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AN EXISTENCE RESULT
 

FOR LINEAR PARTIAL DIFFERENTIAL EQUATIONS
 

WITH C∞ COEFFICIENTS IN AN ALGEBRA
 

OF GENERALIZED FUNCTIONS
 

TODOR TODOROV 

Abstract. We prove the existence of solutions for essentially all linear partial 
differential equations with C∞-coefficients in an algebra of generalized func
tions, defined in the paper. In particular, we show that H. Lewy’s equation 
has solutions whenever its right-hand side is a classical C∞-function. 

1. Introduction 

The present paper is related to [22] and [23], but we shall not assume familiarity 
with them. Our framework is A. Robinson’s [16] nonstandard analysis in a form 
close to the one presented in T. Lindstrøm [13]. For convenience of the reader a 
short introduction to the nonstandard analysis is presented in an Appendix at the 
end of this paper. For a discussion of the localization properties of the generalized 
functions (in terms of “restrictions and sheaves”) we refer to A. Kaneko [11]. 

The main result of the paper states that the equations of the type 

(1.1)	 P (x, ∂)U (x) =  F  (x), x ∈ Ω, 

have solutions U in A(Ω) for any choice of the right-hand side F also in A(Ω), in 
particular, whenever F is a classical C∞-function on Ω. Here Ω is an open set of 
Rd (d is a natural number), A(Ω) is an algebra of localizable generalized functions, 
larger than the class E(Ω) = C∞(Ω) of the smooth complex valued functions (C∞
functions) on Ω and  
(1.2)	 P (x, ∂) = aα(x)∂α 

|α|≤m 

is a linear partial differential operator (m is a natural number) with coefficients aα 

in E(Ω), satisfying the condition: 
(1.3)	 |aα(x)|  = 0, x ∈ Ω. 

|α|≤m 
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In particular, we show that H. Lewy’s [12] equation 

∂U(x) ∂U(x) ∂U(x)
(1.4) + i − 2i(x1 + ix2) = F (x), x ∈ R3 ,

∂x1 ∂x2 ∂x3 

has a solution U in A(R3) for any choice of F in A(R3), in particular, whenever F 
is a classical smooth function on R3 . 

The generalized functions in A(Ω) are “localizable in Ω” in the sense that the 
family {A(Ω)}Ω∈τ is a sheaf of differential algebras in Rd (A. Kaneko [11]), where 
τ denotes the usual Euclidean topology on Rd . This property justifies both the 
usage of A(Ω) for spaces of solutions and the name “generalized functions” for 
their elements. The algebra A(Ω) is constructed in the paper as a factor space of 
the class of nonstandard functions ∗E(Ω). 

The result of this paper is a generalization of a similar result in [23], where 
the existence of solutions for equations of the type (1.1) has been established for 
a more restricted class of differential operators P (x, ∂) with smooth coefficients 
(still including H. Lewy’s equation (1.4)) in the class of “generalized distributions” 

EE(Rd), defined also in [23]. 
In addition to the notations introduced above, we denote by D(Ω) = C∞(Ω)0 

the class of C∞-functions with compact supports in Ω and by D'(Ω) and E '(Ω) we 
denote the class of Schwartz distributions on Ω and the class of Schwartz distri
butions with compact supports in Ω, respectively L. Schwartz [21]. We shall write 
supp T for the support of T ∈ D'(Ω) and we shall sometimes write T (x) instead  
of the more correct T even when T is not a classical function. For integration in 
Rd we use the Lebesgue integral. As usual, N, R and C will be the systems of 
the natural, real and complex numbers, respectively, and we use also the notation 
N0 = {0} ∪ N. For the partial derivatives we write ∂α , α ∈ Nd 

0. If  α  = (α1, . . . , αd)  
for some α ∈ Nd 

0, we  write  |α| =  α1  +  · · ·+  αd.  We also  use  the notation:  

(1.5) ΩP = {x ∈ Ω :  |aα(x)| = 0},  
|α|≤m 

where aα are the coefficients in P (x, ∂). 
Recall that any linear partial differential equation with constant coefficients 

(1.6) P (∂)U = F 

has solutions U in D'(Ω) for any choice of F also in D'(Ω) (L. Ehrenpreis [10], 
B. Malgrange [14]). A general existence result for the linear partial differential 
equations with smooth coefficients was first conjectured, then proved to be false 
in the settings of distributions (H. Lewy [12]) and hyperfunctions (P. Schapira 
[20]). In particular, H. Lewy’s equation (1.4) is famous for not having (even local) 
solutions in D'(R3), nor in the class of Sato’s hyperfunctions B(R3) for a large 
choice of F even in D(R3). That explains why we are looking for solutions in a 
class of generalized functions different from the usual classes of classical functions, 
hyperfunctions and distributions. 

The result presented in this paper is related to F. Treves’s work [24], where 
the local existence and uniqueness of the Cauchy problem for the equation (1.1) is 
proved for operators P (x, ∂) with analytic coefficients, where the right-hand side F , 
the Cauchy data and the solution are, in general, analytic functionals. In addition 
to the restriction on the coefficients however, this result does not include the case 
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when F is in E(Ω)−D(Ω) and moreover, the analytic functionals are not localizable 
objects in the sense of the sheaf theory (A. Kaneko [11]). 

The present paper is related to some results in N. Aronszajn [1] and M. S. 
Baouendi [2] where the solvability of some particular partial differential equations 
with polynomial coefficients has been established in the space of the “traces of the 
analytic solutions of the heat equation”. For comparison we shall mention that our 
result is more general and moreover, the “traces” are not localizable objects in the 
sense of the sheaf theory (A. Kaneko [11]). 

Our result is related also to J. F. Colombeau’s work [4], where a general existence 
result for the linear PDE’s with smooth coefficients, 

(1.7) P h(x, ∂)U (x) ∼ F (x), 

has been established in the class of the “new generalized functions” G(Ω) (J. F. 
Colombeau [3]). Here P h(x, ∂) is a regularization of the original operator P (x, ∂) 
(depending on a function h) and  ∼  is an equivalence relation in G(Ω) called “asso
ciation”. Later this result was improved in J. F. Colombeau, A. Heibig, M. Ober
guggenberger [5]–[6], where the uniqueness of the Cauchy problem for the equation 
(1.7) was proved in the class of generalized functions Gg (Ω) and the association ∼ in 
(1.7) was replaced by the strict equality in Gg (Ω). As in the previous two references 
however, the functions in Gg (Ω) are not localizable objects in the sense of the sheaf 
theory (M. Oberguggenberger [18, Chapter V, §19]). 

Finally, we should mention the global solvability of arbitrary analytic partial 
differential equations in the framework of E. E. Rosinger [17, Chapter 2] and the 
existence results for continuous partial differential equation, obtained by means of 
the Dedekind order completion method in M. Oberguggenberger and E. E. Rosinger 
[19]. 

(1.8) Remark. We shall briefly explain the philosophy of our paper: 
(1) We believe that any naturally defined class of partial differential equations, 

in particular, the equations of the type (1.1), should be solvable in a suitable class 
of (classical or generalized) functions S(Ω). 

(2) The functions in S(Ω) should be “localizable in Ω” in the sense that the 
family {S(Ω)}Ω∈τ is a sheaf in Rd (A. Kaneko [11], §2). Among other things this 
property guarantees that any function in S(Ω) has a support which is a closed set 
of Ω and that the differential operators with smooth coefficients act “locally” in 
S(Ω) in the sense that they are sheaf endomorphisms in {S(Ω)}Ω∈τ . 

(3) For the equations of the type (1.1), the class S(Ω) should be a differential 
module over the class of smooth functions E(Ω). 

Recall that the classes of smooth functions E(Ω), Schwartz distributions D ' (Ω) 
and J. F. Colombeau’s new generalized functions G(Ω) satisfy both (2) and (3), 
while the space of the analytic functionals (used in F. Treves [24]), the space of the 
“traces of the analytic solutions of the heat equation” (used in N. Aronszajn [1] 
and M. S. Baouendi [2]) and the algebra of “global generalized functions” Gg(Ω) 
(used in J. F. Colombeau, A. Heibig, M. Oberguggenberger [5]–[6]) fail to satisfy 
condition (2). 

In contrast to the above, the algebra of generalized functions A(Ω), constructed 
in this paper, satisfies more than the conditions (1)–(3) require: in addition to the 
properties (1)–(3), A(Ω) satisfies the following: 

(4) A(Ω) is a differential algebra over the field of the nonstandard complex 
numbers ∗C (hence A(Ω) is an algebra over C). In addition, A(Ω) contains the 
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class of smooth functions E(Ω) as a differential subalgebra (which is more than to 
be simply a “module over E(Ω)”). 

(5) The functions in A(Ω) are pointwise functions from 0 ∗C where the Ω into  

domain 0Ω is a set larger than Ω. 

(1.9) Remark (J. F. Colombeau’s New Generalized Functions). We should mention 
that there is a strong similarity between the algebra of generalized functions A(Ω) 
and its generalized scalars ∗C, discussed in this paper, and the algebra of “new 
generalized functions” G(Ω) and their generalized scalars C, introduced recently 
by J. F. Colombeau [3] in the framework of standard analysis (for a similar con
struction see also Yu. V. Egorov [8]–[9]). For that reason we view this work as 
an attempt to establish a connection between the nonlinear theory of generalized 
functions and nonstandard analysis with hope that the interaction between these 
two theories will prove fruitful for both. We should mention that the involvement 
of nonstandard analysis has resulted in some improvements of the corresponding 
standard counterparts; we shall mention two of them: 

(a) An improvement of the algebraic properties of the generalized scalars: ∗C 
constitutes a field in contrast to C which is a ring with zero divisors. 

(b) The possibility to apply the powerful methods of the nonstandard analysis, 
in particular, the transfer and saturation principles (the latter is the key in the 
proof of the existence results; see the Appendix at the end of this paper). 

2. Some preliminary results 

In what follows Ω will be an open subset of Rd and P (x, ∂) will be an arbitrary 
linear partial differential operator (1.2) with coefficients aα in E(Ω). 

(2.1) Definition. We define the mapping ξ → Pξ from Ω into D ' (Ω), by the for
mula: 

(2.2) (Pξ , ϕ) = (P (x, ∂)ϕ(x))|x=ξ , ϕ ∈ D(Ω). 

(2.3) Lemma. For Pξ we have the following representation: 

Pξ (x) =  (−1)|α|aα(ξ)∂αδ(x− ξ),x 

|α|≤m 

where δ(x − ξ) is Dirac’s delta distribution concentrated at {ξ} and ∂αδ(x − ξ) isx 
its α-derivative with respect to x. 

Proof. For any ϕ ∈ D(Ω) we have: 

(−1)|α|aα(ξ)∂αδ(x− ξ), ϕ(x) =  (−1)|α|aα(ξ) (∂αδ(x− ξ), ϕ(x))x x
 

|α|≤m |α|≤m
 

= aα(ξ)(∂αϕ(x))|x=ξ = (P (x, ∂)ϕ(x))|x=ξ = (Pξ , ϕ).  �  
|α|≤m 

(2.4) Lemma. Let ξ ∈ Ω. Then Pξ = 0  iff ξ ∈ ΩP (see (1.5)).  
Proof. (⇒) is  obvious.  (⇐)  Pξ  = 0 implies (−1)|α|aα(ξ)∂αδ(x− ξ) =  0,  by  |α|≤m x 

Lemma (2.3), which implies aα(ξ) = 0 for all α ∈ Nd 
0, |α| ≤ m, since  ∂αδ(x − ξ),x 

α ∈ Nd 
0, |α| ≤ m, are linearly independent in D ' (Ω). � 



 

�
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(2.5) Lemma. Let n ∈ N and ξi, i = 1, 2, . . . , n, be  n  distinct points in ΩP (see 
(1.5)). Then Pξi , i = 1, 2, . . . , n, are linearly independent in D ' (Ω).
 

Proof. We have Pξi = 0  for  all  i  = 1, 2, . . . , n, by Lemma (2.4), which implies
 
supp(Pξi ) =  {ξi}, by Lemma (2.3). Now, the result follows, since supp(Pξi ) are 
  
mutually disjoint.
 

3. Existence result in 
∗E(Ω) 

We shall temporarily give up the requirements (2) imposed in Remark (1.8) in 
the Introduction, and prove an existence result for equations of the type (1.1) in 
the algebra of the nonstandard functions ∗E(Ω). The localization property (2) will 
be achieved in the next section by an appropriate factorization of ∗E(Ω). 

In what follows, we shall work in a nonstandard model with a set of individuals 
that contains the complex numbers C and degree of saturation larger than cardR 
(Appendix, Axiom 3). In particular, any polysaturated nonstandard model of C 
will suffice (Appendix, Definition (A.5)). If X is a set of complex numbers or a set of 
(standard) functions, then ∗X will be its nonstandard extension and if f : X → Y 
is a (standard) mapping, then ∗f : ∗X → ∗Y will be its nonstandard extension 
(Appendix, Definition (A.4), (i)). For integration over ∗Rd we use the ∗-Lebesgue 
integral. We shall systematically apply the saturation and transfer principles in the 
form presented in (Appendix, Axiom 2 and Axiom 3). 

Let ∗E(Ω) be the nonstandard extension of E(Ω). Recall that all functions f in 
∗E(Ω) are pointwise functions of the type f : ∗Ω → ∗C, where  ∗Ω is the nonstandard 
extension of Ω and ∗C is the field of the nonstandard complex numbers. Conse
quently, the restrictions of f on Ω are mappings of the type f |Ω : Ω  →  ∗C. We  
consider ∗E(Ω) as a differential algebra over ∗C with respect to pointwise addition, 
multiplication, multiplication by scalars in ∗C and internal partial differentiation 
of any standard order. Recall that E(Ω) ⊂ ∗E(Ω) through the mapping f → ∗f , 
where ∗f is the nonstandard extension of f . The class E(Ω) (with the usual opera
tions) is a differential subalgebra of ∗E(Ω). Notice that ∗D(Ω) is also a differential 
subalgebra of ∗E(Ω). Finally, it can be shown that D ' (Ω) (with the usual distribu
tional operations) can be imbedded in ∗E(Ω) as a differential linear subspace over 
C (for a proof in the case Ω = Rd we refer to [22]), but we are not going to use this 
imbedding in what follows. 

For the nonstandard extension ∗Pξ : 
∗D(Ω) → ∗C of the functional Pξ, defined 

in the previous section, we have the formula: 

( ∗ Pξ , ϕ) = (  ∗  P (x, ∂)ϕ(x))|x=ξ , ϕ ∈ ∗ D(Ω), 

where ∗P (x, ∂) :  ∗E(Ω) → ∗E(Ω) is the nonstandard extension of P (x, ∂) and  ξ  ∈ Ω. 
Notice that (∗Pξ, ∗ϕ) = (Pξ , ϕ) for all ϕ in D, where  ∗ϕ is the nonstandard extension 
of ϕ. 

(3.1) Lemma. Let P (x, ∂) be a linear partial differential operator (1.2) with co
efficients aα in E(Ω), f ∈ ∗E(Ω) and n ∈ N. Then for any choice of the distinct 
points ξi, i = 1, 2, . . . , n, in  ΩP  (see (1.5)) the system of equations 

(3.2) ( ∗ Pξi , ϕ) =  f(ξi), i = 1, 2, . . . , n,  

has a solution ϕ in ∗D(Ω) which satisfies the inequalities : 

(3.3) sup |∂αϕ(x)| ≤ L( max |f(ξi)|), α ∈ N0
d , 

i=1,2,...,n x∈∗Ω 

for any infinitely large number L in ∗R+. 
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Proof. By Lemma (2.5), Pξi , i  = 1, 2, . . . , n, are linearly independent in D ' (Ω) and 
hence, the sets 

k

Φi = N(Pξj ) − N(Pξi ), i = 1, 2, . . . , n,  
j=1 

are non-empty (N. Dunford and J. T. Schwartz [7, V.3., Lemma 10, p. 421]), where 
N(Pξi ) denotes the null space of Pξi : D(Ω) → C.  It  is easy to  verify now  that  the  
function 

n 
f(ξi)

(3.4) ϕ = ∗ ϕi(Pξi , ϕi)i=1 

is a solution of (3.2) for any choice of ϕi ∈ Φi, where  ∗ϕi  are the nonstandard 
extensions of ϕi. The function ϕ in (3.4) obviously satisfies (3.3) since both 
sup |∗∂αϕi(x)| and |(Pξi , ϕi)| are standard real numbers. 
X∈∗Ω 

(3.5) Theorem. Let P (x, ∂) be a linear partial differential operator (1.2) with co
efficients aα in E(Ω) and f ∈ ∗E(Ω). Then: 

(i) There exists u in ∗D(Ω) such that 

(3.6) ∗ P (x, ∂)u(x) =  f(x)  

for all x in ΩP , where  ΩP  is defined in (1.5). 
(ii) If, in addition, f(x) = 0  for all x ∈ Ω − ΩP , then  (3.6) holds for all x ∈ Ω. 

Proof. (i) Define the family of internal sets 

Mξ = {ϕ ∈ ∗ D(Ω) : ( ∗ Pξ , ϕ)  =  f(ξ)}, ξ ∈ ΩP , 

and observe that, by Lemma (3.1), it has the finite interaction property. Hence, by 
the saturation principle (Appendix, Axiom 3), the interaction 

M = Mξ 

ξ∈ΩP 

is not empty. Thus, any u in M satisfies (3.6) for all x ∈ ΩP . 
(ii) follows immediately from (i) since, by assumption, the left- and right-hand 

sides of (3.6) are both 0 for all x in Ω − ΩP . The proof is complete. 

(3.7) Theorem. Let P (x, ∂) be a linear partial differential operator (1.2) with co
efficients aα in E(Ω), satisfying the condition (1.3). Then for any choice of f in 
∗E(Ω), in particular,  for  any  f  in E(Ω), there  exists  u  in ∗D(Ω) such that 

(3.8) ∗ P (x, ∂)u(x) =  f(x), x ∈ Ω. 

Proof. The result follows immediately from Theorem (3.5) since ΩP = Ω,  by  as
sumption. 

The next result shows that if the right-hand side in (3.8) and its solution u 
happen to be classical smooth functions, then (3.8) holds in E(Ω) in the usual 
sense. 
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(3.9) Lemma. Let f, u ∈ E(Ω). Then ∗ u satisfies the equation 

(3.10) ∗ P (x, ∂) ∗ u(x) =  ∗  f(x), x ∈ Ω, 

if and only if u satisfies the equation 

(3.11) P (x, ∂)u(x) =  f(x), x ∈ Ω. 

∗Proof. The result follows immediately from the fact that ∗f , u and ∗P (x, ∂) are  
extensions of f , u and P (x, ∂), respectively; hence we can drop the asterisks in 
(3.10). 

(3.12) Corollary. For any choice of f in ∗E(R3), in particular, for any choice of 
f in E(R3), the H. Lewy [12] equation 

∂u(x) ∂u(x) ∂u(x)
(3.13) + i − 2i(x1 + ix2) = f(x), x ∈ R3 ,

∂x1 ∂x2 ∂x3 

has a solution u in ∗D(R3). 

Proof. In this case we have Ω = R3 , m = 1, and the condition (1.3) reduces to: 

2 2|aα(x)| = 2 + 2  x1  +  x = 0, x ∈ R3 ,2
 

|α|≤1
 

which is (obviously) true. Thus, Ω = ΩP = R3 and the result follows from Theorem 
(3.7). 

(3.14) Corollary. Let P (∂) be a linear partial differential operator with constant 
coefficients. Then for any choice of f in ∗E(Ω), in particular,  for  any  f  in E(Ω), 
the equation 

(3.15) ∗ P (∂)u(x) =  f(x), x ∈ Ω, 

has a solution u in ∗D(Ω). 

Proof. The result follows from Theorem (3.7) since the operators with constant 
coefficients satisfy (unless they are trivial) the condition (1.3). 

What follows is an estimate for the solutions and their derivatives: 

(3.16) Theorem. Let P (x, ∂) be a linear partial differential operator (1.2) with 
coefficients aα in E(Ω), satisfying the condition (1.3). Let  f  ∈ ∗E(Ω) and f |Ω be 
bounded in ∗R in the sense that 

|f(x)| ≤M, x ∈ Ω, 

holds for some M ∈ ∗R+. Then for any choice of the infinitely large constant 
L in ∗R+ there exists u in ∗D(Ω) which satisfies both the equation (3.8) and the 
estimates : 

(3.17) |∂α u(x)| ≤ LM, x ∈ ∗ Ω, α  ∈ Nd  
0.  

Proof. Let γ : Ω  →  R  be an unbounded real function on Ω. For any ξ ∈ Ω, we 
define the internal set: 

Lξ = {ϕ ∈ ∗ D(Ω) : ( ∗ Pξ, ϕ) =  f(ξ),  sup |∂αϕ(x)| ≤ LM, α ∈ N0
d , |α| ≤ |γ(ξ)|}. 

x∈∗Ω 
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The family {Lξ}ξ∈Ω, has the finite intersection property, by Lemma (3.1) since 
Ω = ΩP  , by assumption. Hence, by the saturation principle (Appendix, Axiom 3), 
the intersection 

L = Lξ 

ξ∈Ω 

is not empty. Thus, any u in L satisfies both (3.8) and (3.17). The proof is 
complete. 

We turn now to the localization property of the classes ∗E(Ω). Denote S = 
{E(Ω) : Ω ∈ τ}, where  τ  is the usual Euclidean topology on Rd . Recall that the 
mapping E : τ → S, defined by Ω → E(Ω), is a sheaf in Rd of differential algebras 
over C with respect to the usual (pointwise) restriction (A. Kaneko [11, §2]). Let 
∗τ , ∗S and ∗E be the nonstandard extentions of τ , S and E , respectively. We have 
the following result: 

(3.18) Proposition. The mapping ∗E : ∗τ → ∗S is a sheaf in ∗Rd of differential 
algebras over ∗C with respect to the pointwise restriction in ∗Rd . 

Proof. The result follows immediately by transfer principle and the fact that the 
mapping E : τ → S is a sheaf in Rd . 

Notice that the above result guarantees that the functions in ∗E(Ω) are localizable 
in ∗Ω but not necessarily in Ω. It is easy to check that ∗E is a presheaf in Rd of 
differential algebras over ∗C (A. Kaneko [11, p. 16]). However, the next example 
shows that ∗E is not a sheaf in Rd and thus, it does not satisfy the requirement (2) 
imposed in Remark (1.8). 

(3.19) Example. Let Ω = R and f ∈ ∗E(R) be defined by f(x) =  ∗ϕ(x −  ν) for  
x  ∈  ∗R, where  ϕ  ∈ D(R), ϕ = 0,  ∗ϕ  is the nonstandard extension of ϕ and ν is a 
fixed infinitely large number in ∗R. Then  f(x) = 0 for all finite points x in ∗R, in  
particular, for all x ∈ R and still f = 0  in  ∗E(R). 

One consequence of the above results is that the supports of the functions in 
∗E(Ω) are closed subsets in ∗Ω instead of being closed subsets in Ω, as required by 
(2) in Remark (1.8). We shall “improve” this property of ∗E(Ω) in the next section 
by an appropriate factorization. 

4. Algebra of generalized functions A(Ω) 

In this section we define an algebra of generalized functions A(Ω) as a factor 
space of the type A(Ω) = ∗E(Ω)/I(Ω), where I(Ω) is an ideal in ∗E(Ω) defined 
below. In contrast to ∗E(Ω), the algebra A(Ω) satisfies the localization property 
(2), imposed in Remark (1.8) in the Introduction, but this topic will be discussed 
in the next section. 

Let τ be, as before, the usual Euclidean topology on Rd and Ω be an open set 

of Rd. By  0Ω we denote the set of the nearstandard points of ∗Ω; i.e. 
 0(4.1) Ω =  µ(x),  
x∈Ω  

where µ(x), x ∈ Rd, is the system of monads of the topological space (Rd, τ)  
(Appendix, Definition (A.9)). 



�

 

681 LINEAR PDES WITH C∞ COEFFICIENTS 

(4.2) Lemma. Let {Ωi}i∈I be an open covering of Ω. Then: 
 0 0Ω =  Ωi.  
i∈I  

Proof. 
 
 
 
 
Ω0i = µ(x) =  µ(x) = Ω0.  

i∈I i∈I x∈Ωi x∈Ω 

(4.3) Definition. (i) We define the factor space A(Ω) = ∗E(Ω)/I(Ω), where 

I(Ω) = {f ∈ ∗ E(Ω) : f (x) = 0, x  ∈ Ω0}.  
We supply A(Ω) with addition, multiplication, multiplication by scalars in ∗C and 
partial differentiation of any standard order, inherited from ∗E(Ω). The elements 
of A(Ω) will be called “generalized functions on Ω”. 

(ii) We define the inclusion E(Ω) ⊂ A(Ω), by f → QΩ(∗f ), where QΩ : 
∗E(Ω) → 

A(Ω) is the quotient mapping and ∗f is the nonstandard extension of f . 
(iii) For any generalized function F = QΩ(f ) in  A(Ω), we define values (graph 

in Ω0 × ∗C) F : 0 Ω.Ω → ∗C, by  F  (x) =  f  (x), x ∈ 0
It is clear that I(Ω) is a proper differential ideal in ∗E(Ω) (e.g. the function f , 

defined in Example (3.19), belongs to I(Ω)). Thus, A(Ω) is a differential algebra 
over the scalars ∗C. Also, if f ∈ E(Ω), then ∗f ∈ I(Ω) iff f = 0, so that the 
mapping f → QΩ(∗f ) is injective. It preserves the usual operations in E(Ω), since 
the mapping f → ∗f from E(Ω) into ∗E(Ω) preserves them. Finally, it is clear 

that the graph of QΩ(f ) in  Ω0 ×  ∗C  is correctly defined in the sense that it does 

not depend on the choice of f . Notice  that  if  F  (x) =  0  in  ∗C  for all x ∈ 0Ω, then 
F = 0  in  A(Ω). Also from the definition of values it is clear that the algebraic 
operations in A(Ω) coincide with the pointwise operations with the values of the 
corresponding functions. Thus, the generalized functions in A(Ω) can be identified 

with their graphs in Ω0 × ∗C. In particular, if f ∈ E(Ω), then: “QΩ(∗f )(x) = 0  in  
∗C  for all x ∈ Ω”⇔“QΩ(∗f ) = 0  in  A(Ω)”⇔“f = 0  in  E(Ω)” and in this sense the 
graph in A(Ω) generalizes the usual graph in E(Ω). 

Our next goal is to extend the differential operators from E(Ω) to A(Ω). 

(4.4) Definition. Let P (x, ∂) be a linear partial differential operator (1.2) with 

coefficients aα in E(Ω). We define PE(x, ∂) :  A(Ω) → A(Ω), by 

(4.5)	 PE(x, ∂)QΩ(f ) =  QΩ(  ∗  P  (x, ∂)f ), 

where ∗P (x, ∂) is the nonstandard extension of P (x, ∂). 

The next results follow immediately from the above definitions: 

(4.6) Lemma. Let P (x, ∂) be a linear partial differential operator (1.2) with coef
ficients aα in E(Ω). Then: 

(i) PE(x, ∂) has the symbol 

(4.7)	 PE(x, ∂) =  cα(x)∂α , 
|α|≤m 

where all operations (addition, multiplication and differentiation) are in the sense 
of A(Ω). 
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(ii) The operator PE(x, ∂) is an extension of P (x, ∂) in the sense that for any 
f ∈ E(Ω) we have: 

(4.8) PE(x, ∂)QΩ( ∗ f ) =  QΩ(  ∗  (P  (x, ∂)f )). 

(4.9) Simpler notations. (i) We shall often write simply P (x, ∂) instead of the 

more precise PE(x, ∂) when no confusion could arise; e.g. the action of P (x, ∂) in  
A(Ω) will be written as: 

(4.10) P (x, ∂)QΩ(f ) =  QΩ(  ∗  P  (x, ∂)f ), 

where f ∈ ∗E(Ω). 
(ii) We shall sometimes write simply f instead of QΩ(∗f ) for  f  ∈ E(Ω), identi

fying the standard function f with its image QΩ(∗f ) in  A(Ω). 

5. Localization properties and integral in A(Ω) 

We show that the algebra of generalized functions A(Ω), introduced in the pre
vious section, satisfies the localization property (2) and, hence, all requirements 
(1)–(5), imposed in Remark (1.8) in the Introduction. We also define an integral 
in A(Ω) which generalizes the usual Lebesgue integral in Rd . For the concepts of 
“sheaf”, used in the following discussion, we refer to A. Kaneko [11, §2]. 

(5.1) Definition (Restriction, Support). Let Ω and G be two open sets in Rd , 
G ⊆ Ω, and QΩ(f ) ∈ A(Ω). Then: 

(i) We define the restriction QΩ(f )|G ∈ A(G) of  QΩ(f  ) on  G  by QΩ(f )|G = 
QG(f |∗ G), where f |∗G is the pointwise restriction of f ∈ ∗E(Ω) on ∗G. 

(ii) F ∈ A(Ω) is said to vanish on G if QΩ(f )|G = 0 in  A(G). The support 
supp F of F is the complement of the largest open subset of Ω where F vanishes. 

The above definition is justified by the following result: 

(5.2) Proposition. Let S = {A(Ω) : Ω ∈ τ}, where  τ  is the usual Euclidean topol
ogy on Rd. Let  P  (x, ∂) be a linear partial differential operator (1.2) with coefficients 

aα in E(Ω) and PE(x, ∂) be its extension to A(Ω) in the sense of Definition (4.4). 
Then: 

(i) The mapping A : τ → S, defined by Ω → A(Ω), is a sheaf in Rd of differential 
algebras over ∗C. 

(ii) The mapping f → QΩ(∗f ) from E(Ω) into A(Ω) is a sheaf homomorphism 
(of differential algebras over C). 

(iii) PE(x, ∂) is a sheaf endomorphism in S. 

Proof. (i) A is obviously a presheaf on Rd . To show that A is actually a sheaf in 
Rd,  we have  to take an open covering  {Ωi}i∈I  of Ω and to check the properties FI 
and FII in A. Kaneko [11, p. 17]. The proof is almost identical to the proof that 
the family {D' (Ω) : Ω ∈ τ} is a sheaf in Rd and we shall skip it (still we have to 
apply the transfer principle, Appendix, Axiom 2, and to involve Lemma (4.2) at 
some points of the proof). 

(ii) For any f ∈ E(Ω) and any open G ⊆ Ω, we have ∗f |∗G = ∗(f |G), by 
the transfer principle (Appendix, Axiom 2). Hence, QΩ(∗f )|G = QG(∗f |∗G) =  
QG(∗(f  |G)), as required. 

(iii) For any f ∈ ∗E(Ω) and any open G ⊆ Ω, we have 
∗ P (x, ∂)(f |∗ G) = (  ∗  P  (x, ∂)f )|∗ G, 
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by the transfer principle (Appendix, Axiom 2). Hence, we obtain 

PE(x, ∂)(QΩ(f )|G) =  PE(x, ∂)QG(f |∗G) 

= QG( ∗ P (x, ∂)(f |∗ G)) = QG(( ∗ P (x, ∂)f )|∗ G). 

On the other hand, we have 

(PE(x, ∂)QΩ(f ))|G = QΩ( ∗ P (x, ∂)f )|G = QG(( ∗ P (x, ∂)f )|∗ G). 

Thus, PE(x, ∂)(QΩ(f )|G) = (  PE(x, ∂)QΩ(f ))|G, as required. The proof is complete. 

(5.3) Definition (Integral and Pairing). (i) Let QΩ(f ) ∈ A(Ω) and X be a 
Lebesgue measurable set of Rd whose closure X in (Rd, τ) is a compact subset 
of Ω. Then we define the integral of QΩ(f ) over  X  with values in ∗C by:  

QΩ(f ) dx = f (x) dx. 
X ∗ X 

(ii) Let QΩ(f ) have a compact support in Ω. Then we define the integral of 
QΩ(f ) over the whole domain Ω with values in ∗C by:  

QΩ(f ) dx = f (x) dx, 
Ω ∗ G 

where G is a Lebesgue measurable set of Rd whose closure G in (Rd, τ) is a compact 
subset of Ω such that supp QΩ(f ) ⊂ G. 

(iii) We define the pairing between A(Ω) and D(Ω) by  
(QΩ(f ), ϕ) = QΩ(f  )QΩ(  ∗  ϕ)  dx, 

Ω 

where f ∈ ∗E(Ω) and ϕ ∈ D(Ω). 

The correctness of the above definitions follows from the fact that in both cases 
the nonstandard integrals (on the right-hand sides) are over some (internal) subsets 

of 0Ω and hence, the result of integration does not depend on the choice of the 
representative f . 

(5.4) Proposition. The integral in A(Ω) is a generalization of the usual (Lebesgue) 
integral in Rd in the sense that 

(i) We have   
QΩ( ∗ f ) dx = f (x) dx, 

X X 

for all f in E(Ω) and any Lebesgue measurable X ⊂ Rd whose closure X is a 
compact subset of Ω. 

(ii) We have   
QΩ( ∗ f ) dx = f (x) dx, 

Ω Ω 

for all f in D(Ω). 
(iii) (QΩ(∗f ), ϕ) =  (f, ϕ) for any f ∈ E(Ω) and ϕ ∈ D(Ω), where  (f, ϕ) is the 

usual pairing between E(Ω) and D(Ω). 
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Proof. Both results follow immediately from the fact that for any standard (mea
surable) function f and any standard (measurable) set X ⊆ Rd we have 

∗ f (x) dx = f (x) dx 
∗ X X 

whenever the integrals are (simultaneously) convergent. 

6. Existence result in A(Ω) 

In this section we prove the existence of solutions for the equations (1.1) in the 
algebra of generalized functions A(Ω). 

All existence results, obtained in Section 6, can be “transferred” from ∗E(Ω) to 
the factor space A(Ω) through the quotient mapping QΩ. If  u  is a solution of a 
given equation in ∗E(Ω), then U = QΩ(u) will be a solution of the same equation in 
A(Ω). Notice that all solutions U belong to QΩ[∗D(Ω)] since u belongs to ∗D(Ω). 
On the other hand, QΩ[∗D(Ω)] is a differential subalgebra of A(Ω), i.e. 

(6.1) QΩ[ ∗ D(Ω)] ⊂ A(Ω), 

since ∗D(Ω) is a differential subalgebra of ∗E(Ω). All equations are satisfied (by a 
given U in A(Ω)) in the sense that the values of the left- and right-hand sides of 
the equations are equal in ∗C (pointwise) for all x ∈ Ω. 

Here are the existence results in A(Ω): 

(6.2) Theorem. Let P (x, ∂) be a linear partial differential operator (1.2) with co
efficients aα in E(Ω), satisfying the condition (1.3). Then for any choice of F in 
A(Ω), in  particular,  for  any  F  in E(Ω), there  exists  U  in QΩ[∗D(Ω)] such that 

(6.3) P (x, ∂)U (x) =  F  (x), x ∈ Ω. 

(6.4) Lemma. Let F , U ∈ E(Ω) ⊂ A(Ω) (i.e. F and U are classical smooth 
functions considered as generalized functions in A(Ω)). Then (6.3) holds in A(Ω) 
if and only if it holds in E(Ω) in the usual sense. 

(6.5) Corollary. For any choice of F in A(R3), in particular, for any choice of F 
in E(R3), H. Lewy’s equation  (1.4) has a solution U in QΩ[∗D(R3)]. 

(6.6) Corollary. Let P (∂) be a linear partial differential operator with constant 
coefficients. Then for any choice of F in A(Ω), in  particular,  for  any  F  in E(Ω), 
the equation 

(6.7) P (∂)U(x) =  F  (x), x ∈ Ω, 

has a solution U in QΩ[∗D(Ω)]. 

(6.8) Theorem. Let P (x, ∂) be a linear partial differential operator (1.2) with co
efficients aα in E(Ω), satisfying the condition (1.3). Let the generalized function 
F ∈ A(Ω) be bounded on Ω in ∗R+ in the sense that 

(6.9) |F (x)| ≤M, x ∈ Ω, 

for some M ∈ ∗R+. Then for any choice of the infinitely large constant L in 
∗R+ there exists U in QΩ[∗D(Ω)] which satisfies both the equation (6.3) and the 
estimates : 

(6.10) |∂αU(x)| ≤ LM, x ∈ Ω0, α  ∈ Nd  
0.  
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Common Proof for (6.2), (6.4), (6.5), (6.6) and (6.8). These results follow imme
diately from their counterparts in Section 3 and the simple fact that for any 

F = QΩ(f ) in  A(Ω) we have F (x) =  f(x) (pointwise) for all x ∈ Ω since Ω ⊂ 0Ω. 
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Appendix: A short introduction to nonstandard analysis 

We present the A. Robinson [16] Nonstandard Analysis by means of three axioms 
known as the Extension, Transfer and Saturation Principles. Some readers might 
find it easier to read this text starting from part 4◦, where Nonstandard Analysis 
has been presented as a sequential construction within the framework of Standard 
Analysis, and then returning to parts 1◦–3◦ . For a further study we recommend 
Tom Lindstrøm [13], where the reader will find other references on the subject. 

1◦ . Preparation of a standard theory. In any standard theory the mathemat
ical objects can be classified into two groups: abstract points which we shall refer 
to as “standard individuals” (or just “individuals”) and “sets” (sets of individuals, 
sets of sets of individuals, sets of sets of sets of individuals, etc.). In what follows S 
denotes the set of the individuals of the standard theory under consideration and 
we shall restrict our discussion to the case when S is an infinite set. For example, 
in analysis we choose S = R or S = C in general topology S = X ∪R, where  (X,T ) 
is a topological space, in functional analysis S = V ∪K, where  V  is a vector space 
over the scalars K, etc. The superstructure V (S) on  S  is the union 
 
(A.1) V (S) =  Vk(S),  

k∈N0  

where Vk(S) are defined inductively by V0(S) =  S  and Vk+1(S) =  Vk  (S)∪P(Vk(S)) 
and P(X) denotes the power set of X . If  A  ∈ V (S), then we define the type t(A) 
of A by t(A) = min{k  ∈  N0  :  A  ∈  Vk(S)}. The superstructure V (S) consists of 
all mathematical objects of the theory: the individuals are in V0(S); the ordered 
pairs (x, y) in S × S belong to V2(S) since they can be perceived as sets of the 
type {x, {x, y}}; the functions f : S → S and, more generally, the relations in S 
are subsets of V2(S) and hence, belong to V3(S); the algebraic operations in S are 
perceived as subsets of S × S × S and hence also belong to V (S), etc. 

2◦ . Formal language. For the study of V (S) we use a formal language L(V (S)) 
based on bounded quantifier formulas only, i.e. formulas of the type Φ(A1, . . . , Aq  )  
with constants Ai in V (S), that can be made by: 

(a) the symbols: =,∈, � (not) ,∧ (and),∨ (or), ∀, ∃,⇒,⇔, ( );  
(b) countably many variables: x, x1, x2, . . . , y,  z;  
(c) bounded quantifiers of the type (∀x ∈ A) and  (∃x  ∈ A), where A ∈ V (S). 
For example, let f : R → R be a real function in real analysis and let x0 ∈ R 

and ε ∈ R+. For the set of individuals we choose S = R. Then: 

(A.2) Φ(ε, x0, f(x0),R+,R, f, <, | · |,−)  

= (∃δ  ∈ R+)(∀x ∈ R)(|x− x0| ≤ δ  ⇒ |f(x)  − f(x0)| < ε)  
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is a bounded quantifier formula in L(V (R)), with constants: ε, x0, f(x0), R+,R, f, 
<, | |, “−”, where <, | | and “−” are the order relation, absolute value and subtrac
tion in R, respectively (perceived as elements in V (R)). The bounded quantifier 
formulas are interpreted as statements about V (S). Notice that the usage of un
bounded quantifiers such as (∀x)(∃y) is forbidden in L(V (S)). For a more detailed 
exposition of the formal language L(V (S)) associated with V (S) we refer to Tom 
Lindstrøm [13, Chapter IV], but we believe that the reader can successfully proceed 
further without a special background in mathematical logic. After this preparation 
of the standard theory we are ready to involve the nonstandard methods: 

3◦ . Axiomatic approach to nonstandard analysis. Let S be an infinite set 
(of standard individuals of the standard theory under consideration) and V (S) be  
its superstructure (A.1). A nonstandard model of S consists of the superstructure 
V (∗S) on a set of “nonstandard individuals” ∗S, and an injective mapping A→ ∗A 
from V (S) into  V (∗S), called an “extension mapping”, which satisfies the following 
two axioms: 

∗Axiom 1 (Extension Principle). (a) s = s for all (standard individuals) s ∈ S; 
(b) S is a proper subset of ∗S, i.e. S ⊂ ∗S and S = ∗S. 

Axiom 2 (Transfer Principle). A formula  Φ(A1, . . . , Aq) is  true  in  L(V (S)) iff 
its nonstandard counterpart ∗Φ(∗A1, . . . ,  ∗Aq  ) is  true in  L(V (∗S)), where 
∗Φ(∗A1, . . . ,  ∗Aq  ) is obtained from Φ(A1, . . . , Aq) by replacing all constants A1, . . . ,  
Aq  by their ∗-images ∗A1, . . . ,  ∗Aq  , respectively. 

(A.3) Remark. Notice that ∗S is the image of S under the mapping ∗. Once  ∗S  
is found, the superstructure V (∗S) is determined by (A.1), where S is replaced by 
∗S. The formal language L(V (∗S)) differs from L(V (S)) only by its constants: they 
belong to V (∗S). Hence the formula ∗Φ(∗A1, . . . ,  ∗Aq) is interpreted as a statement 
about V (∗S). For example, if Φ is the formula in V (R) given by (A.2), then its 
nonstandard counterpart in L(V (∗R)) is given by: 

∗ Φ(ε, x0, f(x0),  ∗R+,  ∗R,  ∗  f,<, | |,−)  

= (∃δ  ∈  ∗R+)(∀x ∈ ∗R)(|x− x0| < δ  ⇒ |  ∗  f(x)  − f(x0)| < ε),  

where ∗R and ∗R+ are (by definition) the sets of the nonstandard real numbers 
and positive nonstandard real numbers, respectively, the ∗-image ∗f of f is (by 
definition) the “nonstandard extension” of f , the asterisks in front of the standard 

∗reals are skipped since ε = ∗ε, x0 = x0 and f(x0) =  ∗f(x0), by the Extension 
Principle and, in addition, the asterisks in front of ∗ <, ∗| |,  ∗− are also skipped, 
by convention, although these symbols now mean the order relation, absolute value 
and subtraction in  ∗R, respectively. 

(A.4) Definition (Classification). (i) The objects (individuals or sets) in the 
range of the ∗-mapping are called “standard” (although they are actually images 
of standard objects). If A ∈ V (S), then ∗A is called the “nonstandard extension” 
of A (since A can be imbedded in ∗A by the mapping a→ ∗ a in the cases when A 
is a set). 

(ii) An object (individual or set) in V (∗S) is called “internal” if it is an element 
of a standard set of V (∗S). The set of all internal objects is denoted by ∗V (S), i.e. 
∗V (S) =  {A ∈ V (∗S) :  A ∈ ∗A  for some A ∈ V (S)}. The  sets  in  V (∗S)  − ∗V (S)  
are called “external”. 
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Notice that the nonstandard individuals in ∗S are internal objects. Moreover, if 
s ∈ ∗S, then  s  is standard (in the sense of the above definition) iff s ∈ S, which  
justifies the above terminology. 

Let κ be an infinite cardinal number such that κ ≥ ℵ1, where  ℵ1  is the successor 
of ℵ0 = cardN. The next (and last) axiom depends on the choice of κ. 

Axiom 3 (Saturation Principle: κ-saturation). V (∗S) is  κ-saturated in the sense 
that 

Aγ = ∅ 
γ∈Γ 

for any family of internal sets {Aγ }γ∈Γ in V (∗S) with the finite intersection property 
and index set Γ such that cardΓ < κ.  

(A.5) Definition. V (∗S) is called polysaturated if it is κ-saturated for some car
dinal number κ such that κ ≥ cardV (S). 

(A.6) Remark (The choice of κ). We should mention that a given set of standard 
individuals S has actually many nonstandard models V (∗S) although they can be 
shown to be isomorphic under some extra set-theoretical assumptions at least in 
the case when they have the same degree of saturation κ. The choice of κ, however, 
is in our hands and depends on the standard theory and our specific goals. For 
example, in our paper the saturation principle has always been applied to families 
of internal sets with index set Γ ⊆ Ω. Since cardΩ = c, where  c  = card  R, we  chose  
a  c+-saturated nonstandard model with a set of individuals S = C, where  c+  is the 
successor of c. In particular, any polysaturated model of C will do. 

(A.7) Remark (E. Nelson’s approach). The axiomatic approach presented above is 
an up-to-date version of A. Robinson’s nonstandard analysis (A. Robinson [16]). 
There is another axiomatic formulation of nonstandard analysis due to E. Nelson 
[15] known also as “Internal Set Theory”. 

(A.8) Consistence Theorem. For any infinite set S and any infinite cardinal κ 
such that κ ≥ ℵ1, there  exists  a  κ-saturated (polysaturated) nonstandard model 
V (∗S). 

A sketch of the proof in the particular case κ = ℵ1 (where ℵ1 is the successor 
of ℵ0 = card  R) is presented in 4◦ below. For the general proof we refer to Tom 
Lindstrøm [13, Chapter III–IV]. 

(A.9) Definition (Monads). Let (X, T ) be a topological space and x ∈ X . Then  
the set µ(x) ⊂ ∗X , defined by 

µ(x) =  ∗  G, 
x∈G∈T 

is called the monad of x in (X, T ). 

4◦ . Sequential approach to nonstandard analysis. Although Nonstandard 
Analysis arose historically in close connection with model theory and mathematical 
logic, it is completely possible to construct it in the framework of Standard Anal
ysis, i.e. assuming the axioms of Standard Analysis only (along with the Axiom of 
Choice). The method is known as “ultrapower construction” or “constructive non
standard analysis”. This part of our exposition can be viewed either as a proof of 
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the consistence theorem above (in the particular case κ = ℵ1) or as an independent 
“sequential approach” to Nonstandard Analysis: 

(A.10) Definition (Ultrapower Construction). (i) Let p : P(N) → {0, 1}  be a 
finitely additive measure such that p(A) = 0 for all finite A ⊂ N and p(N) = 1.  To  
see that there exist measures with these properties, take a free ultrafilter U ⊂ P(N)  
on N (here the Axiom of Choice is involved) and define p(A) = 0  for  A /∈ U  and 
p(A) = 1  for  A ∈ U . We shall keep p fixed in what follows. 

(ii) Let SN be the set of all sequences in S. Define an equivalence relation ∼ in 
SN by: {an} ∼ {bn} if an = bn a.e. (where “a.e.” stands for “almost everywhere”), 
i.e. if p({n : an = bn}) = 1. Then the factor space ∗S = SN/ ∼ defines a set of 
nonstandard individuals. (Notice that ∗S depends on the choice of the measure p.) 
We shall denote by (an) the equivalence class determined by the sequence {an}. 
The inclusion S ⊂ ∗S is defined by s → (s, s, . . . ). We can determine now the 
superstructure V (∗S) by  (A.1),  where  S  is replaced by ∗S, and the latter is treated 
as a set of individuals (although it is, actually, a set of sets of sequences). 

(iii) Let V (S)N be the set of all sequences in V (S) (i.e. sequences of points in S, 
sequences of subsets of S, sequences of functions, sequences of “mixture of points 
and functions”,. . . , sequences of “everything”). A sequence {An} in V (S)N is called 
“tame” if there exists m in N0 such that An ∈ Vm(S) for all n ∈ N. If  {An} is a 
tame sequence in V (S)N, then its  type  t({An}) is defined as the (unique) k ∈ N0 

such that t(An) =  k  a.e., where t(An) is  the  type  of  An  in V (S) defined in 1◦  .  
To any tame sequence {An} in V (S)N we associate an element (An) in U(∗S) by  
induction on the type of {An}: If  t({An}) = 0,  then  (An) is the element in ∗S, 
defined in (ii) above. If (Bn) is already defined for all tame sequences {Bn} in 
V (S)N with t({Bn}) < k  and t({An}) =  k, then  

(An) =  {(Bn) : {Bn} ∈ V (S)N;  t({Bn})  < k;  Bn  ∈ An  a.e.}. 
The element A ∈ V (∗S) is called “internal” if it is of the type A = (An) for some 
tame sequence {An} in V (S)N. The elements of V (∗S) of  the  type  ∗A =  (A,A, . . . )
for some A ∈ V (S) are called “standard”. Now we define the extension ∗-mapping 
from V (S) into  V (∗S) by  A  → ∗A  and the construction of the nonstandard model 
is complete. We shall leave to the reader to check that this model satisfies Axiom 
1, Axiom 2 and Axiom 3 for κ = ℵ1 treated now as theorems. 
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