems but are not a general solution to the 

modeling problem.  Bell concluded in a series of test cases that this model is not ideal for 

flows with separation and low Reynolds number effects.  Additionally, the model cannot 

be integrated to the wall and requires the use of empirical wall functions to model 

boundary layer flows.   

Wall functions can also have a large effect on the flow solutions and of course have a 

large effect on skin friction coefficient prediction, a very important solution result for 

aerospace applications.  For this study, enhanced wall treatment, available in FLUENT, 

was used which is described below. 

The enhanced wall treatment is a two-layer approach which is used to calculate both 

turbulent dissipation and turbulent viscosity in near-wall cells.  The two-layer approach 

subdivides the entire domain into a wall affected region and a fully turbulent region.  In 

this method, these regions are determined by the turbulent Reynolds number defined as 
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 Re y

y k


  (35) 

where y is the wall normal distance. 

In the fully turbulent region where Rey is greater than 200, the standard k-ε equations 

described above are implemented.  In the wall affected region, however, where Rey is less 

than 200, a one equation model is employed.  The turbulent kinetic energy transport 

equation is retained but an algebraic model is used to predict ε.  The turbulent viscosity in 

this region is defined as 

 ,2layert C k    (36) 

where the length scale is computed as 
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The turbulent viscosity needs to blended, however, such that there are no discontinuities 

between the two regions.  A blending function is used such that it is unity far from walls 

and zero near wall.  The function is displayed below. 
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where the constant A is defined as 
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and ΔRey has a value between 10 and 40. 

Finally, the turbulent dissipation is computed from 
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and the length scale is 

  Re /* 1 y A
yC e 




   (41) 

The constants used in this wall function are shown below. 

 
* 3/4 *, 70,     2C C A A C       (42) 

3. k-ω Model 

The k-ω model was developed by Wilcox and is very popular.  It was created in 

response to shortcomings of the previously described k-ε model.  The model includes 

transport equations for the turbulent kinetic energy and the specific dissipation rate.  The 

k-ω model also does not require wall functions but this is due to its empirical rather than 

mathematical basis.  It has been modified largely on an ad-hoc basis in order to improve 

accuracy on a larger range of flows.  This is achieved through the utilization of damping 

functions which are entirely non-physical. While this is advantageous for near wall 

regions, the model still has shortcomings which will be discussed later.  Due to its non-

physical formulation, many different implementations exist. 

 The model is defined by scalar transport equations for the turbulence kinetic energy 

and the specific dissipation rate shown below. 
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 The Pk term represents the production of turbulence and is identical to the previous 

definitions.  The production term in the specific dissipation equation is modified slightly 

with a damping function, however. 
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where α is a damping function defined as 
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and Rω and α0 are calibrated constants and Ret is a turbulent Reynolds number. 
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 Another damping function, α
*
, partially defines the turbulent viscosity as well as the 

previously mentioned damping function. 
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The turbulent viscosity is then defined as 
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 The turbulence dissipation is modeled as 
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and β
*
 is a function of calibrated constants, the turbulent Reynolds number and a 

compressibility correction. 
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 The dissipation of specific dissipation rate is modeled as 

 2Y f    (57) 

where 
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and β is a function of calibrated constants similar to β
*
.    
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Both dissipation terms account for compressibility in high Mach-number flows 

through the use of a compressibility function.  This function is a simple adjustment given 

the turbulent Mach number. 
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where the turbulent Mach number is defined as 
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k
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 a RT  (63) 

 0 0.25tM   (64) 

The calibrated constants as used throughout the model are displayed below 
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 (65) 

As previously mentioned this model’s major shortcomings stem from its ad-hoc 

formulation.   The use of damping functions has lost popularity due to their non-physical 

formulation.  While the model has been adjusted to accurately predict certain flows, it is 

less able to work as a general model due to its specific formulation.  In studies by Bell, it 

was concluded that k-ω does generally predict better than the previous two models but is 

still limited due to its experimental formulation.  As with the previously mentioned 

turbulence models, this model also utilizes the Boussinesq approximation which fails to 

model Reynolds stress anisotropy. 

4. k-ω SST Model 

The k-ω SST model was developed by Menter in order to improve the free shear flow 

performance of the k-ω model.  In essence, the model works just as the k-ε model far 

from the wall and like the k-ω model near the wall.  This incorporates the best of both 

models to make a superior model.  While the model is a blending, it takes the form of a k-

ω model with refinement.  The standard k-ω model and a transformed k-ε model are 

multiplied by a blending function and added together.  The blending function activates 
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the k-ω model near wall and activates the transformed k-ε model far from the wall.  The 

SST model also utilizes a damped cross-diffusion derivative term.  The transport 

equations are described below. 
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In the above transport equation the production of turbulent kinetic energy is defined 

as 

  *min ,10k kP P k   (68) 

where 
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and the turbulent viscosity is computed from 
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S is the strain rate magnitude which was defined previously.  The turbulent Prandtl 

numbers are defined as 
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α* is defined the same as in the k-ω model.  The blending functions are given by 
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The production of specific dissipation is defined as 
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t
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The dissipation terms for both the k and the ω equations are defined below. 
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where 

  1 ,1 1 ,21i i iF F      (81) 

is defined by the blending function F1.  α∞ is redefined as 

  1 ,1 1 ,21F F        (82) 
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Lastly, the cross diffusion term is written as 
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The model constants are displayed below. 
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Other model constants that aren’t defined here are identical to those previously defined in 

the k-ω model. 

The k-ω-SST model is generally considered the best performing of the two-equation 

models.  It is more accurate in complex flows including separation and comparable to 

other models in simple flows.  It does, however, have its difficulties capturing wake flow 

accurately.  Additionally, it is not coordinate invariant meaning that it is dependent on the 

distance from the wall.  While this is not necessarily problematic computationally, it is 

less desirable ideologically as this makes the model less general.  It also introduces 

ambiguities in definition of the wall distance.   

 

5. v
2
-f Model 

The v
2
-f model was initially developed by Durbin for flows in which near-wall 

turbulence is of great significance.  This includes flows with separation, recirculation and 

heat transfer.  This is a more advanced model which solves four additional transport 

equations.  The transport equations are for the turbulent kinetic energy, the turbulent 

dissipation rate, the velocity scale, and the elliptic relaxation factor.  The model is an 

extension of the k-ε model which utilizes a new velocity scale and also the elliptic 

relaxation factor to capture global effects throughout the domain.  The model can be 

integrated to the wall eliminating the need for wall functions or damping functions.  The 
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velocity scale allows the model to scale the damping effects of the turbulent transport 

near wall which the turbulent kinetic energy transport equation is incapable of doing. 

The model stems from observation that the correct time scale is the ratio of k and ε 

but the turbulent kinetic energy is the incorrect velocity scale.  This led to the 

introduction of the v
2

 transport equation.  In addition, it was observed that inviscid 

blocking of the velocity scale has an effect even far from the wall.  Thus there are non-

local effects that should be included in the determining local flow properties.  An elliptic 

relaxation equation was employed to capture these non-local effects of wall blockage.  

Generally, the v
2
-f model has proven to be a very accurate model although it is more 

computationally expensive than the previously mentioned models. 

The v
2
-f model utilizes similar transport equations for the turbulent kinetic energy and 

the turbulent dissipation as the k-ε model.  The four transport equations for the model are 

presented below. 
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where Pk is again the production of turbulence kinetic energy due to the mean flow 

velocity gradients. 
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 2

k tP S  (91) 

 T is a measure of the turbulence time scale. Away from solid walls the estimate for 

the time scale, k/ε, is reasonable.  Near wall, however, this estimate drops below the 

Kolmogorov scales.  The turbulent time scale cannot become less than the Kolmogorov 

scale and thus T is defined as follows, 
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where the first term is a measure of the turbulent time scale and the second term is a 

measure of the Kolmogorov scale.  The turbulence length scale is defined similarly again 

requiring that the scale is larger than that of the Kolmogorov scale.  It is defined as 

follows. 
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 The turbulence viscosity is defined by the velocity scale v
2
 and the turbulent time 

scale T. 

 2

t C v T   (94) 

 Finally, the model constants have been calibrated based on previous work in order to 

best fit turbulent flat plate boundary layer results.  These constants differ slightly than 

other published data but have been shown to produce accurate predictions. The result of 

this calibration is shown below. 
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The v
2
-f model performs significantly better than the previously mentioned models at 

a relatively low price.  It does, however, still have its flaws.  This is mainly due to mesh 

sensitivity near wall and also robustness.  Robustness is especially important for 

generalized flow solvers.  Additionally, the segregated solver used in FLUENT make this 

model more susceptible to divergence.   The Boussinesq approximation is also used to 

couple this model to mean flow. 
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III. ζ-f Turbulence Model 

The ζ-f model was developed in order to overcome the shortcomings of the v
2
-f model 

developed by Durbin.  While the Durbin model significantly improved the flow 

prediction as compared to industry standards such as the standard k-ε model, widespread 

use is not common due to its restrictive abilities in complex flows.  This includes a lack 

of robustness in complex geometries, boundary conditions for f, the elliptic relaxation 

equation, and also, mesh sensitivity related to the f boundary condition.  Previously, 

attempts have been made to improve these issues especially related to stability and 

robustness. 

Improvements to the v
2
-f model have come from multiple publications and addressed 

some of the previously mentioned problems.  Durbin initially modified the definitions of 

the turbulent time and length scales to better represent appropriate flow behavior in 

differing conditions.  Due to their large influence, this increased predictive capabilities of 

the model.  The f elliptic relaxation equation was also reformulated by Lien et al. in order 

to remove grid dependence and improve stability.  It does, however, result in slightly 

worse model predictive behavior.  Another notable modification was made by Davidson 

which forced v
2
 to be less than 2/3k, the isotropic flow condition.  This modification has 

been criticized due to its lack of elegance and the fact that the limitation is not always 

correct.  It does, however, increase stability.  While these modifications have slowly 

improved the model, the ζ-f model aims to reformulate the transport equations to increase 

robustness. 
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Popovac and Hanjalic have developed the ζ-f model as a modification to the Durbin 

model which solves for the transport equation of the velocity scale ratio ζ = v
2
/k as 

opposed to the velocity scale v
2
.  Previous work has shown that this transformation in the 

transport equation results in better numerical stability.  This is partially due to reduced 

gradients throughout the flow field.  Another modification, made to the f equation, also 

seems to result in better prediction. 

A. ζ Equation 

The v
2
 equation was modified by the introduction of a new variable, the normalized 

wall-normal velocity scale ζ = v
2
/k.  Popovac describes this turbulence variable as the 

ratio of the isotropic scalar time scale, k/ε, and the anisotropic lateral time scale, v
2
/ε.  The 

ζ transport equation is derived from the v
2
 and k equations as follows. 
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 (96) 

 

where Pk is the production of turbulent kinetic energy and the cross diffusion term, 

denoted as X, results from the transformation of the transport equation for a turbulent 

quantity. 

The cross diffusion term X can be retained representing the pure transformation 

equation but in practice, its negation has little effect on results as long as model constants 
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are adjusted accordingly.  Its influence is limited to regions very close to the wall, 

particularly where y
+
 < 1.  If the term is retained, extra adjustment is needed in order to 

avoid a singularity near wall where k approaches zero.  The turbulent kinetic energy must 

be limited in order to avoid this case.  Thus, for simplicity, reduced computational effort, 

and without loss of accuracy, the cross diffusion term is neglected. 

The final equation is obtained by inserting the transformed quantity ζ = v
2
/k and also 

omitting the cross diffusion X.  Thus the ζ transport equation presented in standard 

source-sink-diffusion form is 
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 (97) 

 

where σζ is the turbulent Prandtl number for ζ. 

B. ζ Equation Benefits 

While the transport equations for ζ and v
2
 are identical mathematically as long as the 

cross diffusion term is included, Popovac describes the differences between the two 

which results in enhanced stability and robustness while using the ζ transport equation as 

opposed to the v
2
 transport equation.  The advantages are described below. 

Firstly, the source term in the ζ equation are better defined throughout the flow field.  

The v
2
 source term contains the turbulence dissipation ε which is difficult to reproduce 

accurately due to the modeled transport equation especially in the near wall region.  The 

non-zero value at the wall accentuates this flow.  The source term for the ζ equation, 

however, represents the dissipation as function of the turbulent production, Pk.  Capturing 

this quantity accurately is much easier as long as the turbulent stresses and the mean 

velocity gradients are represented properly.  The value of the turbulent production is also 

zero at the wall, contrasting the v
2
 source term greatly.   
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Another benefit of the ζ equation can be seen by examining the equilibrium balance 

of the source and diffusion terms in near wall conditions.  In the v
2
 equation, both of the 

source terms as well as the diffusion term are proportional to y
2
 and therefore must all 

balance as y approaches zero near the wall.  This requires the three terms to balance 

properly in order to reach a steady state flow condition.  Contrastingly, the sink or 

dissipation source term in the ζ equation, as discussed earlier, approaches zero at a much 

higher rate than the both the production source and the diffusion term.  Popovac explains 

that this is increasingly important when segregated solvers, such as FLUENT, are used in 

which coupling of the variables is delayed to outer iterations. 

Yet another benefit is a less stiff boundary condition for the elliptic relaxation 

equation.  If the ζ transport equation is balanced as y approaches zero (at the wall), it can 

be determined that the boundary condition for f is 
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Also, under equilibrium circumstances, ζ is proportional to y
2
 and thus the wall boundary 

condition is nearly constant.  For the v
2
 equation, however, the boundary condition is a 

function of y
4
.  Similar to fw for ζ, v

2
 is proportional to y

4
 and thus the boundary condition 

is also nearly constant along the wall.  Therefore, no benefit is seen in that respect.  The 

dependence on y
2
 as opposed to y

4
, however, does impose a less stiff condition leading to 

less grid dependence and therefore a more robust model.  Interestingly, this boundary 

condition has the same form as the turbulent dissipation, ε, wall boundary condition.  

Noticing this, it is important to recognize that the elliptic relaxation function f can be 

transformed to obtain a zero wall boundary condition.  The transformation is presented 

below. 
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where the second term is an alternate representation for 2vζ/y
2
.  Popovac claims that this 

term is a more accurate prediction to the polynomial expansion of ζ at the wall.  This 

transformation results in the wall boundary condition 0wf  .  This transformation will 

be applied later for the f transport equation to obtain a more robust model. 

This benefit is somewhat lost, however, due to a similar reformulation of the elliptic 

relaxation equation used in the v
2
-f model.  The reformulation by Lien et al. produces a 

zero wall boundary condition for f as well.  Popovac does, however, claim that the 

modification results in a less accurate v
2
-f model.   

The last benefit of the ζ transport equation stems from its mathematical limiting 

values.  For the normalized variable ζ, the values are bounded while for the non-

normalized v
2
, there are no upper bounds.  This is evident by applying the Schwarz 

inequality, 0i iu u  , as well as the definition of the turbulent kinetic energy, / 2i ik u u .  

Using the two aforementioned equations, it can be shown that 
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These mathematical constraints on ζ, 0 2  , are even less constraining than the 

physical constraints.  In reality, the normal Reynolds stress components do not reach zero 

and therefore the equalities on either side of ζ are not represented in practice.  These 
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bounds are especially useful for implementation and debugging.  With bounded values, 

gradients are also more easily predicted in a numerical scheme. 

In addition to the previously stated bounds, ζ is also a good measure of anisotropy 

within the flow field.  For isotropic flow, uu vv ww  , applying the Schwarz equality as 

well as the definition of the turbulent kinetic energy again, ζ can be written as 
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This isotropic value is of course ubiquitous with the isotropic state for v
2
, v

2
=2k/3, and 

provides no numerical benefit.  Visually, however, it is easy to see when the flow region 

departs from the isotropic state, and it is also more apparent what the level of anisotropy 

is within the region.  When departing from ζ=2/3 (the isotropic flow condition) towards 

zero, the wall normal Reynolds stress component approaches zero.  When departing 

towards ζ=2, the wall normal component of the Reynolds stress dominates over the other 

two turbulent stress components. 

C. Elliptic Relaxation Function 

Durbin initially proposed an elliptic relaxation model in order to model near wall 

effects.  Examining the Reynolds stress model and the importance of properly modeling 

the pressure fluctuations, individual pressure related terms (the wall reflection, slow and 

rapid term) are modeled individually.  To model these terms, Durbin proposed solving an 

elliptic equation of the Helmholtz type shown below. 
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where L is the length scale, fij is an intermediate variable which is related to the pressure 

rate of strain Rij normally as Rij=kfij.  This is introduced in order to enforce proper wall 

behavior and thus removes the need to model the individual wall reflection portion of the 

pressure rate of strain.  This method thus only requires the modeling of the two remaining 

pressure effects, the slow and rapid term represented as Rij=Rij,1+Rij,2 respectively.  The 

rapid part, Rij,2, responds immediately to the change of the mean flow deformation.  The 

slow part, however, Rij,1, represents the interaction of fluctuating velocities.  These two 

terms have been modeled in multiple ways. 

In anisotropic flow without mean velocity gradients, the pressure rate of strain 

reduces solely to the slow part and the flow generally returns to an isotropic state.  Thus, 

it was proposed that the slow part could be modeled as a return to isotropy (RI).  This 

model simulates the effect of the pressure fluctuation diminishing turbulence anisotropy.   
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The model is a linear model with respect to the anisotropy tensor aij.  Speziale et al, 

however, proposed that the return to isotropy is a non-linear process and thus proposed a 

non-linear relationship as defined below. 
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where SSG represents the model creators Speziale, Sarkar and Gatski. 

The rapid part is modeled through analogy to the slow part and was proposed by Naot 

et al.  
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where Pij represents the production tensor and P is the production defined as Pk/ρ.  This 

linear model is commonly referred to as the isotropisation of production (IP) which 

claims that the rapid part goes against the effects of production in increasing anisotropy. 

Again, Speziale et al., proposed an alternate model, coined the quasi-linear form for 

the rapid part.   
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In the standard v
2
-f model developed by Durbin, the linear IP model is used for the 

rapid part.  The elliptic relaxation function used in the ζ-f model has been modified to 

include the quasi-linear SSG model for the rapid part of the pressure strain term.  

According to Popovac, this allows the model to better capture stress anisotropy in wall 

boundary layers.  If Eq. 106 is applied to the wall normal stress component, R22,2, and 

assuming that P22 = 0, with the previously defined ζ equation without the cross diffusion 

term, the following elliptic relaxation equation is obtained. 
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 (107) 

where it is important to remember that P is the production without density.  It is also 

important to note that the last term can be neglected as the constants determined from the 

SSG model (C4 = 0.625 and C5 = 0.2) produce a coefficient of approximately 0.008.   

Thus after the discussed modifications are made, the ζ transport equation, f transport 

equation and also turbulent viscosity are defined as follows. 

 t C kT   (108) 



 

 

 

 

 

40 

 k t

k k

PD
f

Dt k x x

  


 

   
          

 (109) 

 

2
2

1 2

1 2
1

3

k

i i

Pf
L f C C

x x T




   
      

    
 (110) 

where L and T are the length and time scales respectively which are to be defined and the 

model constants will be summarized in a later section. 

D. Time and Length Scales 

The time and length scales are increasingly important for an elliptic relaxation 

turbulence model.  This is due to the large dependence on accurately capturing the elliptic 

relaxation function which in turn depends largely on the time and length scales.  From a 

numerical perspective, avoiding singularities is imperative and thus the scales must be 

limited.  This is also true from a physical perspective where turbulent scales cannot drop 

below Kolmogorov scales.  On the upper end, realizability constraints limit both scales.  

The time and length scales respectively are presented below. 
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where the constants will be summarized later and the strain rate magnitude S is defined as 

 2 ij ijS S S  (113) 
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E.  ζ-f with Zero Wall Boundary Condition 

The f elliptic relaxation equation has been modified further by Popovac in order to 

obtain a zero wall boundary condition and increase robustness.  The transformation, 

which was discussed previously, is of the same form as the wall boundary condition for 

the turbulent dissipation.   

 

2
1/2

n

f f
x

 
   

 
 (114) 

From this point, the tilde over the transformed f will be omitted.  This transformation of 

the f transport equation not only affects the transport equation being directly transformed 

but also the ζ transport equation.  The equations can also be adjusted to account for the 

variability of density.  The adjust equations are presented below. 
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where the constants are to be summarized and the wall boundary condition for f is fw = 0. 

F. ζ-f Summary 

The ζ-f model can now be summarized completely including the two additional 

transport equations for the turbulent kinetic energy, k, and the turbulent dissipation, ε.  

Slight modifications to the ε transport equation have also been made which are similar to 

that of the v
2
-f model.  The final model equations are displayed below. 

 t C k T    (117) 
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where T and L are defined as 
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The model constants defined by Popovac are presented below in Table 1.  

Table 1. Summary of ζ-f model constants determined by Popovac 

μt k ε ζ f T L 

Cμ σk C’ε1 Cε1 Cε2 σε σζ C1 C2 CT Cτ CL Cη 

0.22 1.0 Cε1(1+0.012)/ζ 1.4 1.9 1.3 1.2 1.4 0.65 0.6 6.0 0.36 50 

 

These constants will be recalibrated for the current implementation in FLUENT.  

Lastly, the boundary conditions at the wall for each of the transport equations are 

summarized below. 
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 (124) 

where v is the kinematic molecular viscosity and subscripted “p” indicates that those are 

the values at the cell center in the wall adjacent cell.  The value yp is the wall normal 

distance from the cell center to the wall face center. 

G. Calibration of ζ-f in FLUENT 

The constants that are used within the v
2
-f model have often been altered since the 

models first introduction.  The ζ-f model by Popovac utilizes the same constants which 

have been altered from the v
2
-f model.  The constants used in the ζ-f model by Popovac 

were calibrated for its implementation.  Similarly, for the implementation in FLUENT, 

the model constants have been calibrated to better predict turbulent flat plate flow. 

The calibration consists of parametrically varying constants which have the most 

influence on the skin friction coefficient and the boundary layer profile.  The goal, of 

course, is to match the previously discussed power law for the skin friction coefficient 

and Spaldings formula and Wieghardt data for the boundary layer profile.  It was 

determined that σk, σε, σζ, C’ε1, Cε1, Cε2, C1, CT, and Cτ have little basis for change as they 

have been determined and verified previously.  These coefficients have the same value as 

the Popovac implementation.  The length scale coefficients, however, were modified 

before in order to adjust for the exclusion of the cross diffusion term.  Therefore, these 

coefficients are reexamined for this implementation.  Additionally, Cμ = 0.22 was not 

modified because its value has been determined based on extensive study by Durbin and 
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others.  The effect of varying the remaining constants is displayed below in Figure 7 for 

the skin friction coefficient and Figure 8 for the boundary layer profile.  The black 

colored lines indicate the original model constants as defined by Popovac. 

 

Figure 7. Calibration curves for skin friction coefficient. 
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Figure 8. Calibration curves for boundary layer profile. 

The calibration was done to try balance the accuracy of the boundary layer profile as 

well as the skin friction coefficient.  The results of the calibration are displayed below in 

Table 2.  Only two constants from the length scale definition were modified while the rest 

retained their values used in the Popovac model. 

Table 2. Calibrated ζ-f model constants. 

μt k ε ζ f T L 

Cμ σk C’ε1 Cε1 Cε2 σε σζ C1 C2 CT Cτ CL Cη 

0.22 1.0 Cε1(1+0.012)/ζ 1.4 1.9 1.3 1.2 1.4 0.65 0.6 6.0 0.28 65 
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IV. Algebraic Structure Based Model 

The ASBM was formulated from the eddy axis concepts developed by Kassinos and 

Reynolds.  The eddy axis formulation computes the structure tensors from a statistical 

average of hypothetical turbulent eddies.  The eddies are characterized by its axis vector, 

vortical and jetal fluctuating velocity components, and a measure of cross-sectional 

axisymmetry.  These quantities are represented by the eddy axis tensor aij, the eddy-jetal 

parameter φ, the eddy-helical vector γk, and the eddy-flattening scalar χ and eddy-

flattening tensor Fij
r
 respectively.  The eddy-axis tensor is the energy weighted average of 

normalized eddy axes.  The eddy-jetal parameter is the fraction of energy contained in the 

jetal mode while the eddy-helical vector is the correlation of the vortical and jetal 

motions due to rotation.  The eddy-flattening scalar and tensor measure the magnitude 

and direction of axisymmetric energy distribution.  The ASBM is an algebraic model of 

these quantities where the Reynolds stress tensor is calculated from these values. 

A. Structure Tensors 

The turbulence tensors are Rij, the Reynolds stress tensor, Dij, the dimensionality 

structure tensor, Fij, the circulicity structure tensor.  Dij and Fij contain turbulent structure 

information not present in the Reynolds stress.  For the case of homogenous turbulence, 

the contractions of the tensors are all twice the turbulent kinetic energy, or Rii = Dii = Fii 

= q
2
 = 2k.  Normalized structure tensors can then be defined as 

 
2 2 2/ , / , /ij ij ij ij ij ijr R q d D q f F q    (125) 
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It can also be shown that in homogeneous turbulence, only two structure tensors are 

linearly independent.  Therefore, 

 ij ij ij ijr d f     (126) 

This relationship further affirms that modeling with only one of these structures, as is 

done in LEVMs, would be difficult. 

B. Eddy Properties 

In order to properly define turbulent eddies, each eddy is thought of as separate 

particles from the fluid.  This visualization is similar to the Particle Representation 

Method (PRM) also develop by Kassinos and Reynolds.  Each of the particles in the eddy 

share a eddy-axis direction vector, a , while each has its own velocity vector, V , and a 

gradient vector, n , perpendicular to both a  and V .  There is a also a stream function 

vector, s , perpendicular to V  and n  forming a mutually orthogonal vector triad.  As 

previously mentioned, the eddy can also be flattened.  This flattening accounts for 

asymmetry in the eddy and can be thought of as a axisymmetric distribution of an eddy’s 

kinetic energy being either partially or fully flattened into elliptic or sheet form 

respectively.  This flattening is defined by a flattening direction, b , and also a flattening 

intensity. 

These conceptual eddies are the basis of the ASBM.  Within a turbulent field there are 

many of these conceptual eddies which define field.  If the ensemble of eddies is 

averaged throughout the field, the result would be a representation of the entire field.  

This ensemble-average, denoted below by angle brackets, is used to represent both the 

eddy-axis tensor and the eddy-flattening tensor. 
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The eddy-axis tensor is the energy weighted average direction cosine tensor of the 

eddy axes. 

 2

2

1
ij i ja V a a

q
  (127) 

where q
2 

is again equal to twice the turbulent kinetic energy.  The eddy axis tensor is 

determined by the mean deformation and generally aligns with the direction of positive 

mean strain.  Both mean and frame rotation only rotate the eddy axis tensor kinematically 

and not dynamically. 

 The eddy flattening tensor, similarly defined as the eddy-axis tensor, is the ensemble 

average direction cosine tensor of the flattening vector, 

 2

2

1
ij i jb V bb

q
  (128) 

 In order to more easily represent the eddies, four parameters are defined that 

represent the previously mentioned eddy properties.  These parameters are the eddy 

jetting parameter, φ, the eddy helix vector, γ, the eddy flattening parameter, χ, and β 

which is indicative of the degree of correlation between the fluctuating velocities in 

different directions.  The eddy jetting parameter represents the energy present in the jetal 

mode of the eddy.  Consequently, (1 - φ) represents the energy present in the vortical 

mode of the eddy.  When the deformations representing the eddy are irrotational, the 

eddy jetting parameter is zero and thus the eddies are purely vortical.  In this case, the 

eddy-axis tensor also coincides with the circulicity tensor, fij, previously defined.  

Rotation, however, creates eddies with energy in the jetal mode.  For shear in a fixed 

frame, the eddy jetal parameter thus approaches one.   
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The eddy helix vector represents the correlation between the jetal and vortical modes 

of motion of the eddy.  If the eddy helix vector components are equal to zero, it 

corresponds to purely vortical or purely jetal turbulence.  Typically it is aligned with the 

total vorticity vector.  The shear stress level in the turbulence field is determined mainly 

from the helix vector. 

The eddy flattening parameter represents any asymmetry within the eddy.  A non-

axisymmetric eddy is thus flattened.  Irrotational deformation in a fixed frame creates 

eddies that are not flattened while the presence of rotation flattens eddies into planes 

perpendicular to the rotation.  Ultimately, these three parameters along with the eddy-axis 

tensor and eddy flattening tensor are what are modeled to represent the turbulent field. 

C. Model Formulation 

The structure tensors are related to the parameters of the hypothetical eddy field 

presented by the eddy axis concept as shown below 
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 ij ij ij ijf r d    (131) 
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where aij is the homogenous eddy axis tensor.  It is important to note that under 

irrotational mean deformation, eddies are purely vortical and thus   is zero.  Similarly, 

shear produces jetal eddies implying flows with rapid distortion have values of   closer 

to one.  The strained eddy axis tensor is defined as 
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where S
*

ij = Sij - Skkδij/3 is the traceless strain rate tensor.  The time scale of turbulence, τ, 

is calculated based on the chosen scalar transport equations used with the ASBM.  The 

“slow” constant, a0 is equal to 1.6.  The homogeneous eddy axis tensor is then obtained 

by applying a rotation transformation to the strained eddy-axis tensor as shown below 
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where Ωpq is the mean rotation rate tensor.  The orthonormality conditions for H, 

HkiHkj=δij, requires that 

 2

1 2 22 / 2h h h   (134) 

where h2 is calculated based on rapid distortion theory for combined homogeneous plane 

strain and rotation. 
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The flattening tensor, bij, is given by 
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where Ωi is defined as the mean rotation vector, and Ωi
f
 is defined as the frame rotation 

rate vector.   

 The structure parameters which partially define the normalized Reynolds stress 

tensor and the normalized dimensionality tensor,  , χ, γ, are modeled within a three-

dimensional space defined by the ratio of mean rotation to mean strain, ηm, the ratio of 

frame rotation to mean strain, ηf, and the mean strain, a
2
.  The mean parameters are 

defined as follows, 

 
2

2

ˆ

ˆ
m

m
S




  (137) 

 
2

2

ˆ
( )

ˆ
T

f m sign X
S

 


   (138) 

 2
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where 2ˆ
m  represents the magnitude of rotation, 2ˆ

T  represents the magnitude of the total 

rotation, and 2Ŝ  represents the magnitude of strain.  Definitions of these magnitude 

representations are shown below. 
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 2ˆ T T
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ij ik kjX a S   (143) 

 The parameters are defined in a generic a
2
 plane, along the ηm and ηf directions.  

They were then sensitized to the anisotropy of the turbulence along the a
2
 direction.  

During formulation, modeling was meant to match 2D RDT solutions.  Two main RDT 
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solution lines were utilized in order to provide regions on the generic a
2
 plane to 

interpolate and extrapolate from.  These two states are shear and plane strain represented 

by ηm = 1 and  ηm =  0 respectively.  The interpolation or extrapolation depends on the 

flow deformation location in the generic plane in terms of ηm and ηf.  The equations for 

the known states at ηm = 1 and  ηm =  0 are described below where subscripts of “1” 

denote the shear state and subscripts of “0” denote the plane strain state. 

 The modeling equations for ηm = 1 are displayed below. 

 If ηf < 0, 
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 If 0<ηf < 1, 
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 If ηf > 1, 
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where  

 0 1 21.0       100      0.8b b b    (147) 

The modeling equations for ηm = 0 are displayed below. 

 If 3 / 4f  , 
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0 1   (149) 
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Else, if 3 / 4f  , 
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 0 0    (152) 

 0 0(1 ) / 3    (153) 

where b3 = 1.0.   

 For values between ηm = 1 and  ηm =  0, an interpolation is used as specified 

previously.  The region between the shear and plain strain states represents a trapezoidal 

region where turbulence grows.  In order to simplify interpolation, this trapezoidal region 

is transformed into a rectangular region with the following transformation. 

  * 4 / 3 2 4 / 3m m f        
 

 (154) 

After this transformation, the structure parameters are interpolated along lines of 

constant η*.  The functions for edges of this interpolation utilize an adjusted η* to ensure 

their limits are maintained.  The adjusted η* for the ηm = 1 and ηm = 0 lines are defined as 

follows. 

 
 *

1*

1

2





  (155) 

 2

0* 3 /16   (156) 

The interpolation is then performed based on these new quantities. 
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      * 2

0 0* 1 1* 0 0* m             (157) 

      * 2

0 0* 1 1* 0 0* m             (158) 

      * 4

0 0* 1 1* 0 0* m             (159) 

where the structure parameters are functions of these interpolation quantities. 

 The extrapolation for the region where ηm > 1 requires the decay of turbulence.  

While there is no exact steady state solution in this region, a limiting state is still reached.  

The algebraic model utilizes this limiting state and decouples the effect on turbulence that 

the large rotation causes.  Thus the structure parameters are driven down closer to zero.  

The structure parameters are extrapolated as follows. 
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where the structure parameters defined at ηm = 1 are functions of ηf. 

 Now these interpolated or extrapolated quantities need to be sensitized to the actual 

a
2
 plane in which they lie.  Recall that before the structure scalars were defined for a 

generic a
2
 plane.  While β and χ have been sensitized to a

2
 in some form,   requires a 

more elaborate transformation. 
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 *   (164) 
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 (165) 

where 

 0 11.3       1.0p p   (166) 

The helix vector, γk, is then defined by the structure parameters.  It is aligned with the 

total rotation vector as shown below. 
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where γ is modeled based on 2D RDT solutions. 
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 (168) 

Near wall, however, the model must be adjusted.  The act of driving velocity down 

toward zero by the act of viscous forces reorients the velocity vectors into planes parallel 

to the wall.  The velocity component normal to the wall is driven down much faster than 

the velocity component tangential to the wall.  Thus, it is postulated that eddy orientation 

will be parallel to the wall in near wall conditions.  The wall blocking is modeled through 

a modified projection operator which is then applied to the tensor that is blocked.  The 

projection is based on the proximity to a wall.  A new homogeneous eddy axis tensor, 

aij
h
, is computed based on the previous and the effective wall blockage.  The free stream 

aij is partially projected onto planes parallel to the wall to formulate new wall blocked 

eddy axis tensor. 

 21
,     ( ),    1 (2 )h h

ij ik jl kl ik ik ik a kk mn nm
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a H H a H B D B a B
D

       (169) 
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where the scalar Da
2 

is formulated so that the trace of aij remains unity.  In the 

formulation of Da
2
, the trace of the blockage tensor was used as opposed to the second 

derivative in the wall normal direction for simplicity. 

The blockage tensor Bij gives the strength and direction of the projection onto the 

wall.  The blockage tensor is calculated as follows 
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   if , , 0
, ,

i j

ij k k
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 

 (170) 

where the blocking parameter, Φ, is 1 and Φ,n = 0 solid boundaries where xn is the wall-

normal direction.  If Φ,k Φ,k  is zero then the blockage tensor is defined as the zero 

matrix.  The blockage parameter is calculated using a modified Helmoltz equation 

displayed below. 
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 1   at solid boundaries  (172) 

 , 0   at open boundariesn
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  


 (173) 

 The definition of L was inspired by Durbin and is related to turbulent length scales 

and Kolmogorov length scales.  Multiple definitions fitting this criterion have been 

attempted but the most stable was proposed by Radhakrishnan, 
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 (174) 

where CL = 0.80 and Cv = 0.17.  The latter constant, however, has a large effect on the 

boundary layer profile produced by the model and may be adjusted accordingly.   
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 The structure parameters are also affected by wall blockage and must be adjusted to 

reflect the reorientation of eddies.  The blocked parameters are defined as functions of 

their unblocked or homogeneous, denoted by a superscript “h”, quantities and the trace of 

the blockage tensor.  Again, the trace of the blockage tensor is used as opposed to its 

second derivative in the wall-normal direction for simplicity. 

   
2

1 1 1h

kkB      (175) 

  1h

kkB    (176) 

The eddy flattening parameter, χ, is unaffected by wall blockage. 

D. ASBM Implementation 

The Algebraic Structure Based Model was implemented in C using a Newton-

Raphson method with line search as well as step limiters for both the strained and 

homogeneous eddy-axis tensor.  The tensors to be solved are symmetric and thus are 

treated as a vector with length six as opposed to nine.   The basic Newton-Raphson 

method is summarized below. 

  F x 0  (177) 

 new oldx x x   (178) 

where 

 
1x J F     (179) 

Here J is the Jacobian matrix which is computed analytically.  The Newton step, δx, 

should decrease the magnitude of F as it is the descent direction.  Thus, try to minimize 
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It is possible, however, for the step size to be too large resulting in the next guess being 

further from the solution than the last.  This minimization can find local minima as 

opposed to the global minimum.  Instead, a better strategy is to impose the following. 

 x F F 0f        (181) 

The solution strategy is to calculate the Newton step and attempt the full step.  If the 

full step does not decrease f and satisfy the inequality, then backtracking along the 

Newton direction is required until an acceptable step size is proposed.  In essence, 

  new oldx x x 0 1       (182) 

Here λ is the backtracking fraction which is determined to decrease f. 

An additionally step size limiter is imposed by the physical limits of the eddy-axis 

tensor.  The eddy-axis tensor requires 
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This imposes a limit on λ based on xold and the Newton step.  This limit can be expressed 

quadratic with respect to λ as follows, 
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keeping in mind that the full length vector must be used (vector length nine).  Thus the 

limit is defined as 

 

2 4 ( 1)

2

b b a c

a

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  (185) 

This is then imposed as the maximum step size which in practice is almost always much 

larger than 1.  The first step size taken is thus the smaller of the two. 
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E. ASBM Verification 

The ASBM was verified against the previous work of Haire and Langer.  Verification 

of the model described in the sections previous is compared against the work of Langer.  

Haire developed a model based on the same eddy-axis tensor for free shear flows which 

has been implemented as well.  Verification against his work strengthens the verification 

of the eddy-axis tensor solutions. 

Homogeneous solutions were computed for the following flow types: Axisymmetric 

Contraction (AXC), Axisymmetric Expansion (AXE), Plane Strain (PS), and Shear (SH).  

The solutions were computed with and without frame rotation.  The time scale was also 

varied to show the models response.  In the case of comparison against Haire’s results, 

the non-dimensionalized tensors computed by the model are compared against the strain 

rate magnitude multiplied by the time scale where the strain rate magnitude is defined as 

 
ij jiS S S  (186) 

Note that this definition varies from that being used in other sections of this paper. For 

comparisons against Langer’s results, they are compared against a dummy variable Γ 

which can be considered as the largest magnitude of the strain rate tensor.  The results of 

the implemented models as well as the previous works are displayed. 

1. Axisymmetric Contraction (AXC) 

The mean deformation for axisymmetric contraction is given by 
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In the Haire model, the value of the slow constant is set to 2.  Different levels of frame 

rotation are introduced as well where Ω
f
 = S and Ω

f
 = 2S.  Figure 9 below displays the 

comparison of the current implementation and Haire’s results.  Figure 9 also shows the 

comparison including frame rotation.  The difference in results is negligible. 

 

Figure 9. Free shear flow ASBM results under AXC deformation with no frame rotation Ω
f
 = 0 (solid 

line), Ω
f
 = S (dashed line), Ω

f
 = 2S (dashed-dot line) compared with Haire’s results (o). 

 

The Langer implementation compares the value with the slow constant kept at 1.6.  

When frame rotation is included, the magnitutde is Ω
f
 = 2Γ.  Figure 10 displays bij = rij – 

δij/3 compared against the non-dimensionalized strain magnitude.  The results are nearly 

identical. 
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Figure 10.  Wall bounded ASBM results under AXC deformation with no frame rotation Ω
f
 = 0 (solid 

line), and Ω
f
 = 2Γ (dashed-dot line) compared with Langer’s results (o). 

 

2. Axisymmetric Expansion (AXE) 

The mean deformation for axisymmetric expansion is given by 
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 (188) 

In the Haire model, the value of the slow constant is set to 2.  Different levels of frame 

rotation are introduced as well where Ω
f
 = S and Ω

f
 = 2S.  Figure 11 below displays the 

comparison of the current implementation and Haire’s results.  Figure 11 also shows the 

comparison including frame rotation.  The difference in results is negligible. 
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Figure 11. Free shear flow ASBM results under AXE deformation with no frame rotation Ω
f
 = 0 

(solid line), Ω
f
 = S (dashed line), Ω

f
 = 2S (dashed-dot line) compared with Haire’s results (o). 

 

The Langer implementation compares the value with the slow constant kept at 1.6.  

When frame rotation is included, the magnitutde is Ω
f
 = 2Γ.  Figure 12 displays bij = rij – 

δij/3 compared against the non-dimensionalized strain magnitude.  
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Figure 12. Wall bounded ASBM results under AXE deformation with no frame rotation Ω
f
 = 0 (solid 

line), and Ω
f
 = 2Γ (dashed-dot line) compared with Langer’s results (o). 

 

3. Plain Strain (PS) 

The mean deformation for plain strain is given by 
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 (189) 

In the Haire model, the value of the slow constant is set to 2.  Different levels of frame 

rotation are introduced as well where Ω
f
 = S and Ω

f
 = 2S.  Figure 13 below displays the 

comparison of the current implementation and Haire’s results.  Figure 13 also shows the 

comparison including frame rotation.  The difference in results is negligible once again. 
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Figure 13. Free shear flow ASBM results under PS deformation with no frame rotation Ω
f
 = 0 (solid 

line), Ω
f
 = S (dashed line), Ω

f
 = 2S (dashed-dot line) compared with Haire’s results (o). 

 

The Langer implementation does not evaluate this homogeneous flow. 

4. Shear Flow (SH) in a Spanwise Rotating Frame 

The mean deformation for shear flow in a spanwise rotating frame is given by 
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 (190) 

In the Haire model, the value of the slow constant is varied set to 2.  Different levels of 

frame rotation are introduced as well varying from a small rotation rate of Ω
f
3/S = 0.1, to 

a larger rotation rate of Ω
f
3/S = 0.5, and an even larger still rotation rate of Ω

f
3/S = 1.0.  

Figure 14 below displays the comparison of the current implementation and Haire’s 
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results.  Figure 14 also shows the comparison including frame rotation.  The difference in 

results is negligible. 

 

Figure 14. Free shear flow ASBM results under SH with spanwise rotation deformation with no 

frame rotation Ω
f
 = 0 (a), Ω

f
3/S = 0.1 (b), Ω

f
3/S = 0.5 (c), and Ω

f
3/S = 1.0 (d) compared with Haire’s 

results (o). 

 

The Langer implementation compares the value with the slow constant kept at 1.6.  

Various frame rotation magnitudes were examined since specific effort was placed on 

implementation of this flow type.  Values of ηf  = -Ω
f
12/ Ω12 are varied from 0 to 2 by 0.5.  

Also counter rotation, ηf  = -2, is examined.  Figure 15 displays bij = rij – δij/3 compared 

against the non-dimensionalized strain magnitude.  
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Figure 15. Wall bounded ASBM results under SH with spanwise rotation deformation with no frame 

rotation ηf = 0 (a), ηf = 0.5 (b), ηf = 1.0 (c), ηf = 1.5 (d), ηf = 2.0 (e), and ηf = -2.0 (f) compared with 

Langer’s results (o). 

 

5. Shear Flow (SH) in a Streamwise Rotating Frame 

The mean deformation for shear is given by 



 

 

 

 

 

67 

 

0 1 0 0 1 0 0 0 0

1 0 0 ,  1 0 0 ,   0 0

0 0 0 0 0 0 0 0

1
,  =1

2

f f

ij ij ij

f

S

S

     
     

           
          

 

 (191) 

In the Haire model, this homogeneous flow was not examined.  In the Langer model, 

however, this homogeneous flow is evaluated to demonstrate its difficulties.  

Unfortunately, modeling of this flow type does not predict well.  This is due to the model 

being unable to distinguish between the direction of frame rotation.  Thus all rotation is 

seen as stabilizing while in this case it should be destabilizing.  Never the less, the model 

solutions are compared with and without frame rotation of Ω
f
23/ Ω12 = -0.5 below in 

Figure 16.  Again the results are indistinguishable. 

 

Figure 16. Wall bounded ASBM results under SH with streamwise rotation deformation with no 

frame rotation Ω
f
23/ Ω12 = 0 (solid line), and Ω

f
23/ Ω12 = -0.5 (dashed-dot line) compared with 

Langer’s results (o). 

 



 

 

 

 

 

68 

6. Realizability 

Cases of axisymmetric contraction, axisymmetric expansion, plain strain, and shear 

have also been examined on the Anisotropy Invariant (AI) map to ensure that the flows 

are within physical limits of turbulence.  All realistic turbulence must lie within this map.  

The boundaries are characterized by two states of turbulence.  The left line is defined by 

homogeneous isotropic axisymmetric contraction and the right branch is reached by 

homogeneous isotropic axisymmetric expansion.  The upper limit defines two-component 

turbulence which is generally reached in the near wall region where the wall-normal 

component vanishes much faster than others.  The three connecting limiting points of the 

region are also important.  The (0,0) point defines isotropic turbulence while the right 

limit defines the one-component limit.  Lastly, the limit of the left branch defines a two-

component isotropic state.  The four homogeneous flow cases are shown below in Figure 

17 plotted on the AI map.  All flows are realizable. 
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Figure 17. Anisotropy Invariant map for AXC (a), AXE (b), PS (c), and SH (d). 

 

F. ASBM Turbulence Model Coupling 

With the wall bounded ASBM fully defined for a given mean deformation and 

turbulent time scale, the model can be coupled with various scalar transport equations.  

Coupling the ASBM with scalar transport equations requires that the scalar transport 

provide a field distribution of the turbulent kinetic energy along with a means to calculate 

a turbulent time scale.  This required information is available using any of the turbulence 

model standards, k-ε, k-ω, or v
2
-f.  The model, however, was originally intended to be 

coupled with scalar transport equations which include both the turbulent kinetic energy, 

k, and the turbulent dissipation rate, ε.  This makes coupling schemes with the k-ε and v
2
-f 
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models a primary choice.  Given a field distribution of the mean deformation and the 

turbulent time scale, the ASBM can be used to determine the Reynolds stresses 

throughout the field.  These Reynolds stresses are used to couple the transport equations 

and the ASBM.  Coupling schemes for each of the models will be denoted as k-ε-ASBM, 

and v
2
-f-ASBM. 

1. k-ε-ASBM 

The k-ε-ASBM couples the ASBM with the standard k-ε model developed by 

Launder and Sharma.  The standard k-ε model has been modified slightly in order to 

include the calculation of Reynolds stresses from the ASBM and thus the anisotropy of 

turbulence.  Besides this modification, the model remains the same.  The model equations 

are displayed below. 

 
   i t

k b M

i j k j

k ku k
P G Y

t x x x

  
 



     
        

      

 (192) 

 
   

 
2

1 3 2

i t
k b

i j k j

u
C P C G C

t x k k x x
  

    
 



     
       

      

 (193) 

where Pk is the generation of turbulence kinetic energy due to mean velocity gradients, 

Gb is the generation of turbulence kinetic energy due to buoyancy, and YM accounts 

decreasing spreading rates of turbulence kinetic energy in compressible flows.  Pk, Gb for 

an ideal gas, and YM are defined below.  The effect of buoyancy has been neglected 

throughout this analysis however. 
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  (196) 

The turbulent viscosity is also calculated based on the original formulation of the k-ε 

model. 
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The model constants have been calibrated based on experiments by Launder and 

Sharma.  Their values are displayed below. 

 1 2 31.44    1.92    1.92    0.09    1.0    1.3kC C C C            (198) 

2. v
2
-f -ASBM 

The v
2
-f-ASBM couples the ASBM with the standard v

2
-f model developed by 

Durbin.  Since the v
2
-f model does not require wall functions and already provides 

damping, this coupling is very synergistic in concept.  The velocity scale v
2
, a measure of 

velocity fluctuation normal to streamlines, is used to damp turbulence transport near 

inhomogeneities while the elliptic relaxation function models non-local effects.  This 

provides an accurate base for the ASBM to function from in which it can include 

anisotropic affects of turbulence.  The v
2
-f model has been modified slightly in order to 

include the calculation of Reynolds stresses from the ASBM and thus the anisotropy of 

turbulence.  Besides this modification, the model remains the same.  The model equations 

are displayed below. 
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where Pk is again the production of turbulence kinetic energy due to the mean flow 

velocity gradients as expressed in Eq. 194. 
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 T is a measure of the turbulence time scale. The turbulent time scale cannot become 

less than the Kolmogorov scale and thus T is defined as follows, 

 max , T

k
T C
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 
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 
 (203) 

where the first term is a measure of the turbulent time scale and the second term is a 

measure of the Kolmogorov scale.  The turbulence length scale is defined similarly again 

requiring that the scale is larger than that of the Kolmogorov scale.  It is defined as 

follows. 
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 (204) 

 The turbulence viscosity is defined by the velocity scale v
2
 and the turbulent time 

scale T. 

 2

t C v T   (205) 

 Finally, the model constants have been calibrated for coupling with the ASBM.  The 

result of this calibration is shown below. 
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V. Model Implementation 

The turbulence models discussed in the previous sections, ζ-f, k-ε-ASBM, and ν
2
-f-

ASBM, have been implemented in FLUENT 12 utilizing the User-Defined Function 

(UDF) capabilities.  The following sections detail the UDF theory and the models’ 

implementation. 

A. User-Defined Fuctions, Scalars, and Memory 

General CFD solvers such as FLUENT are meant to handle a wide range of solution 

strategies as well as complex problems.  The software, however, cannot accommodate all 

needs of users.  To further the functionality of the software, FLUENT has built in a 

method for the user to perform custom calculations during preprocessing, post 

processing, and even during iteration.  The custom calculations are called User-Defined 

Functions (UDFs).  UDFs are calculation routines, programmed in C, which can either be 

hooked to the flow solver or executed independently using calculated variables from the 

solver or user input.  The UDFs act as any C code implementation and can of course use 

any standard C function if the proper header file is included.  In addition to standard C 

code functionality, FLUENT has a multitude of built in C functions within the UDF 

header file which access flow variables and also allow for their modification.  It is 

important to note, however, that not all variables can be modified.  These built in 

functions, called FLUENT macros, allow customized boundary conditions, access to 

material properties and flow variables throughout the domain, modification of reaction 

rates, and more.  For implementation of turbulence models, customization of boundary 
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conditions, adjustment of computed values every iteration, modification of turbulence 

viscosity, and use of both User-Defined Scalars (UDS) and User-Defined Memory 

(UDM) are necessary. 

User-Defined Scalars are FLUENT’s method of solving generic transport equations 

utilizing the solver’s capabilities.  The generic transport equation is of the form 
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 (207) 

where k  is the UDS, k is the UDS index, Fi is a user-defined flux function, Γk is a user-

defined diffusivity, and 
k

S  is a user-defined source term.  Each of the convection, 

diffusion, and source terms can be customized for a specific transport equation.  In 

addition, these terms can be modified for existing transport equations such the turbulent 

kinetic energy while using the built in k-ε model.  Since FLUENT calculates the gradient 

of a UDS automatically, it can also be useful to store calculated values as a UDS without 

solving the transport equation.  Calculated values can also be stored as a User-Defined 

Memory (UDM) which simply allows the variable to be accessed in different FLUENT 

macros. 

B. User-Defined Function Architecture 

FLUENT UDFs can be implemented in two ways.  The first method, denoted an 

interpreted UDF, is to interpret the UDF source file at runtime.  The source code is 

compiled in an intermediate, architecture-independent machine code using a C 

preprocessor.  The disadvantage of this method is a penalty in performance due to the 

runtime compiling and also the fact that only a limited subset of FLUENT macros is 



 

 

 

 

 

76 

available.  It does, however, allow the UDF to be shared seamlessly with different 

FLUENT versions and even operating systems.  The second method, denoted a compiled 

UDF, is compiled using the same method as the FLUENT executable itself.  This method 

allows for more complex UDFs to be implemented and also has no performance penalty.  

All turbulence model implementations have been read as compiled UDFs. 

The use of UDFs with the FLUENT solver has limited ability to modify the solver 

method.  Each of the macros involved with adding functionality to the solver is executed 

at a specific time in the iteration process.  The solver’s architecture including UDF macro 

functions for each iteration is displayed below in Figure 18. 

 

Figure 18. Architecture for user access to the FLUENT solver. 

Applying a compiled UDF to FLUENT requires six general steps.  These general 

steps will, of course, vary greatly for each implementation. 

1. Create the UDF source code 

2. Create a FLUENT case 

3. Compile the UDF 
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4. Load the UDF 

5. Attach UDF to the FLUENT solver 

6. Solve 

C. Implementation of the ζ-f model 

The ζ-f turbulence model was written for use in FLUENT via user-defined functions.  

The transport equations for each of the four variables were written in the format of Eq. 

207 and solved with the FLUENT solver.  The turbulent kinetic energy k, turbulent 

dissipation rate ε, the normalized velocity scale ζ, and the elliptic relaxation factor f were 

transported according to this equation.  The defining flux, diffusion, and source terms are 

displayed below in Table 3 for each of the transport variables. 

Table 3. User-Defined Function terms for the ζ-f turbulence model. 

Transported 

Variable, k  
Index, 

k 

Flux 

Function, 

Fi 

Source, 

k
S  

Diffusivity, 

Γk 

Turbulent 

Kinetic Energy, 

k 

0 im u  

2 2

k

t

C k
P

 


  

t

k





  

Turbulent 

Dissipation Rate, 

ε 

1 im u   
 1 2kC P C

T

   
  

t







  

Normalized 

Velocity Scale,  

ζ 

2 im u   kf P
k


    

t







  

Elliptic 

Relaxation 

Factor,  

f 

3 0 

1 22

1 1 2
1

3

kP
C C

L T

f






    
      

   


  

 

 -1 

 

For the turbulent kinetic energy source term, the second term is modified from the 

original transport equation in order for the source to be a function of the transport 

variable.  This is done in order to improve stability of the scheme.  When the source is a 
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function of the transport variable, FLUENT is able to treat the source implicitly as 

opposed to explicitly which helps make the model more robust. 

Examining the source and diffusivity term for the elliptic relaxation factor as 

compared to the transport equation defined earlier, the length scale has been divided 

through onto the source.  While the length scale squared is a diffusive term, it is outside 

of the Laplacian and must be treated accordingly as compared to the general transport 

equation that FLUENT solves.  This also requires that the diffusivity be set to negative 

one to mimic the general transport equation.  Since both the turbulent length scale and 

time scale are in the denominator of the source term, it is especially important to ensure 

they do not become zero and create a singularity.  The limits of the Kolmogorov scales 

proposed earlier ensure this. 

The implementation is complete by modifying the turbulent viscosity used within 

FLUENT.  This couples the ζ-f turbulence model with the mean flow in the frame work 

of an eddy-viscosity turbulence model. 

Lastly, the initial conditions for the transport variables can have a large effect on the 

stability.  For the turbulent kinetic energy and the turbulent dissipation rate, a well 

established method is to specify the turbulent intensity and the viscosity ratio and back 

out both k and ε.  Due to the zero wall boundary condition for the elliptic relaxation 

factor, it is also reasonable to initialize f as zero throughout the domain.  For the 

normalized velocity scale, the equilibrium value of 2/3 is reasonable.  The initial 

conditions as well as the wall boundary conditions are shown below in  

 

 

Table 4. 
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Table 4.  ζ-f initial and wall boundary conditions. 

 k ε ζ f 

Initial 

Conditions 
 

23

2
IU  

2

ratio

C k

 
 2/3 0 

Wall Boundary 

Conditions 
0 2

2 p

p

k

y


 0 0 

 

Here U is the velocity magnitude, I is the turbulent intensity, and μratio is the viscosity 

ratio.  Cμ is the k-ε model value of 0.09.  The model constants for the ζ-f turbulence 

model are summarized again below in Table 5. 

Table 5. Calibrated ζ-f model constants. 

μt k ε ζ f T L 

Cμ σk C’ε1 Cε1 Cε2 σε σζ C1 C2 CT Cτ CL Cη 

0.22 1.0 Cε1(1+0.012)/ζ 1.4 1.9 1.3 1.2 1.4 0.65 0.6 6.0 0.28 65 

 

D. Implementation of the k-ε-ASBM 

The implementation of the k-ε-ASBM varies from the implementation of the ζ-f 

model.  The k-ε-ASBM is built onto the existing standard k-ε model within FLUENT.  

This means that no additional transport equations are required to be solved.  The existing 

transport equation source terms are modified, however.  The ASBM Reynolds stress also 

needs to be calculated within an adjust function.  Table 6 below displays the adjusted 

source terms for the standard k-ε model.  These source terms and the adjust function are 

implemented using a UDF. 
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Table 6. k-ε-ASBM Source Terms 

Transported Variable, k  
Source, 

k
S  

Turbulent Kinetic Energy, 

k 

2i
i j t

j

u
u u S

x
 


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
 

Turbulent Dissipation Rate, 

ε 
2

1
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u
C u u S

k x



 

 
    

 

 

The adjust function calculates the Reynolds stresses in each cell using the ASBM and 

the Newton-Raphson method described earlier.  The Reynolds stresses are then used to 

calculate the production of turbulent kinetic energy which is replaced in the source term 

presented above.  The blockage parameter is calculated using a UDS.  The flux, 

diffusivity, and source terms are shown below in Table 7. 

Table 7. Blockage parameter user-defined scalar definition. 

Transported 

Variable, k  
Index, 

k 

Flux 

Function, 

Fi 

Source, 

k
S  

Diffusivity, 

Γk 

Blockage 

Parameter, Φ 
0 0 Φ/L

2
 -1 

 

Just as with the elliptic relaxation factor, the diffusive length scale squared has been 

moved to the source side of the equation.  This makes it especially important to ensure 

that L does not ever reach zero.  This is again achieved by limiting the length scale using 

the Kolmogorov scale. 

The Reynolds stresses calculated using the ASBM are also stored as UDS in order to 

have access to the gradients throughout the flow field.  This is only important when 

trying to couple the ASBM with the mean flow without using the Boussinesq 

approximation.  In FLUENT, however, it is not possible to modify the mean flow 

coupling directly since there is no macro for the Boussinesq approximation.  As a result, 
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the Boussinesq approximation must also be calculated using macros that are available.  

The resulting approximation of the Boussinesq approximation is stored as a UDS as well 

in order to have access to the gradients.  The mean flow calculation is then adjusted by 

the addition of source terms.  The ASBM Reynolds stress gradients are added while the 

approximated Boussinesq assumption gradients are subtracted.  It is extremely important 

to calculate both of these quantities in each face as well as each cell to ensure smoother 

gradients.  The source terms are summarized below in Table 8. 

Table 8. Velocity source for mean flow coupling. 

Transported 

Variable, 

k  

Source, 

iuS  

Velocity 

, ui 

  2
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i j ji k
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j j j i k
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x x x x x
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                

 

 

It is also important to note that while FLUENT is limited to modification of the flow 

in this manner, previous implementations of the ASBM in different flow solvers have 

utilized a similar method in order to improve stability.  Since the ASBM Reynolds 

stresses cannot be treated implicitly, this method relies on the implicit treatment of the 

Boussinesq approximation for stability.  Unfortunately, the ASBM was not coupled to the 

mean flow in this study due to the limits of FLUENT’s data access macros.  Without 

direct access to the Boussinesq approximation and its gradients, the previously mentioned 

approximation does not cancel out properly using the source term near developing flow.  

This results in stability issues and eventually inaccurate prediction of the turbulent 

variables and thus the flow. 
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E. Implementation of the v
2
-f -ASBM 

The v
2
-f -ASBM is implemented similarly to both the k-ε-ASBM and the ζ-f model.  It 

was written via FLUENT user-defined functions and relies on the transport of five 

variables, four for the v
2
-f model and one for the ASBM blockage, as well as the 

calculation of the ASBM Reynolds stresses.  The transport equations for each of the five 

variables were written in the format of Eq. 207 and solved with the FLUENT solver.  The 

turbulent kinetic energy k, turbulent dissipation rate ε, the velocity scale v
2
, the elliptic 

relaxation factor f, and the blockage parameter Φ were transported according to this 

equation.  The defining flux, diffusion, and source terms are displayed below in Table 9 

for each of the transport variables. 

Table 9. User-Defined Function terms for the v
2
-f -ASBM turbulence model. 

Transported 

Variable, k  
Index, 

k 

Flux 

Function, 

Fi 

Source, 

k
S  

Diffusivity, 

Γk 

Turbulent 

Kinetic Energy, 

k 
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2 2
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
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26kf
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Factor,  
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For the turbulent kinetic energy source term, the second term is modified from the 

original transport equation just as with the ζ-f model in order for the source to be a 

function of the transport variable.  This is done in order to improve stability of the 

scheme.  The implicit treatment makes the model more robust as well. 

Both the elliptic relaxation factor and the blockage parameter require that the length 

scale never reach zero to avoid a singularity.  The time scale has this same requirement 

for the elliptic relaxation factor.  This is again accomplished by limiting the values to the 

Kolmogorov scales.  It is also important to note that the length scale used for the 

blockage parameter is defined differently than the length scale defined for the elliptic 

relaxation factor. 

The implementation is complete by modifying the turbulent viscosity used within 

FLUENT.  This couples the v
2
-f turbulence model with the mean flow in the frame work 

of an eddy-viscosity turbulence model. 

Just as with the ζ-f model the initial conditions for the transport variables can have a 

large effect on the stability.  The initial conditions for the v
2
-f-ASBM can be treated very 

similarly.  For the turbulent kinetic energy and the turbulent dissipation rate, a well 

established method is to specify the turbulent intensity and the viscosity ratio and back 

out both k and ε.  Due to the zero wall boundary condition for the elliptic relaxation 

factor, it is also reasonable to initialize f as zero throughout the domain as well.  For the 

velocity scale, the equilibrium value of 2/3k can be used with the initial value of k.  

Lastly, the initial condition for the blockage parameter Φ is set to zero which is the 

equation’s solution value throughout most of the domain. The initial conditions as well as 

the wall boundary conditions are shown below in Table 10. 
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Table 10.  v
2
-f initial and wall boundary conditions. 

 k ε v
2
 f Φ 

Initial 

Conditions 
 

23

2
IU  

2

ratio

C k

 
 2/3k 0 0 

Wall 

Boundary 

Conditions 

0 2

2 p

p

k

y


 0 0 1 

 

Here U is the velocity magnitude, I is the turbulent intensity, and μratio is the viscosity 

ratio.  Cμ is the k-ε model value of 0.09. 

The ASBM portion of the model is generally only utilized after a converged solution 

for the v
2
-f model has been reached.  This is to improve stability and ensure convergence.  

Therefore the model implementation includes the original source terms that have not been 

modified.  The model constants, however, are still modified and are again summarized 

below in Table 11. 

Table 11. v
2
-f-ASBM model constants 

μt k ε ν
2 

f T Lν2f LASBM 

Cμ σk C’ε1 Cε1 Cε2 σε σk C1 C2 CT CL Cη CL Cη 

0.25 1.0  2

1 1 0.05 /C k   
1.4 2.1 1.3 1.0 1.4 0.3 6.0 0.23 70 0.8 50 
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VI. Results 

Three validation cases have been performed for the application of the ζ-f model and 

ASBM including the flat plate in turbulent subsonic flow, backward facing step and the 

S3H4 2D hill.  For each of the validation cases, Spalart-Allmaras, k-ε, k-ω, k-ω-SST, and 

the v
2
-f model have been used for comparison.  The v

2
-f model used for comparison was 

written using FLUENT user-defined functions and validated previously.  The 

implemented ζ-f model and ASBM were also written using FLUENT user-defined 

functions.  The model constants of each model have been calibrated accordingly.  Built in 

models of Spalart-Allmaras, k-ε, k-ω, and k-ω-SST were used for their evaluation.  The 

computational data for each validation case is compared against experimental data and 

theoretical data when available.   

A. Flat plate in turbulent, subsonic flow 

The ζ-f model and v
2
-f -ASBM along with Spalart-Allmaras, k-ε, k-ω, k-ω-SST, and 

k-ω were used to solve turbulent subsonic flow over a flat plate.  The Reynolds number at 

the end of the plate was 1e7 to allow adequate boundary layer formation at the data 

station of Rex = 4.6x10
6
.  The skin friction coefficient generated using each of the models 

was compared with a theoretical relationship for turbulent flat plate flow and 

experimental data.  The theoretical relationship is shown below. 

 
 

1/7

0.027

Re
f

x

C   (208) 

Figure 19 below displays the comparison of the skin friction coefficients obtained 

from each model.  Each model used seems to under predict the skin friction slightly with 
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the k-ω models result in the worst correlation compared to the theoretical relationship.  

The ζ-f model predicts well especially at the start of the plate.  It does, however, deviate 

further as the Reynolds number increases.  This occurs even more prominently if 

Popovac’s model constants are used.  While this effect could be avoided completely by 

modifying model constants in a different manner, this results in worse prediction of 

boundary layer profile.  The v
2
-f -ASBM displays the opposite effect.  This is due to the 

difficulty the model has during boundary layer formation and seems to propagate down 

stream even after stability issues have been resolved.  The model prediction is still 

adequate especially far from the plate edge.   

 

Figure 19. Skin fiction coefficient distribution for a turbulent flat plate in subsonic flow. 

 

Boundary layer velocity profiles for the turbulent flat plate along with experimental 

data by Wieghardt are also shown below in Figure 20.  It is clear that each of the 

turbulence models captures the general trend of the velocity profile.  The ζ-f model 
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predicts the boundary profile very well matching Spaldings law and the Wieghardt data.  

The v
2
-f -ASBM produces an acceptable profile although it does not match as well as the 

ζ-f model.  It is important to note that even on such a simple validation case, it was 

difficult to produce acceptable results.  The length scale used, particularly when the 

Kolmogorov scales begin to dominate, has a very large effect on the log layer constant B.  

The convergence of the model is also very slow and the model results vary even when 

residuals are no longer dropping.  Figure 21 below displays the results of the two 

implemented models alone. 

 

Figure 20. Boundary layer velocity profiles of a turbulent flat plate produced by various turbulence 

models compared with experimental data. 
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Figure 21. Boundary layer velocity profiles of a turbulent flat plate produced by ζ-f and v

2
-f -ASBM 

compared with experimental data. 

 

The Reynolds stress data was also examined in order to compare the performance of 

the ASBM to experimental data by Klebanoff.  Reynolds stresses calculated using the 

Boussinesq approximation, the ASBM as a post processing tool, and the semicoupled 

ASBM are shown below.  Post processing is displayed for the k-ε model below in Figure 

22.  The ASBM predicts the Reynolds stresses more accurately for both normal stress 

components.  All stresses, however, are under predicted but have the proper shape.  The 

Boussinesq approximation does not predict the wall normal stress well which is expected 

due to its formulation.   
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Figure 22.  Reynolds stresses at Rex = 4.2x10
6
 using the Boussinesq approximation and ASBM 

compared against experimental data of Klebanoff. 

 

For the semicoupled v
2
-f -ASBM the Reynolds stresses are more accurately predicted.  

The data for the coupled model is displayed below in Figure 23.  The Reynolds stresses 

are still under predicted but seem to merely be off by a scale factor.  The shape and 

distribution is very accurate.  A fully coupled model should predict even more accurate 

Reynolds stresses. 
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Figure 23.  Reynolds stresses at Rex = 4.2x10
6
 using the v

2
-f -ASBM compared against experimental 

data of Klebanoff. 

 

Overall, the two models, ζ-f model and v
2
-f-ASBM, accurately predict flow 

characteristics of a turbulent flat plate.  The ζ-f model in particular reproduced the 

boundary layer profile very accurately and generally seemed to predict better than models 

using less equations, i.e. SA, k-ε, k-ω.  It even produced better predictions than the k-ω-

SST.  As compared to the v
2
-f model, the ζ-f model did predict more accurate skin friction 

coefficients based on experiment and produced boundary layer profiles closer to 

experiment. The performance of the v
2
-f -ASBM, however, was comparable to the two-

equation models used for comparison.  Its prediction of Reynolds stresses, even as just a 

post processing tool, was more accurate which is promising.  To obtain better results, a 

fully coupled model seems necessary.  This is discussed in the Future Work section. 
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B. Backward Facing Step 

The canonical backward facing step problem exemplifies turbulence models’ abilities 

to capture separation and reattachment phenomena.  Each of the turbulence models 

discussed as comparison models as well as the implemented ζ-f model and v
2
-f-ASBM 

were evaluated in this flow type.  Specifically, the separation pattern, reattachment 

length, velocity profiles, and Reynolds stress data has been examined. 

The cases were solved with FLUENT’s pressure based solver.  The pressure-velocity 

coupling scheme was utilized in order to reach a converged solution.  The solution 

required low courant numbers during the separation bubble formation for all turbulence 

models used.  After initial formation using a first order upwind discretization scheme, a 

second order upwind scheme was used for all solutions.  The solutions were allowed to 

converge well past dropping residuals in order to ensure proper solutions in a somewhat 

unsteady flow type. 

As discussed earlier, a step height Reynolds number of 5000 was used for all flow 

calculations and the mesh was created accordingly.  The computational domain consists 

of an inlet section of length 3h and a height of 5h where h is the step height.  A sudden 

expansion of h occurs after the inlet section.  This outlet section has a height of 6h and 

extends for a length of 40h to ensure that the outlet boundary condition has no effect on 

the separation and reattachment region.  In the vertical direction there are 128 cells of 

which 70 are placed within the step height.  The cells are bunched toward the wall with a 

growth ratio of 1.01-1.025 to ensure that the first cell has a y
+
 less than 1.0. 



 

 

 

 

 

92 

The ζ-f model was initialized from a fully converged k-ε solution and the v
2
-f-ASBM 

was initialized from a fully converged v
2
-f solution for stability purposes.  The stability of 

both models is discussed more in depth in a later section. 

The separation bubble of each of the comparison turbulence models is displayed 

below in Figure 24 and Figure 25.  The Spalart-Allmaras (SA) model in particular fails to 

predict a proper recirculation region.  Also, each of the models predicts the secondary 

recirculation region.  The secondary recirculation region is extremely exaggerated in the 

standard k-ω model and the k-ω-SST model, however. 

 

Figure 24.  Separation region for the k-ε model (a), and the k-ω model (b). 
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Figure 25.  Separation region for the k-ω-SST model (a), and the ν

2
-f model (b). 

 

The recirculation region of the ζ-f model and v
2
-f-ASBM are presented below in 

Figure 26 and Figure 27 respectively.  The recirculation region flow characteristics are 

predicted accurately for both implemented models.  Also, both predict the secondary 

recirculation region accurately without exaggerated size.  The region is resolved well. 

 

Figure 26. Separation region for the ζ-f model. 
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Figure 27. Separation region for the v
2
-f-ASBM. 

 

The separation region is generally characterized by the reattachment length.  The 

reattachment length is determined by the point at which the wall shear stress recovers 

from zero.  Jovic and Driver determined the reattachment length for Reh = 5000 from 

experimental and DNS data to be Xr = 6.00h with the experimental data having an 

uncertainty of 0.15h.  The reattachment length of both the comparison models and the 

implemented models are displayed below in Table 12. 

Table 12.  Comparison of reattachment length to experimental data. 

Model 
Reattachment Length 

(Xr/h) 

Percent Difference 

(%) 

Experiment 6.00 0.00 

SA 2.60 -56.67 

k-ε 5.25 -12.50 

k-ω 5.18 -13.67 

k-ω-SST 9.24 54.00 

ν
2
-f 6.54 9.00 

ζ-f 11.69 94.83 

ν
2
-f-ASBM 7.20 20.00 

 

Of the models used, the ν
2
-f model predicted the reattachment length most accurately.  

It also accurately predicted the secondary separation bubble.  The ν
2
-f-ASBM extended 

the region slightly while maintaining accurate prediction of the secondary bubble. The ζ-f 

model over predicted the reattachment length significantly but still produced an accurate 

secondary bubble. The k-ω model predicts accurately but has a largely exaggerated 
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secondary recirculation region. The k-ω-SST secondary bubble is largely exaggerated as 

well.  It is interesting to note the difference between performance of the ζ-f model and the 

ν
2
-f model since the ζ-f model is mathematically nearly identical to the ν

2
-f model. 

The velocity profiles throughout the separation region can also be examined and 

compared against experiment.  The streamwise velocity profiles for ν
2
-f, ζ-f, and ν

2
-f-

ASBM compared against experimental data are shown below in Figure 28, Figure 29, and 

Figure 30.  The other models will not be examined further due to poor prediction 

compared to the ν
2
-f model.   

 

Figure 28.  Streamwise velocity profiles at x/h = -3, 4, 6, 10, 15, and 19 for ν
2
-f (solid line) compared 

against experimental data (□). 
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Figure 29. Streamwise velocity profiles at x/h = -3, 4, 6, 10, 15, and 19 for ζ-f (solid line) compared 

against experimental data (□). 

 

 
Figure 30. Streamwise velocity profiles at x/h = -3, 4, 6, 10, 15, and 19 for ν

2
-f-ASBM (solid line) 

compared against experimental data (□). 
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The velocity profiles for each of three models match well with the experimental data.  

The ν
2
-f model results in the most accurate prediction which is to be expected based on 

reattachment length data.  In contrast, the ζ-f model predicts the reversed flow near the 

step very well but creates too large of a stagnation region.  The ν
2
-f-ASBM predicts very 

similarly to the ν
2
-f model which is expected due to its formulation.  In the shear layer 

between the separated region and mean flow, each of the models predicts well as 

compared with the experimental data.  Prediction of the shear region is slightly worse for 

the ζ-f model, however. 

The Reynolds stresses can also be examined at the sample stations as predicted by the 

Boussinesq approximation used in the ν
2
-f model, the ASBM as a post processing tool on 

the ν
2
-f model, and the semicoupled ν

2
-f -ASBM.  The Reynolds normal stresses and the 

Reynolds shear stress are shown for each of the prediction methods in Figure 31, Figure 

32, and Figure 33.    
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Figure 31.  Backward facing step Reynolds stresses determined by the Boussinesq approximation 

with the ν
2
-f model (solid lines) compared against experimental data (□). 
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Figure 32. Backward facing step Reynolds stresses determined by the ASBM with the ν

2
-f model 

(solid lines) compared against experimental data (□). 
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Figure 33.  Backward facing step Reynolds stresses determined by the ν

2
-f-ASBM model (solid lines) 

compared against experimental data (□). 

 

The Reynolds stresses are generally predicted poorly in complex flow regimes using 

the Boussinesq approximation.  It is apparent in Figure 31 that the streamwise Reynolds 

stress is under predicted near to the step while the wall normal Reynolds stress is over 

predicted.  As the flow becomes more and more isotropic toward the reattachment point, 

the Reynolds stress predictions become better.  In the shear layer between the 

recirculation region and mean flow, the normal Reynolds stresses are predicted poorly as 

well.  The shear Reynolds stress is predicted surprisingly well.  Using the ASBM as a 

post processing tool produced larger values for the streamwise and wall normal Reynolds 

stresses than the Boussinesq approximation.  For the wall normal direction the prediction 
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is slightly better.  The streamwise values are off by a similar scale, however.  The shear 

layer is predicted more accurately with the ASBM.  The shear component is surprisingly 

slightly less accurate for the ASBM.  When the ASBM is coupled with the ν
2
-f model, the 

predictive capabilities of the model seem to increase for the streamwise Reynolds stresses 

especially in the shear region.  The stresses are generally under predicted throughout the 

recirculation region, however.  This is partially due to the less accurate reattachment 

length for the semicoupled model. It seems that in order to accurately predict the 

Reynolds stresses using the ASBM, full coupling of the model with the mean flow would 

be necessary.  Overall, however, the predictive abilities of the standard ν
2
-f model seem 

better than that of the semicoupled model.  The ASBM does, however, predict the 

Reynolds stresses more accurately when used as a post processing tool. 

C. S3H4 2D Hill 

The S3H4 2D hill is a sinusoidal hill represented by the following equation. 

 
25

1 cos
2 2

H x
y

H

    
     

    
 (14) 

where the length is 25 times the height.  This geometry is consistent with the geometry 

defined by Kim et al.  A boundary layer height Reynolds number of 7 was used for CFD 

to mimic the experiment.  The geometry and case is further described in section 1.B.3.  

The cases were solved with FLUENT’s pressure based solver with a similar set up to 

the backward facing step case.  The pressure-velocity coupling scheme was utilized in 

order to reach a converged solution.  Low courant numbers were used until the flow was 

well defined over the hill.  After initial formation using a first order upwind discretization 

scheme, a second order upwind scheme was used for all solutions. 
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 Experimental velocity profile data around the hill was compared against the velocity 

profiles generated using each of the comparison turbulence models and the implemented 

turbulence models.  This comparison is displayed below in Figure 34 for the comparison 

models.  The experimental data does not show a separation region but the Spalart-

Allmaras and v
2
-f model do. 
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Figure 34.  S3H4 2D hill velocity profiles for various turbulence models (solid line) compared against 

experimental data (□). 
 

The two equation comparison models perform well on the S3H4 hill while the others 

show separation where it should not be present.  Similar to the v
2
-f model, the ζ-f model 
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and v
2
-f-ASBM show a separation region.  The separation region for the two 

implemented models is slightly enlarged compared to the v
2
-f results.  It is interesting to 

note that the models also increased the separation length as compared to the v
2
-f model in 

the backward facing step case as well.  Unfortunately this separation is not desired in this 

case.  Since both models are based on the v
2
-f model, it is not surprising, however, that 

similar difficulties in capturing the high streamline curvature would exist.  The ζ-f 

model’s and v
2
-f-ASBM’s performance is sub par for this validation case.  The model 

results are shown below in Figure 35 and Figure 36. 

 

Figure 35. S3H4 2D hill velocity profiles for the ζ-f model (solid line) compared against experimental 

data (□). 
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Figure 36. S3H4 2D hill velocity profiles for the v

2
-f-ASBM (solid line) compared against 

experimental data (□). 

D. Stability and Robustness 

Both of the implemented models require additional computing power as compared to 

most general application turbulence models.  This is due to the addition of transport 

equations for the case of the ζ-f model and also the addition of a computationally 

expensive algebraic calculation for the ASBM.  As compared to built in two equation 

models in FLUENT, the ζ-f model takes between 20-30% more computing time while the 

ν
2
-f-ASBM requires 50-60% more computing time per iteration.  The ζ-f model, however, 

was created to improve stability and robustness while the ASBM is still in development 

stages. 

The ζ-f model is meant to perform similarly to the ν
2
-f model with increased stability 

and robustness.  Part of the robustness scheme meant to improve the ζ-f model was the 

zero wall boundary condition.  The ν
2
-f model used also has a zero wall boundary 
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condition, however.  In order to compare stability, the residuals of x-velocity, y-velocity, 

and continuity are compared for the ζ-f model and ν
2
-f model as computed during flat 

plate calculation.  The residual plots are displayed below in Figure 37 and Figure 38. 

 

Figure 37. Residuals of ν
2
-f model for turbulent flat plate. 

 

Figure 38. Residuals of ζ-f model for turbulent flat plate. 
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Examining the residual plots, it is apparent that the residuals of the ζ-f model are 

lower and also drop faster than that of the ν
2
-f model.  This is most apparent with the x-

velocity residual after under relaxation factors have been raised at about 8000 iterations.  

All of the residuals also level out sooner for the ζ-f model.  The improvement is small but 

still apparent.  While improvement is shown for the flat plate, it is important to note that 

during calculation of the backward facing step, the ζ-f model had no noticeable 

improvement over the ν
2
-f model.  Stability benefits were not apparent for that test case.  

Overall, the ζ-f model shows similar characteristics for stability and robustness as the ν
2
-f 

model which was used. 

Stability and robustness of the ASBM, however, are lacking.  Aside from the extra 

computational expense, the ASBM, and all algebraic models for that matter, have no 

memory with regard to flow characteristics.  Thus response to velocity gradients is 

instantaneous and purely reactive.  As a result, the model has problems resolving flow 

features where velocity gradients are changing rapidly.  This is especially apparent near 

the inlet during flow formation.  Thus resolving the flow features requires special 

attention during calculation to avoid divergence.  Unfortunately, this is a deterrent for use 

in complex flows where the benefit of the model might outweigh its computational 

expense.  In addition to robustness issues with the model, the elliptic relaxation function 

used for the blockage parameter has stability issues within the FLUENT solver. 

The elliptic relaxation function’s stability, a Helmholtz equation, is highly dependent 

on the length scale used.  More specifically, the stability decreases rapidly when the 

Kolmogorov scale limit is decreased, i.e. decreasing Cν.  This is synonymous with 

increasing the wave number of the Helmholtz equation at the Kolmogorov limit.   
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Solving a Helmholtz equation at large wave numbers is considered a difficult task in 

scientific computing and proves difficult with the FLUENT solver.  To obtain a solution 

for the elliptic relaxation function with small values of Cν (Cν<5), the under relaxation 

factor must be dropped below 10
-2

.  This of course results in slow convergence.  To 

properly use the ASBM with this stability problem, the elliptic relaxation function must 

be allowed to converge independently to avoid computation expense.  After convergence, 

the additional transport equations of the coupled turbulence model and the ASBM can be 

implemented.  Alternatively, the mesh can be resolved further (well beyond the 

requirements of the base turbulence model).  This, however, creates a much higher 

computational strain than the other method.   
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VII. Conclusion 

Both the ζ-f model and the ASBM have been implemented in FLUENT and also 

validated on multiple canonical cases.  The ζ-f model produced improved results for the 

flat plate as compared to all two-equation or less turbulence models and showed similar 

predictive capabilities to the v
2
-f model.  The recirculation region in the backward facing 

step, however, was greatly over predicted.  It had difficulties predicting attached flow 

past the S3H4 2D hill just as the v
2
-f model.  This, however, was expected due to its basis 

on the v
2
-f model.  The model was also more stable than the v

2
-f model during calculation 

of the turbulent flat plate but showed no noticeable improvement in robustness for the 

more complex backward facing step.  The semicoupled (linear eddy viscosity model 

based) v
2
-f-ASBM’s predictive capabilities was comparable to the two equation models 

for the turbulent flat plate case.  It performed well for the backward facing step but 

reduced accuracy as compared to the v
2
-f model.  The model did, however, have 

problems predicting the S3H4 2D hill just as the with the v
2
-f model.  Reynolds stress 

prediction was generally improved over a flat plate although it seems that coupling the 

ASBM with the mean flow would be necessary for greater accuracy.  This was even more 

evident in the backward facing step case.  The ASBM did present stability issues as well 

as implementation issues within FLUENT’s user defined functions.   
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VIII. Future Work 

This paper provides the basis for the validation of the ASBM on gradually more 

complicated flows.  So far, work has been done implementing the k-ε-ASBM and the v
2
-f 

–ASBM turbulence models defined as a user defined function for the flow solver 

FLUENT.  The work presented does not couple the ASBM with the mean flow, however.  

This coupling should provide more accurate prediction of flow.  A significant amount of 

work has been committed and the frame work for implementation has been coded.  

Stability and divergence issues have made this implementation difficult, however.  It 

seems that FLUENT’s user-defined functions have no method to adjust the mean flow 

coupling smoothly.  Approximating the Boussinesq hypothesis gradients within a small 

margin throughout the whole flow regime has proven difficult.  Small inconsistencies 

between the approximation and gradients used by FLUENT introduce improper flow 

characteristics and eventually leads to divergence.  Preliminary results of turbulent flat 

plate flow for the fully coupled k-ε-ASBM are presented below in Figure 39.  This 

solution is not fully converged and only first order.  If it is iterated further, pockets of 

enlarged turbulent kinetic energy form near the inlet where larger flow gradients are 

present.  It does, however, show promising results.  The laminar sublayer and overlap 

layer match well with theoretical data.  In the log layer, however, the slope is not 

predicted accurately.  The Reynolds stresses can also be examined and are shown in 

Figure 40.  Since the flow is coupled with the ASBM, results are more indicative of the 

ASBM’s predictive capabilities.  The Reynolds stresses are predicted quite well. 
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Figure 39. Boundary layer velocity profiles of a turbulent flat plate produced by k-ε -ASBM 

compared with experimental data. 

 

 
Figure 40. Reynolds stresses at Rex = 4.2x10

6
 using the fully coupled k-ε -ASBM compared against 

experimental data of Klebanoff. 
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Future work will include attempts to fully couple the ASBM based on this initial 

promising work.  Improvements in FLUENT’s UDF macros may be necessary to fully 

couple the ASBM, however. 
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