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ABSTRACT 

Extending automatic speech recognition (ASR) to the vi
sual modality has been shown to greatly increase recogni
tion accuracy and improve system robustness over purely 
acoustic systems, especially in acoustically hostile environ
ments. An important aspect of designing such systems is 
how to incorporate the visual component into the acoustic 
speech recognizer to achieve optimal performance. In this 
paper, we investigate methods of integrating the audio and 
visual modalities within HMM-based classification models. 
We examine existing integration schemes and propose the 
use of a coupled hidden Markov model (CHMM) to exploit 
audio-visual interaction. Our experimental results demon
strate that the CHMM consistently outperforms other inte· 
gration models for a large range of acoustic noise levels and 
suggest that it better captures temporal correlations between 
the two streams of information. 

1. INTRODUCTION 

Speech is bimodal in nature: there is both an audio and a vi
sual component. While the audio signal is a major source of 
speech information, the visual component is considered to 
be a valuable supplementary information source in noisy en
vironments because it remains unaffected by acoustic noise. 
One major advantage of the visual component is that it car
ties information that is complementary to the acoustic signal 
-many phonemes that are acoustic confusable are easily 
distinguished visually. Perceptual studies [1] have shown 
that using the visual information leads to more accurate 
speech perception even in noise-free environments. 

Purely acoustic speech recognizers work quite well for 
many applications, but their performance degrades ·signifi
cantly when the speech is corrupted by acoustic noise. In 
order to overcome their limitation. much research has been 
directed toward systems for noisy speech environments that 
use noise robust methods such as feature-normalization al
gorithms, microphone arrays. and representations based on 
human hearing [2, 3, 4] . 

Another way to increase the robustness against acoustic 
noise is to incorporate the visual modality. Since the pio

neering work by Petajan In 1984 (51, automatic speechread
ing through its use of visual information to augment acous
tic counterpart has drawn much attention [6, 7). Various 
automatic speechreading systems developed so far demon
strated that the visual modality yields information that is not 
always present in the acoustic signal and enables improved 
recognition accuracy over purely ASR systems, especially 
in environments corrupted by acoustic noise and multiple 
talkers. 

Automatic speechreading mainly involves two research 
areas - one is the design of a visual front end where vi
sual speech features are accurately and reliably extracted, 
the other Is the development of an effective strategy to in
tegrate the two separate information sources. In our pre
vious studies [8, 9], we addressed the first issue. In this 
paper, we focus on combining the audio-visual modalities 
to improve speech recognition performance. Most current 
speech recognition systems employ HMMs to model feature 
sequences. In this paper we examine all audio-visual inte
gration schemes within HMM -based classification models. 

2. BIMODAL FUSION 

Existing audio-visual recognizers fuse the information from 
the acoustic and visual channels In different ways. Two 
main integration models have been reported in the litera
ture: early integration and late integration [6J. 

In early integration, the fusion process takes place prior 
to any classification. The integration forms composite 
audio-visual feature vectors (often by simply concatenating 
the vectors from each modality) and the recognition is per
formed in the audio-visual feature space. Late integration 
uses two parallel unimodal classifiers, one for audio and one 
for video. The final recognition Is based on the combined 
results from the two modalities. Figs. 1 and 2 show the 
HMM topologies for early integration and late integration, 
respectively. Here. S; represents the hidden state variable. 
and 0; the sequence of feature vectors. There is no general 
consensus as to which model is the best in achieving speech 
recognition, though evidence In human speech perception 
suggests that the fusion takes place somewhere between the 



peripheral input level and the categorical level [10]. 

Fig. 1. HMM topology in early integration. 

Late integration offers several advantages over early in
tegration because its implementation is simple and it does 
not require precise synchronization of the acoustic and vi
sua! features. In late integration, each independent subsys
tem can be developed and trained separately. However, the 
use of separate models assumes conditional independence 
between the two feature sets and therefore it fails to model 
the correlations between the visual and acoustic channels. 
On the other hand, early integration provides a more general 
model by integrating the two components before recogni
tion. However, the classification is based on a single HMM 
on the concatenated vectors of audio and visual features. It 
forces the same state sequences upon the audio and visual 
components and this does not correspond to the way that 
people talk. Often the lips start moving before voicing com
mences. Therefore an early integration model restricts the 
asynchrony between the two streams of information which 
occurs in speech production. 

·Based on the above analysis, early and late integration 
models are not suitable for the composite modeling of mul
tiple time-series. We therefore propose the use of a more 
generalized model - the coupled hidden Markov model 
(CHMM) to model the audio-visual interaction for speech 
recognition. The coupled hidden Markov model was first 
introduced by Brand In 1996 and was successfully used for 
modeling Tai Chi gestures [11]. In a coupled HMM, as 
shown in Fig. 3, the traditional left-right HMM is expanded 
to a model containing two Markov chains, representing the 
audio and visual channels. The coupling between the two 
subprocesses is Introduced by conditional probabilities be
tween the hidden state variables Pr(S£' JSf-..1 , S[ 1) and 

Fig. 2. HMM topology In late integration. 

Fig. 3. Coupled hidden Markov model. 

Pr(snst, 1, S[ 1). On one hand, this architecture relaxes 
the restriction of the early integration by allowing asyn
chrony between the two channels. On the other hand, un
like late integration, It incorporates temporal coupling terms 
across the two subsystems. Intuitively this model better 
captures the interprocess influences between multiple pro
cesses. 

Exact inference through naive inference reduces the 
two-modal coupled HMM to an ordinary HMM by perform
ing a cartesian product of all sub-HMMs' state spaces. This 
results in an exponentially increased state space dimension. 
Assuming that each HMM has a state space ofdimension k, 
the resulting HMM would require k 2 distinct states to model 
this system. This representation is not only computationally 
inefficient, but it requires tremendously large training data 
to achieve parameter estimation accuracy. 

To solve the inference problem In a coupled HMM, we 
employ the approximate approach proposed by Boyen and 
Koller [12, 13]. The key ingredient of the BK algorithm is 
the propagation of an approximate probability distribution 
over the entire system using factorized products over inde
pendent clusters. The accumulated error arising from the 
repeated approximation was proved to remain bounded in
definitely over time. The BK algorithm has been shown to 
be an efficient approach to solving inference problems in 
general dynamic Bayesian networks. 

For learning parameters in the CHMM, forward 
and backward variables are first approximated. The 
BK algorithm represents the forward variable at 
Pr(it, Ot, · · · , Ot) as a product of marginals over two sub
processes at~ Pr(if,o:, ... ,of)Pr(iY,or, ... ,on. 
The approximated forward variable at time t is then propa
gated through the transitional model and conditioned on ev
idence at timet+ 1 using the junction tree algorithm (14] . 
To allow the algorithm to continue, the forward variable at 
t + 1 is approximated using one that admits a compact rep
resentation by computing marginals over each cluster. The 
same procedures can be applied to approximating the back
ward variable flt. These two variables are then used In an 
EM algorithm that learns the model in an iterative manner. 



3. EXPERIMENTS 

We perfonn experiments on audio-visual speech recogni
tion using the audio-visual database from Carnegie Mellon 
University [15]. This database includes ten test subjects 
(three females, seven males) speaking 78 Isolated words re
peated ten times. These words include numbers, weekdays, 
months, and others that are commonly used for scheduling 
applications. 

In the visual subsystem, we use six geometric features as 
defined in Fig. 4: mouth width (w2), upperflower lip width 
(ht, h3), lip opening height/width (h2, wt), and the distance 
between the horizontal lip IJne and the upper lip (h.). Be
sides the geometric dimensions of the lips, we include two 
other features characterizing the visibility of the tongue and 
teeth. These two features are measured by the number of 
pixels of the tongue and tooth colors within the lip inner 
contour. Delta features are also included in the visual fea
tures, forming a 16-dimensional feature vector. They are 
obtained by using a regression fonnula drawing over a few 
frames before and after the current frame. The visual fea
ture vectors were preprocessed by nonnalizing against the 
average mouth width w2 of each speaker to account for the 
difference in scale between different speakers and different 
record settings for the same person. 

Fig. 4. Illustration of the extract~d geometric features of the 
lips. 

In the acoustic subsystem. we use 12 Mel Frequency 
Cepstral Coefficients (MFCCs) and their corresponding 
delta parameters as features - a 24-dimenslonal feature 
vector. MFCCs are derived from FIT-based log spectra with 
a frame period of 11 msec and a window size of 25 msec. 

We conducted tests for both speaker-dependent and in
dependent tasks. For the speaker-dependent task. the test 
was set up by using a leave-one-out procedure, I.e.. for each 
person, nine repetitions were used for training and the tenth 
for testing. This was repeated ten times. The recognition 
rate was averaged over the ten tests and again over all ten 

speakers. For the speaker-independent task, we use differ
ent speakers for training and testing. I.e., nine subjects for 
training and the tenth for testing. The whole procedure was 
repeated ten times. each time leaving a different subject out 
for testing. The recognition rate was averaged over all ten 
speakers . . 

In all cases, the HMMs have ten states, and we model 
the observation vectors using two Gaussian mixtures for the 
speaker-independent task. Because of the limited training 
data available, we use one Gaussian mixture in the speaker
dependent case. In early integration, the classification is 
based on training a traditional HMM on the concatenated 
audio-visual observation vectors. The video has a frame 
rate of 33 ms. To match the audio frame rate of 11ms, lin
ear interpolation was used on the visual features to fit the 
data values between the existing feature data points. In the 
late integration fusion, the combined score takes the follow
ing form: logP.,., = >.JogP., + (1 - >.)JogP,, where P., 
and P., are the probability scores of the audio and visual 
components and the weighting factor>. is set to 0.7 in our 
experiments. Model training and Viterbl decoding of the 
HMMs were implemented using the HTK Toolkit [16]. The 
BK algorithm for the coupled HMM was implemented us· 
ing the Bayes Net Toolbox [17] . Prior to employing the 
BK algorithm, the model parameters need to be well initial
ized, which is essential in achieving good model estimates. 
For this, we apply the traditional EM algorithm on the two 
separate HMMs and use the model parameters. trained on 
the separate HMMs as the initial parameters in the coupled 
HMM. 

In the following, we present our experimental results on 
audio-visual speech recognition over a range ofnoise levels 
using these three models. Art1ficial white Gaussian noise 
was added to simulate various noise conditions. The ex

periment was conducted under a mismatched condition 
the recognizers were trained at 30dB SNR, and tested under 
varying noise levels. Tables 1 and 2 summarize the recog
nition performance using the three integration schemes for 
the speaker-dependent and Independent tasks, respectively. 
For comparison, the visual-only and audio-only results are 
also included. As can be seen, all three integration models 
demonstrate Improved recognition accuracy over audio only 
performance. The coupled HMM consistently outperfonns 
the early and late integration over a wide range ofSNRs. 

S.D. v-only a-only early Int. lateint. CHMM 
OdB 45.59 3.24 31.21 25.76 33.86 

lOdB 45.59 27.86 71.12 43.47 76.86 

30dB 45.59 86.82 89.42 80.26 94.59 

Table 1. Audio-visual speech recognition performance in the 
speaker-dependent mode. The numbers represent the percentage 
ofcorrect recognition. 



S.I. v-only a-only early int. late int. CHMM 
OdB 21.08 3.69 8.9 3.81 11.91 
lOdB 21.08 14.58 35.50 20.27 38.43 
30dB 21.08 43.77 62.14 56.92 66.17 

Table 2. Audio-visual speech recognition performance In the 
speaker-independent mode. The numbers represent the percentage 
of correct recognition. 

4. SUMMARY 

We proposed the use of a coupled hidden Markov model 
for temporal fusion of the audio and visual modalities in a 
speech recogntion task. We analyzed the HMM structures 
in conventional AV integration models - early and late in
tegration, and argued that the coupled HMM better captures 
temporal correlations between audio and visual sources of 
inforrnatlon. Our experimental results verified this assump
tion and suggest that the coupled HMM is a better model for 
fusing data from multiple channels. 
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