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Abstract 

 

Effect of chainring design on performance in competitive cyclists 

 

Christiane Rose O’Hara 

 

The development of noncircular chainrings to improve cycling performance has been in 

progress since the 1980’s and continues apace. The aim of this study was to compare 

performance time and physiological responses in cycling using a standard circular chainring 

versus a noncircular chainring developed in 2005: the Rotor Q-Ring. Eight competitive male 

cyclists were pre-tested using the original circular chainrings and also on the initial week of 

testing.  The intervention consisted of cycling with Rotor Q-Rings for four weeks.  Post-testing 

occurred with the original chainrings for the final week of testing. Testing consisted of a 

maximal or submaximal graded exercise test followed by a 1 k time trial. Oxygen consumption, 

carbon dioxide output, heart rate, ventilation, respiratory exchange ratio, and perceived exertion 

were continuously measured during the tests. Blood lactate concentration was measured during 

the last 30 s of each three minute stage. Five minutes after the submaximal test, participants 

performed an “all out” 1 k trial for time as well as maximum and average power. The main 

findings were: 1) Participants were on average 1.6 seconds faster in the 1 k time trial with Rotor 

Q-Rings compared to a circular chainrings. 2) There was a significant increase in average power 

(26.7 watts) and average speed (0.7 kph) during the 1 k time trial with Rotor Q-Rings. 3) Oxygen 

consumption (during weeks 2-4) and heart rate (weeks 1-3) were significantly lower with Rotor 

Q-Rings during submaximal testing when compared to circular chainrings. However, in contrast 

to our hypotheses no benefits were observed for other submaximal dependent measures (i.e., 

CO2, VE, RER, RPE, GE, DE, and lactate). 

 

Keywords: cycling performance, chainring, efficiency, cycling power  
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Chapter 1: Introduction 

Background 

“Citus, Altius, Fortius” (Faster, Higher, Stronger) –Olympic motto 

 

Ever since the bicycle’s invention in the 1800’s, athletes have sought to maximize 

athletic performance by increasing human speed, strength, and power. Bicycle design and 

equipment has been studied, developed, tweaked, tested, and modified in an attempt to improve 

performance. Of particular interest is the design of noncircular chainrings in replacement of the 

traditional circular chainrings on bicycles. Since the late 1890’s there have been many attempts 

to increase the efficiency of pedaling and reduce the effects of the dead centers (2, 3, 12, 23, 45).  

Several different types of chainrings have been developed in hopes of improving cycling 

performances and/or pedaling efficiency. The purpose of these chainrings is to take advantage of 

the areas where the most force is applied during the pedal stroke (e.g. 90 degrees), by creating a 

variable drive radius thereby giving a greater forward momentum to the bicycle. Three primary 

design factors support this aim: orientation factor, elongation factor, and form factor. The 

orientation factor is defined as the angle between the centerline of the cranks and the largest 

diameter of the chainring. The elongation factor (also known as ovalization factor) is defined as 

the ratio between the largest and smallest diameters of the chainring. This is the gear range of the 

chainring and is the amount of acceleration and deceleration that is caused during the pedal 

stroke. The form factor describes the curves shaping the perimeter of the chainring, such as arcs 

and ovals, angles or flat sections, and ellipses (23). 

The more recent types of noncircular designs include the Shimano Bio-Pace chainrings 

that were developed in the late 1970’s and the Harmonic (1994) which was relaunched in 2004 

under the brand name O.Symetric (23). However, both had several flaws and have failed mainly 

due to improper orientation or ovalization and form factor (23, 38, 45). For example, Bio-pace 
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created a very irregular and uncomfortable pedal stroke which for some users, led to knee pain. 

Maximum diameter of the non-symmetrical chainring was placed at the dead centers which 

required more effort to rotate the cranks (12). This design proved unsuccessful, and the 

chainrings were eventually discontinued. In comparison, O.Symetric was a more effective design 

than Biopace. This chainring created higher gearing during the pedal down stroke but the large 

change in ovalization created sudden acceleration changes and increased stress on the knees (12, 

23, 44, 45). 

The latest noncircular chainring is Rotor Bicycle 

Component’s Q-Ring which was developed in 2005. The 

designers claim to have the best shape, orientation, and 

adjustability compared to previous failed chainring 

designs. Q-Rings create a faster acceleration free of 

damaging loading peaks and unnatural joint movement (45). Rotor claims to create a better 

spinning efficiency by extending the time you spend in the power stroke (where 90% of all 

power is produced) and smoothly accelerating the legs through the critically weak dead centers 

(e.g., Figure 1: a 53 tooth (T) Q-Ring, around the upper dead-spot is equivalent to a 51T, but as 

the pedal goes down and more power is applied, the equivalent chainring tooth size reaches a 

56T) (41). Rotor also claims these rings increase overall power by 4.1% while reducing blood 

lactate concentration by 9.1% and lowering fatigue (27, 41). The Q-Rings have been used by 

many professional and recreational riders, (in 2011 five major teams ride with Rotor 

components: Garmin-Cervélo, Geox-TMC, Vacansoleil-DCM, Saur-Sojasun and the Specialized 

Factory Racing team), and the use of these chainrings include many major victories such as 

Carlos Sastre’s big Tour de France win in 2008 (41).  

Figure 1: Design of Rotor Q-Ring 
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Statement of the Purpose 

The primary purpose of this study was to examine the effects of a noncircular chainring 

(Rotor Q-Ring) on performance factors with elite cyclists. Several physiological and 

biomechanical markers (i.e., dependent measures) were examined including the respiratory 

exchange ratio (RER), heart rate (HR), ventilation (VE), volume of carbon dioxide expiration 

(VCO2), volume of oxygen consumption (VO2), blood lactate, gross efficiency (GE), delta 

efficiency (DE), power, and performance time. These are specifically described below. 

Research Hypotheses  

1. The noncircular chainrings will decrease performance time of elite cyclists in a 1 k time 

trial when compared to a circular chainring. 

2. The noncircular chainrings will increase maximum and average power output of elite 

cyclists in a 1 k time trial when compared to a circular chainring. 

3. The noncircular chainrings will increase maximum and average speed of elite cyclists in 

a 1 k time trial when compared to a circular chainring. 

4. The noncircular chainring will lower blood lactate concentration of elite cyclists in a 1 k 

time trial when compared to a circular chainring. 

5. The noncircular chainring will decrease blood lactate concentration of elite cyclists 

during a graded exercise test at a constant workload when compared to a circular 

chainring. 

6. The noncircular chainring will decrease heart rate of elite cyclists during a graded 

exercise test at a constant workload when compared to a circular chainring. 

7. The noncircular chainring will increase efficiency (gross and delta efficiency) of elite 

cyclists during a graded exercise test at a constant workload when compared to a circular 

chainring.  
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8. The noncircular chainring will decrease ventilation of elite cyclists during a graded 

exercise test at a constant workload when compared to a circular chainring.  

9. The noncircular chainring will decrease VO2 of elite cyclists during a graded exercise test 

at a constant workload when compared to a circular chainring.  

10. The noncircular chainring will decrease CO2 of elite cyclists during a graded exercise test 

at a constant workload when compared to a circular chainring.  

11. The noncircular chainring will decrease the respiratory exchange ratio of elite cyclists 

during a graded exercise test at a constant workload when compared to a circular 

chainring. 

12. The noncircular chainring will increase the VO2 max of elite cyclists during a maximal 

test when compared to a circular chainring. 

Significance 

 To our knowledge, this is the first study to investigate the use of noncircular chainrings 

compared to circular chainrings during a four week adaptation period. While other studies have 

examined the effects of various non-circular chainrings or non –traditional crank systems, this 

study will give further insight into the effects of these chainrings on cycling performance and 

provide insight on equipment design and further research. 

Definition of Terms 

The following terms and abbreviations are defined as used in the study: 

Dead centers: Also known as “dead spots,” the dead centers occur when one of the pedals is up 

(at top dead center) and the other is down (at bottom dead center), creating a power 

vacuum due to the cancellation of the tangential component of the forces on the pedals. 

This occurs at 0 and 180 degrees in the pedal stroke (25). 
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Efficiency: measure of effective work performed and most commonly expressed as the  

percentage of total energy expended that produces external work (6). 

Gross mechanical efficiency (GE): at each 3-minute workload, the ratio of work accomplished to 

energy expended. GE (%) = [work rate (J/sec)/energy expended (J/sec) x 100%; Energy 

expenditure (J/sec) = ([3.869 x VO2] + [1.195 x VCO2]) x (4.186/60) x 1000 (7). 

Delta Efficiency (DE): the ratio of the change in work accomplished and the change in energy 

expended = Change in Wx100/Change in E (7). 

Maximal oxygen uptake (VO2 max): The maximal amount of oxygen consumed, limited by 

oxygen delivery and subject to central and peripheral cardiovascular capacity limitations 

and tissue oxygen demand (7). 

Respiratory exchange ratio (RER): Ratio of volume of oxygen to volume of carbon dioxide, used 

for estimating what fuel (carbohydrate or fat) is being utilized as energy. Values due to 

non-metabolic CO2 range from 0.70 to 1.0, although can exceed 1.0 during maximal 

exercise (36). 

Rate of perceived exertion (RPE): This is assessed using Borg’s Scale. The 6-20 point scale was 

displayed on an 8.5” x 11” sheet of paper with the numbers and words describing intensity. Each 

workload stage the participant would point to a corresponding number to report their subjective 

levels of intensity (36). 

Assumptions 

1. The participants performed to the best of their ability during each testing session. 

2. The participants followed the pre-test requirements (fasted, hydrated, well rested, 

followed same exercise routines), that were given to them before initial testing. 

3. The participants gave honest responses of RPE and training routines. 
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Chapter 2: Literature Review 

The purpose of this review is two-fold. First, to describe the basic biomechanical aspects 

of the bicycle and rider system and how muscular force is transmitted though the bicycle for the 

purpose of locomotion. This background highlights the underlying principles that could be 

manipulated for the purpose of increasing performance for competitive cyclists and triathletes.  

Second, this review will also describe works involving the effects of noncircular chainrings or 

altered crank systems on various physiological and biomechanical measures, and compare that to 

the latest design of a noncircular chainring, Rotor Bicycle Component’s Q-Ring. 

The human neuromuscular and musculoskeletal systems involve complex intrinsic 

properties and become more complex with interactions between different equipment, 

environments, and alterations to these systems. Human locomotion is characterized by cyclical 

movements that require muscles to generate mechanical power to overcome external resistive 

forces (e.g., friction, gravity, and inertia). Muscle power is the product of muscle force and 

contraction velocity, each of which is influenced by intrinsic muscle properties (33). The primary 

intrinsic determinants of muscle force and work output during the pedal stroke involve the force-

velocity relationship; power-velocity relationship; and the kinetics of muscle 

activation/deactivation (force-time relationship). These properties have an influence on muscle 

force, power, efficiency, and metabolic capacity which in turn can affect an athlete’s overall 

performance. Altering these properties in a positive direction will create new adaptations in the 

nervous system and will in theory increase performance. After a period of training (as soon as 

two to four weeks) muscle adaptations of the neural system can occur (18, 41). Although there 

may need to be an adaptation period for maximum benefits, slight adaptations can occur starting 

with as little as 20 pedal strokes (32). 
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Force-Velocity and Power-Velocity Relationship 

The force-velocity relationship describes the force production with shortening or 

lengthening of the muscle fiber. The ability of a muscle to produce force decreases as shortening 

velocity increases, whereas when the muscle is lengthened the force increases with increasing 

speeds of lengthening until a certain speed is reached and then the force becomes constant. 

Viewing the actions of the muscle at the fiber level, one would see that as the velocity of 

shortening increases, cross-bridge formation decreases and therefore tension developed by the 

muscle decreases (see Figure 2) (34). 

Power is the rate of doing work, and is expressed as the product of force and velocity (7). 

The tensile force produced by a muscle multiplied by the velocity of the shortening of the muscle 

produces a final power output. As velocity increases, power increases to a maximum between 

20-35% of maximum shortening velocity, and then decreases with further increasing speeds (24). 

With any given muscle group the greatest power output is elicited by an optimum speed of 

movement. Based on the power-velocity curve (see Figure 3), cyclists would maximize power in 

a gear and cadence that would allow them to spin the crank efficiently so that the muscle’s 

velocity of shortening is in the range of producing maximum power output (34).  

Figure 2: Force-Velocity Relationship Figure 3: Power-Velocity Relationship 
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Activation/Deactivation Relationship 

Activation and deactivation dynamics are another important muscle property that 

describes the delay between the development of muscular force and relaxation. (The force-time 

relationship refers to the delay in muscle tension after activation). Muscles require time to relax 

(deactivation) and time to develop tension (muscle activation). These delays are mainly due to 

calcium dynamics and cross-bridge attachment and detachment (33). During repetitive activities 

such as cycling, force-time effects may constrain muscular performance, imposing limitation on 

maximal force production. At the beginning and end of the shortening phase, actual force is 

decreased because of incomplete activation (24). Therefore, maximal power increases when 

there in an increase in the duration of the portion of the movement cycle spent shortening. With 

the leg extended for 58% of the pedal stroke (compared to shortening and lengthening for 50% 

each with circular chainrings), Martin reported a 4% increase in average power and an 8% 

increase in instantaneous power in a maximal cycling computer model (25). Another model they 

created found a 70% shortening cycle increased power during the leg extension by 44% (24). 

Similar results were found by Askew and Marsh who reported that power was 40% greater when 

the muscle shortened for 75% of the cycle time (1). 

With circular chainrings, there is a delay in muscle activation which potentially causes a 

loss in power during the downstroke (power phase) (32). With elliptical chainrings the delay can 

Figure 4: Muscle 

activation through one 

pedal revolution 
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be altered to occur earlier in the pedal stroke, therefore maximizing positive work and 

minimizing negative work (see Figure 4). Relationships such as these have been shown to have 

positive influences on the neural control and optimal performance in human movement during 

work loop techniques and simulations in animal preparations (34, 38).  

Muscle work, Energy, Power, and Efficiency 

In general, muscle efficiency is the ratio of mechanical work output to metabolic energy 

input (6). The relationship of muscle efficiency and shortening velocity is similar to the power-

velocity relationship (see Figure 3). As a cyclist’s shortening velocity increases, so does the rate 

of energy consumption. Efficiency peaks at about 20% of the muscle’s maximum shortening 

velocity and then begins to decrease (33). Peak muscle efficiency and power output do not occur 

at the same shortening velocity; therefore a velocity somewhere in between is optimal as can be 

seen in Figure 3 (34). 

Cyclists can maximize speed and power by taking advantage of the previously mentioned 

relationships and achieving optimal shortening velocity of muscle fibers. Using muscle-actuated 

models and simulation of the pedal stroke, research has found optimal conditions to improve 

performance through equipment design (13, 14, 15, 17, 21, 23, 38, 39, 40, 42, 46). Circular 

chainrings have a relatively constant crank angular velocity, whereas elliptical rings have a 

sinusoidal crank angular velocity (Figure 5) (33). An altered angular velocity during the pedal 

stroke has the potential to provide improved conditions for increasing power and performance. 

Computer models identified an eccentric chainring that increased average crank power by 3% 

relative to a circular chainring (38). During the downstroke of the pedal cycle (power phase), the 

eccentric chainring causes a decrease in angular velocity resulting in a longer power phase and 

therefore more work production. The foot continues through the pedal stroke going through the 
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dead spot centers at an increased angular velocity and therefore minimizing negative work 

during deactivation. 

 

Figure 5: Pedaling rate 

Among the many determinants of success in cycling, the ability to effectively rotate the 

chainrings is worthy of greater inspection. Maximum power output (developed primarily about 

the hip and knee joints) is reached when the tangential component of the force applied is 

greatest. Maximum torque is exerted when the crank is positioned midway between top and 

bottom dead centers (90 degrees from top dead center). The “dead spot” occurs when one of the 

pedals is up and the other is down, creating a power vacuum due to the cancellation of the 

tangential component of the forces on the pedals (25). The use of newly designed equipment 

(such as Rotor’s Q-Rings) can alter the previously discussed relationships and in theory improve 

performance.  

Eccentric and noncircular chainring research 

Previous research has shown mixed results between noncircular and circular chainrings 

(1, 3, 4, 5, 9, 10, 12, 13, 22, 12, 13, 14, 15, 22, 23, 28, 38, 39, 40, 42, 46). There are several 

studies that have been published comparing the use of these eccentric chainrings, but to our 

knowledge there is only one published study by Martinez et al. that has looked at the Rotor Q-

Rings and their effect on performance and metabolic cost (28). Martinez’s study found a 
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reduction in lactate production, a lower heart rate, and increased power output at 90% of VO2 

max during a graded exercise test. Before Rotor Q-Rings were developed there were many 

attempts at developing an eccentric chainring and/or crank design in hopes of improving cycling 

performance and/or pedaling efficiency (23). Biomechanical and physiological research has been 

conducted on these designs, again showing mixed results (23). However, these theories and 

research designs can be looked at to study the effects of Rotor Q-Rings. The following sections 

look at these biomechanical and physiological responses from previous research. 

I. Biomechanical Responses: 

Cycling efficiency/economy 

Gross mechanical efficiency has been defined as ratio of work done to the total metabolic 

cost (6). This variable can provide insight into the effects due to different equipment used, in our 

case, between different types of chainrings. Several studies also computed delta efficiency to 

analyze greater changes. Delta efficiency can be defined as the change in power over the change 

in metabolic rate with increasing work rate (6). Using this equation eliminates the use of resting 

metabolic rate and therefore eliminates any variation in changes of the subjects baseline energy 

cost caused by work rate. Economy is another measure that analyzes the cyclist’s VO2 per unit of 

power output. This is defined as the amount of oxygen per liter per unit of energy transferred to 

the bicycle (7). An increased in efficiency would lower the rate of oxygen uptake at any given 

power output or speed, and be advantageous for longer duration exercise/performance (10). 

 Slight increases in cycling efficiency, up to 3%, were found when eccentric chainrings 

were used in comparison to a circular system (15, 34, 38, 42, 46). At exercise intensities between 

60 and 90% of VO2 max, an increase in delta efficiency with Rotor cranks (42). Using an 

O.Symetric chainring, Horavis found lower net crank torque, higher max torque, and verified a 

theoretical mechanical benefit (12). In contrast, Rodriguez-Marroyo found no improvements in 
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aerobic cycling efficiency (measured via gross mechanical efficiency and the cycling economy) 

using a Rotor pedaling system (40).  

Crank Torque 

Horavis et al., found significant differences between torque production from a 

noncircular O.Symetric chainring (OC) and circular chainring (CC), during submaximal cycling 

testing (12). The results showed that the OC produced lower net crank torque at top and bottom 

dead center, and higher torque at during the downstroke phase. OC also had a significant 

increase in the instantaneous pedaling rate during top and bottom and decrease during the 

downstroke. This indicates that the crank moves at a slower rate during the effective activation 

phase (i.e., more time spent in the effective phase) (12). Theoretically, this can lead to benefits in 

competitive settings. For example Hue et al., found significant difference in cycling performance 

(faster time) during an all out 1-km using an eccentric chainring (that increases crank length 

during downstroke), but no significance in any physiological variables (13). They attributed the 

increase in performance to the possible higher torque production during the downstroke resulting 

from the greater crank length. On the other hand, Hansen et al., found that there were similar 

profiles between a noncircular chainring (Biopace) and circular chainring. No significant 

differences were found between peak torque, min torque, and crank angle at peak torque (10).  

Power Output 

Power output is the product of torque and pedal velocity (24). Torque is determined by 

the effective force applied perpendicular to the crank arm and by crank arm length. The 

maintenance of a constant effective force would optimize torque, and hence, power production 

(3). However, biomechanical constraints result in an uneven production of torque in a nearly 

sinusoidal manner with minimal torque being produced at the top and bottom dead center points 

of the crank cycle (33). Any optimization of this crank cycle would necessarily lead to higher net 
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torque and, therefore, power output (assuming an equivalent cadence). Increasing crank arm 

length during the downstroke of the crank cycle has been shown to produce the highest peak 

torque (15, 38). Such an effect can also be achieved with the use of noncircular chainrings. 

Several studies found an increase in power output using noncircular chainrings or an 

eccentric crank system. Martinez found that subjects using Rotor Q-Rings produced around 3% 

more power compared to circular rings (27). In other studies using an eccentric crank system, an 

increase in both peak and mean power output improved anaerobic power output by increasing the 

force component (8, 18). Using a theoretical analysis of an optimal chainring shape, Rankin and 

Neptune found that there is an increased power of 2.9% compared to a conventional circular 

chainring (38). 

Contrary to the previously discussed studies, there were no significant differences in 

power using an eccentric chainring design in several other studies (3, 15). Jobson also found no 

increases in power or cycling performance using an eccentric crank system after six weeks of 

training, but does suggest that the system could have acute ergogenic effects if used infrequently 

(18). 

II. Physiological responses: 

 Valid physiological markers found to be predictive of cycling performance include: 

power output at the lactate threshold at during a maximal cycling test; peak power output 

indicating a power/weight ratio of greater than or equal to 5.5 W/kg; maximal lactate steady-

state, representing the highest exercise intensity at which blood lactate concentration remains 

stable; efficiency/metabolic cost; heart rate at given workload; and ventilatory threshold (7, 8, 

13). The following works describe the use of these markers to assess performance. 
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Blood Lactate Concentration 

 Blood lactate concentration at various cycling intensities is highly predictive of 

endurance performance and training thresholds (7). With the correct training, an athlete can 

recycle and buffer lactate at attained workloads until they reach a threshold. By reducing lactate 

production at a higher workload, an athlete can increase performance and delay fatigue (36).  

Several studies have examined the effects of chainrings and eccentric crank systems on 

blood lactate, but the findings are inconsistent. Martinez found that the use of the Rotor Q-Rings 

led to a lower production of lactate at the same workload (27). When testing the Biopace 

chainring, Hansen et al. found a significance difference in lactate (on average 0.2 mmol/L lower) 

(10). An unpublished study by Conconi found that after 12 incremental tests, the lactate 

concentration was always higher with the traditional bike compared to the eccentric crank system 

(4). In comparison, several studies found no significant differences between circular chainrings 

and eccentric crank systems (3, 5).  

Heart Rate 

 The ability of an athlete to work at a lower heart rate during a certain workload is similar 

to lactate in that lower values at the same workload will enable the athlete to perform at a higher 

level before fatigue (7). The findings with respect to heart rate were also similar to the effects of 

blood lactate production. 

Martinez found that the use of Rotor Q-Rings led to a lower heart rate at the same 

workload when compared to circular rings (27). In a follow-up study, Martinez also found that 

during the test with the Q-rings the subjects produced almost a 2% lower heart rate (28). Also, 

the unpublished study by Conconi found that the relationship between heart rate and wattage was 

always slightly better with the eccentric crank system (4). With the eccentric system, subjects 
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were able to work at an intensity 7-9% higher, but at the same heart rate using the conventional 

system (4). 

Oxygen consumption/RER 

Due to the metabolic demands of exercise, there is a linear relationship between RER, 

VO2, power, and heart rate (7). With an increase in intensity, oxygen consumption increases until 

a plateau is reached and no further increase occurs with an increase in work rate (36). Looking at 

the oxygen consumption and RER value at various work rates is indicative of fitness (36).  

One of the main adaptations to training and competing at the professional level is an 

increased fat metabolism at any submaximal intensity (22). A similar adaptation with the 

noncircular chainrings would be crucial from a performance standpoint, especially in long 

mountain stages that are more than five hours (40). Therefore, it is important to look at the 

values of RER and oxygen consumption with the use of an altered system. 

Rodriguez-Marroyo found no significant difference in the Rotor crank system and 

circular chainring systems in submaximal aerobic tests (40). However, in the anaerobic test, 

maximal and mean power outputs were greater with the crank system. Their findings also 

suggested that the subject must be adapted to the equipment in order to improve performance. 

Ratel and Martinez found no significant differences in RER, VO2, or VE with the use of 

noncircular Harmonic chainrings and Rotor Q-Rings, respectively, when compared to circular 

chainrings (27, 39). 

Several studies found that at a constant power output, oxygen consumption was lower in 

an eccentric crank system (15, 46). In addition, Henderson found that caloric outputs were 2.5% 

lower with a noncircular system at respective workloads versus a circular system (11).  
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Muscular and Joint Pain 

In addition to the biomechanical and physiological variables previously discussed, 

muscular and joint pain with the use of an altered chainring or crank system has proved to be of 

interest. Knee pain is the most common lower extremity overuse problem in cyclists which, 

ironically, is caused by strong knee extensors (23). If only the knee extensors are strengthened, 

the patella will be overstrained since most of the energy in the power phase is transmitted 

through the patella (12, 44). This problem, if it occurs, may result in decreased performance, 

participation and enjoyment for cyclists at all levels.  

The knee extensor muscle group is the prime mover during the downstroke phase of the 

pedal stroke and commonly cyclists overemphasize this group instead of others that surround and 

support the knee (23). There are claims that greater muscle strength can be generated with the Q-

rings in relation to knee discomfort and the tender sensation in the patella is less pronounced 

(44). After the power stroke, Q-rings reduce the immediate gear ratio to pass through the dead 

spots, acting similarly to a smaller circular chainring with a smaller diameter, reducing stress on 

the knees (23). By reducing the time spent in the dead spots, Martinez states that knee pain, if it 

exisits, may be reduced (28). 

Conclusion 

 Taken together, studies examining the effects of altered crank or chainring systems have 

been unequivocal. To date, no studies have examined the prolonged use of Q-rings that included 

an adaptation phase of chainrings and their effects on performance. Three studies mentioned that 

a limitation to their study was that subjects were only given brief familiarization with the 

chainrings (15, 22, 33). Therefore, further neuromuscular adaptations could not be ascertained, 

but can possibly occur if participants go through a longer familiarization period. Another factor 

that could be a limitation involves research that has looked at the effects of eccentric crank 
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systems. Although the studies that examined these effects have shown an increase in wattage and 

performance, these results cannot be applied specifically to the Rotor Q-Rings (1, 3. 5, 10-15, 18, 

22, 25, 39, 40, 42, 46).  Although biomechanical relationships between these systems are similar, 

more studies examining the Rotor Q-Rings are needed to support the efficacy of this 

modification to the bicycle drive train. 
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Chapter 3: Methods 

Overview  

 The purpose of this study was to examine the effects of a non-circular chainring (Rotor 

Q-Rings) on physiological and biomechanical markers, as well as performance in a one 

kilometer (1 k) time trial. Cycling has seen many advances in technology and equipment design 

to help maximize athletic performance. This study compared a conventional circular chainring to 

the use of a non-circular chainring during a four week training period (plus two weeks of pre-

testing and one week of post-testing, to carry the study over a seven week period). This chapter 

describes the participants, study design, test procedures, instruments used, statistical analysis and 

pilot study data. 

Participants 

 Eight participants (six cyclists and two cyclists/triathletes) with a mean age of 22 ± 2.73 

years, and height of 70 ± 3.09 inches were recruited from the California Polytechnic State 

University at San Luis Obispo and the surrounding area. Other subject characteristics can be seen 

in Table 1.  Participants were recruited on a voluntary basis through e-mail and Cal Poly's 

Cycling and Triathlon Clubs. Participants were all aerobically trained and healthy as assessed by 

a health history questionnaire, Physical Activity Readiness Questionnaire (PAR-Q), and record 

of physical activity. Anthropometrics such as height, weight, and age were also measured prior 

to the start of testing. A maximal oxygen consumption test was performed to test for physical 

fitness. Inclusion criteria for the study was as follows: (1) VO2 max >55 ml/kg/min, (2) engage 

in at least 8 hours/week of cycling exercise, (3) USA Cycling License Category 1-3 rider or 

Men’s Collegiate A rider, and (4) 18 to 39 years old. Participants were all informed of the study 

requirements, benefits, and risks of the study. This study was approved by the Human Subjects 
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Committee at California Polytechnic State University. Each participant also gave verbal and 

written consent to participate in the study.   

Table 1: Subject Characteristics. Values are means (± SD), n=8. 

Age (yr) 22 ± 2.73 

Height (cm) 177.8 ± 7.80 

Weight (kg) 72.36 ± 8.30 

VO2 max (L/min) 4.53 ± 0.43 

VO2 max (ml/kg/min) 62.93 ± 4.21 

 

Study Design 

In order to determine the effects of chainring type on cycling performance and any long 

term adaptations, a Pre-Test, Intervention, Post-Test approach was employed.  Throughout the 

study, subjects trained, raced, and were tested on their own bicycle.  The study occurred during 

the middle part of the competitive racing season to avoid any potential off-season or pre-season 

effects that could possibly mask the effects of charinring type on the physiological measures 

targeted for collection. A repeated measures study design was used in which each participant 

served as their own control. All subjects completed an initial VO2 max, blood lactate threshold, 

and 1 k time trial testing sessions with their original circular chainrings. After initial testing, 

participants completed submaximal testing every week for four weeks with non-circular 

chainrings (Rotor Q-Rings) as the intervention. Every week a 1 k time trial occurred after the 

submaximal lactate threshold test. Following the four weeks on Rotor Q-Rings, subjects were re-

tested on circular chainrings with a maximum oxygen consumption test followed by a 1 k time 

trial (see Table 2 for timeline).  
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Food Intake and Training Records 

 Participants performed all of their scheduled exercise tests in the morning after an 

overnight fast. They were allowed to drink water the morning of the test, but no solid foods, 

caffeine, or other beverages were allowed. Participants were asked to consume the same meal the 

evening before each test, and were provided with a food journal log to record intake during that 

time. 

Participants were also provided with a training journal to record mileage, average speed, 

HR/power, RPE, and muscular soreness each day on the bike. This was to be filled out every 

week and brought to the lab each testing day. Exercise was avoided 12 hours before the test, and 

no intense exercise sessions should have occurred 24 hours before the test. Participants were 

instructed to perform similar exercise sessions the day before each test session and follow 

consistent training during the week. 

Instruments and Measures 

The CompuTrainer (LAB version) with front fork mount extension, and RacerMate 

Coaching Software (Seattle, WA, USA) was used for all cycling tests. The participant’s own 

personal bike was attached to the CompuTrainer at the rear wheel skewer. The CompuTrainer 

provides resistance to the rear wheel of the bicycle through an electronic load generator. 

CompuTrainer sets the industry standard for accuracy (± 2.5%), power (1500 watts), and quality 

(37). Crank RPM, speed, and power are all measured through the machine. 

The dependent measures throughout the testing period included the following: VO2 max, 

blood lactate concentration (mmol/L), respiratory exchange ratio (RER), heart rate (bpm), RPE, 

VO2 (L/min), VCO2 (L/min), VE (Ventilation, L/min), Power (Watts), 1 k time trial performance 

time (seconds), and delta and gross efficiency (percent).  
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Timeline of laboratory tests 

All subjects performed testing during the same time period consisting of seven visits to 

the Biomechanics Laboratory on the Cal Poly Campus over seven weeks.  All subjects were in 

the middle part of their competitive racing season with racing occurring on the weekends.  Visits 

to the lab for data collection were scheduled for Tuesday, Wednesday, or Thursday.  The 

following table describes the order of tests and the type of chainring employed during the testing 

session. A description of each of the testing sessions follows. 

Table 2: Timeline of Laboratory Tests 

Week Chainring Tests Performed 

Initial 

0 

Round 

Round 

Maximal Oxygen Consumption + Lactate + 1k practice Time Trial 

Graded Submaximal + Lactate + 1k Time Trial 

1 Rotor Graded Submaximal + Lactate + 1k Time Trial  

2 Rotor Graded Submaximal + Lactate + 1k Time Trial  

3 Rotor Graded Submaximal + Lactate + 1k Time Trial  

4 Rotor Maximal Oxygen Consumption + Lactate + 1k Time Trial 

5 Round Maximal Oxygen Consumption + Lactate + 1k Time Trial 

 

Maximal Oxygen Consumption Test 

The maximal oxygen consumption test was a preliminary measure to determine eligibility 

for the study, and was also repeated at the end of the four week training period. The test began 

with a 15 minute warm up at 150 watts on the participant’s bike mounted to the CompuTrainer. 

After the warm up period, the trainer was calibrated according to industry standards (>2.0 lbs.), 

and the computer was set to start the test at 150 watts (37).  
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 A clip was placed on the participant’s nose with a breathing tube attached to a 

mouthpiece to ensure that the participant could only breathe through his or her mouth. Expired 

air was analyzed using a Parvo Medics TrueOne 2400 Metabolic Measurement System (Parvo 

Medics, Salt Lake City, UT). Participants were also fitted with a heart rate monitor strap (Polar 

Electro, Lake Success, NY). RER, HR, VE, VCO2, and VO2 max were all determined by the 

highest 30-second averaged values obtained through analysis. The last two minutes of each three 

minute stages were averaged to obtain values for data analysis. Metabolic cost and efficiency 

were also calculated from the data. Participants were instructed to maintain a pedaling cadence 

of 90 rpm. Power was automatically increased by 30 watts every 3 minutes through the computer 

until the participant reached exhaustion, voluntarily stops the test, or reduces cadence below 50 

rpm. Rate of perceived exertion was also assessed every 3-minutes. The test was deemed valid if 

three of the following four criteria were met: 1) plateau of VO2 max followed by a prolonged 

decrease in VO2 at near maximal intensity, 2) respiratory exchange ratio > 1.15, 3) heart rate was 

within 10 beats of their age predicted max, and 4) RPE >18 (36). 

After performing their initial maximal oxygen consumption test, participants underwent a 

1 k familiarization trial. This included instructions for subsequent weeks of testing. Participants 

were allowed to experiment with gearing and were given a 1 k practice trial to avoid any testing 

effect in future weeks. Exact protocol for the 1 k time trial is discussed below. 

Weekly Exercise Testing Protocol  

Graded Exercise Test (Lactate Threshold Test)  

 A week after the initial maximal oxygen consumption test, an initial graded lactate 

threshold test with metabolic sampling was done and continued every week of testing. The 

graded exercise test protocol was similar to the maximal oxygen consumption test in that each 
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stage was three minutes long with 30 watt increases each stage. The same warm up occurred (15 

minutes) followed by calibration of the CompuTrainer. Blood lactate, heart rate, RPE, and 

metabolic data were recorded for each stage. Instead of going to maximal exertion, this test 

ended when a RPE of 15-18 was reached and lactate concentration was >4.0mmol/L with an 

increase from the previous value >1.0mmol/L. The last stage was kept constant every week. 

One Kilometer Time Trial 

After the initial lactate threshold test, the participant was given five minutes to spin easy 

and recover at 150 watts before beginning an all out 1 k time trial. RacerMate’s Coaching 

Software was used to design a flat one kilometer course for the time trial. During the test the 

program was set to record performance time, average power, maximum power, and heart rate. 

Participants were instructed to select their preferred gear (found during the familiarization trial 

and repeated each week). Once in the correct gear, pedaling ceased and the wheel was brought to 

a complete stop. After 30 seconds, when heart rate reached a steady value similar to initial 

testing, the participant was given a three second countdown to start the test. Each week the 

participant began the test at the same heart rate as initial testing so that performance would not 

be skewed. Participants were allowed to pedal out of the saddle for the first five seconds to 

accelerate, but had to remain seated for the remainder of the test. Feedback of cadence and heart 

rate were given on a visual display, but distance, speed, and power were hidden from view. 

Participants were free to choose their own cadence, however they were asked to try and stay 

around 90 RPM and to pedal at a similar cadence for subsequent time trials. No instruction or 

encouragement was given during the test with the exception of an announcement stating the test 

was halfway over, and that there was 0.02 km to go. 
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After the initial graded exercise test and 1 k time trial, the chainrings on the participant’s 

bicycle were changed over to Rotor Q-Rings. For the next four weeks, the participant reported to 

the lab for the graded exercise test with metabolic and blood sampling. Every week, the graded 

exercise test was followed by the 1 k time trial with the same procedures as mentioned before. 

Blood Sample Analysis  

 Blood samples were obtained via ear lobe prick to measure blood lactate concentration 

using the Lactate Pro analyzer (Arkay Factory Inc., Shiga, Japan). The Lactate Pro analyzer has 

been fully approved by the FDA and needs as little as five microliters of blood for a 

measurement. The blood lactate analyzer was calibrated prior to each test session according to 

the manufacture’s recommendations. Blood was obtained during the last 30 seconds of each 

stage during the graded exercise test. The sampling site was cleaned using an alcohol wipe 

followed by the use of gauze pad to dry. A lancet was used to prick the ear lobe, and a drop of 

blood was applied to the test strip inserted into the analyzer. Subsequent blood measurements 

were taken from the same site for the next stage if clotting did not occur. Researchers wore lab 

gloves at all times during blood sampling and testing. Universal precautions, as recommended by 

the Centers for Disease Control and Prevention, were used at all times. This included using a 

sharps container lined with a biohazard bag for all sharp objects involved in the blood sampling; 

all other materials (i.e. gloves, gauze pads, etc.) used during the sampling were be put in a 

separate waste disposal unit lined with a biohazard bag. 

Statistical Analysis 

All analyses in this study were carried out using SAS/Stat software Version [9.2] for 

Windows. A one-way ANOVA, blocking on subject, was used to determine the effect of 

chainring type on each performance measure during the 1k time trial.  All data for time (s), 

average power (W), max power (W), average speed (kph), max speed (kph), and blood lactate 
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concentration (mmol/L) are presented as means  SD.  1 k time trials were made after a 

submaximal testing session and also after maximal testing.  For submaximal testing, post-hoc 

comparisons of Rotor Q-Ring means during weeks 1, 2, and 3, to circular rings in week 0 were 

adjusted using Dunnett-Hsu.  

The effects of Rotor Q-Rings were examined by analyzing mean values across subjects 

during maximal and submaximal testing. The effects of Week/Chainring, Power, and the 

Week/Chainring by power interaction were then analyzed using repeated measures ANOVA, 

blocking on subject, with week 0 and week 5 testing occurring with subjects using circular rings, 

and week one through four using Rotor Q-Rings.  Post-hoc comparisons of Week/Chainring 

means were carried out using a Dunnett-Hsu adjustment with week 0 on circular chainrings as 

the control.  Post-hoc comparisons of interaction means were carried out using a Bonferroni 

adjustment.  All data are presented as means  SD and include the following:  Blood Lactate 

Concentration (mmol/L), Maximum Oxygen Consumption (L/min and ml/kg/min), Submaximal 

Oxygen Consumption (L/min and ml/kg/min), Respiratory Exchange Ratio (RER), Heart Rate 

(bpm), Ratings of Perceived Exertion (RPE), Ventilation (VE in L/min), Carbon Dioxide 

Production (VCO2 in L/min), Power (W), Delta and Gross Efficiency (percent).  All effects were 

considered significant at P < 0.05. 

Pilot Test 

A pilot study was conducted before the start of actual data collection following the 

previously mentioned methods. All participants were familiar with physiological testing 

beforehand and briefed on the protocol for testing. Three intermediate level cyclists performed 

an initial lactate threshold test on their current circular chainrings. One of these participants then 

performed an all out 1 k time trial five minutes after the end of the LT test. Following initial 
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testing, all chainrings were switched over to Rotor’s Q-Rings and participants trained with them 

for a week (4-10 hours). They were retested the following week at the same time of day. Their 

lactate threshold test ended at the same stage as the previous week. Five minutes after the end of 

the test all participants performed a 1 k time trial. Chainrings were switched back to the original 

circular chainrings, and the two participants that did not do the initial 1 k time trial returned the 

following week for another 1 k time trial under the same protocol from the LT test. This final test 

was performed to examine whether or not exposure to the test produced an effect independent of 

chainring type. Pilot data analysis and sample size calculation for the current study can be found 

in the Appendix on page 50. 
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Chapter 4: Results 

Food Intake and Training Logs 

 Examination of food intake and training logs did not reveal any deviations from 

instructions given to subjects and did not warrant elimination of any particular data set. While 

variations in training volume were apparent across subjects, within subject variations on a 

weekly basis were consistent. 

Submaximal Graded Exercise Test 

Physiological data from all submaximal graded exercise tests (i.e., absolute VO2, relative 

VO2, CO2, HR, VE, RER, RPE, GE, DE, lactate) are presented in Figures 4-5, and Tables 3-12. 

All tables show the power for each workstage followed by the least square means (LSM). Graded 

exercise tests stopped after six workstages (i.e., 150, 180, 210, 240, 270, 300 watts) and occurred 

during weeks 0-3.  In week 4, data from the first six workstages (instead of using all stages to 

max) were used for submaximal comparisons. However, subjects continued to cycle beyond 300 

watts to ascertain the effect of chainring type under maximal testing. This allowed for additional 

comparisons of physiological data from maximal testing that occurred during Pre-testing, week 

4, and week 5.  These findings are presented in Figure 12 and Table 15. There was no significant 

interaction (p > 0.05) between week/chainring and power for any of the response variables. 

Summary of statistical analysis for all dependent measures can be found in Appendix B, page 57. 

Oxygen Consumption 

A significant main effect for week/chainring type was observed for submaximal absolute 

oxygen consumption (VO2 in L/min) (p < 0.01). Post hoc analysis revealed that absolute VO2 

was lower in weeks 2, 3, and 4 compared to week 0 with the circular rings (p < 0.05) (see Figure 

4 and Table 3). There was no significant interaction found between week/chainring type and 
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power (p = 0.998). Although slight differences can be seen during each workstage (i.e., 150, 180, 

210, 240, 270, 300 watts), these data display increases that are generally indicative of an increase 

in exercise workloads. Oxygen consumption was not significantly different when comparing the 

final week of testing (i.e., week 5 Post-test) to the initial week of testing (i.e., week 0) on circular 

chainrings (p = 0.11) (see Table 3).  

A similar main effect for week/chainring type was found for relative oxygen consumption 

(VO2 in ml/kg/min) (p < 0.05). However, post hoc analysis indicated week 2 with the Rotor Q-

Ring as the only significantly lower occurrence compared to week 0 with the circular ring (p < 

0.05). In a similar manner as absolute VO2, the increases in relative VO2 correspond with 

increased demands of each exercise stage (see Table 4).  There was no significant interaction 

between week/chainring type and power (p = 1.00).  

Table 3: Absolute Volume of Oxygen Consumption with a Circular and Rotor Q-Ring 

Week/ 

Chainring 

Power Output (Watts)   

150 180 210 240 270 300 LSM 

0/Circular 2.3 ± 0.2 2.5 ± 0.1 2.9 ± 0.1 3.2 ± 0.2 3.6 ± 0.1 4.0 ± 0.2 3.1 

1/Rotor 2.2 ± 0.2  2.5 ± 0.2 2.8 ± 0.2 3.2 ± 0.2 3.6 ± 0.5 4.0 ± 0.1 3.0 

2/Rotor 2.2 ± 0.2  2.4 ± 0.3  2.8 ± 0.2  3.2 ± 0.4 3.5 ± 0.4 3.9 ± 0.1 3.0 * 

3/Rotor 2.2 ± 0.4 2.5 ± 0.4 2.8 ± 0.3  3.2 ± 0.3 3.5 ± 0.3 3.9 ± 0.2  3.0 * 

4/Rotor 2.3 ± 0.5  2.5 ± 0.2 2.8 ± 0.2 3.2 ± 0.2 3.5 ± 0.2 3.9 ± 0.1 3.0 * 

5/Circular 2.2 ± 0.1 2.5 ± 0.1 2.8 ± 0.1 3.2 ± 0.1 3.6 ± 0.1 4.0 ± 0.1 3.1 

Absolute VO2 in L/min. Values are expressed as means ± SD.*Significantly lower than circular chainrings (p<0.05).  

 

Figure 5: Submaximal values of absolute VO2 with a Circular and Rotor Q-Ring. 

 
Values are expressed as means ± SE. *Significantly lower than circular chainrings (p<0.05). 
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Table 4: Relative Volume of Oxygen Consumption with a Circular and Rotor Q-Ring 

Week/ 
Chainring 

Power Output (Watts) 
 150 180 210 240 270 300 LSM 

 0/Circular 31.4 ± 3.4 35.4 ± 3.6 40.2 ± 4.1 44.7 ± 4.5 50.0 ± 5.1 55.1 ± 4.3 42.8 

1/Rotor 30.5 ± 5.4 34.7 ± 5.9 39.4 ± 6.5 44.6 ± 6.7 49.6 ± 6.5 54.5 ± 4.9 42.2 

2/Rotor 30.1 ± 6.8 33.7 ± 7.9 38.6 ± 8.1 43.8 ± 5.6 48.9 ± 5.5 53.9 ± 5.3 41.5 * 

3/Rotor 31.0 ± 8.4 34.8 ± 9.5 39.4 ± 5.2 44.3 ± 5.6 49.6 ± 6.0 54.9 ± 6.7 42.3 

4/Rotor 31.3 ± 10.5 34.8 ± 2.8 39.2 ± 3.4 44.1 ± 3.4 49.3 ± 4.0 54.4 ± 4.8 42.2 

5/Circular 30.4 ± 3.3 34.4 ± 3.5 39.0 ± 3.4 43.9 ± 3.8 49.4 ± 4.1 55.0 ± 5.0 42.0 * 

VO2 in ml/kg/min. Values are expressed as means ± SD. *Significantly lower than circular chainrings (p<0.05). 
 

 

Heart Rate and Rate of Perceived Exertion 

A significant main effect for week/chainring type was observed for heart rate (p < 0.01). 

Post hoc analysis revealed that heart rate was significantly lower in weeks 2 and 3 on Rotor Q-

Rings compared to week 0 on circular chainrings (p < 0.05). Heart rate was also significantly 

lower during weeks 1, 2, and 3 on the Rotor Q-Rings compared to week 5 back on circular 

chainrings (p < 0.05) (see Figure 5 and Table 5).  There was no significant interaction found 

between week/chainring and power (p = 1.00), although slight differences can be seen during 

each workstage with the Rotor Q-Rings compared back to the initial test on circular chainrings, 

week 0.  

 

Table 5: Heart Rate with a Circular and Rotor Q-Ring 

Week/ 

Chainring 

Power Output (Watts)  

LSM 150 180 210 240 270 300 

0/Circular 129 ± 8 139 ± 8 149 ± 7 158 ± 8 168 ± 8 176 ± 7 153 

1/Rotor 128 ± 11 136 ± 12   147 ± 13 158 ± 11 167 ± 16 175 ± 8 152   † 

2/Rotor 126 ± 13 136 ± 14  147 ± 13  157 ± 11  166 ± 11  174 ± 8  151 *† 

3/Rotor 127 ± 17 137 ± 15 148 ± 12 158 ± 11 166 ± 9    174 ± 7  152 *† 

4/Rotor 130 ± 18 140 ± 10 150 ± 10 160 ± 8 168 ± 7 177 ± 7 154 

5/Circular 130 ± 7 141 ± 9 151 ± 9 161 ± 7 170 ± 7 179 ± 7 155 

HR in bpm. Values are expressed as means ± SD. *Significantly lower than week 0 circular chainrings (p<0.05).  

†Significantly lower than week 5 circular chainrings (p<0.05). 
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Figure 6: Main effect on HR week/chainring type during submaximal testing. 

 
Values are expressed as means ± SE. *Significantly lower than week 0 circular chainrings (p<0.05).   †Significantly 

lower than week 5 circular chainrings (p<0.05). 

 

A main effect for week/chainring type reached borderline significance for the rate of 

perceived exertion (RPE) (p = 0.05). As the workstages increased during the graded exercise 

tests, the RPE increased in a systematic manner regardless of the type of chainring employed. 

There was no significant interaction found between week/chainring and power (p = 0.99). 

 

Table 6: RPE with a Circular and Rotor Q-Ring 

Week/ 
Chainring 

Power Output (Watts) 
 150 180 210 240 270 300 LSM 

 0/Circular 9.3 ± 1.6 11.0 ± 1.5 12.4 ± 1.4 13.8 ± 1.3 15.3 ± 1.5 17.1 ± 1.0 13.1 

1/Rotor 9.1 ± 1.9 10.9 ± 2.2 12.0 ± 2.2 13.3 ± 2.1 15.1 ± 1.7 16.8 ± 0.8 12.9 

2/Rotor 8.9 ± 2.8 10.1 ± 3.2 12.0 ± 3.0 13.5 ± 1.3 14.9 ± 1.2 16.8 ± 0.8 12.7  

3/Rotor 9.0 ± 2.9 10.6 ± 3.2 11.8 ± 1.6 13.4 ± 1.0 15.1 ± 0.9 17.1 ± 1.0 12.8 

4/Rotor 8.8 ± 3.9 10.4 ± 1.1 11.9 ± 0.7 13.3 ± 1.1 15.1 ± 1.1 16.6 ± 1.3 12.7  

5/Circular 8.5 ± 1.6 10.1 ± 1.5 11.9 ± 1.0 13.5 ± 1.1 15.0 ± 1.3 17.1 ± 1.0 12.7 

Values are expressed as means ± SD.  
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Ventilation and Carbon Dioxide Production 

 No significant main effect was observed for week/chainring on VE (p = 0.83), and CO2 

production (p = 0.21). Both measures did indicate a systematic increase due to increasing 

workloads across all chainring conditions. There was no significant interaction found for 

week/chainring and power in either conditions (p = 1.00 for both responses). 

 

Table 7: Ventilation with a Circular and Rotor Q-Ring 

Week/ 

Chainring 

Power Output (Watts)  

LSM 150 180 210 240 270 300 

0/Circular 49.0 ± 6.1 55.6 ± 4.2 64.2 ± 4.5 75.2 ± 5.9 90.1 ± 7.2 111.5 ± 10.1 74.3 

1/Rotor 47.2 ± 3.7 54.7 ± 4.2 63.7 ± 7.6 76.0 ± 10.7 90.5 ± 19.2 109.3 ± 17.4 73.6 

2/Rotor 46.4 ± 5.2 54.0 ± 4.3 62.8 ± 12.9 74.7 ± 13.6 90.7 ± 15.7 109.8 ± 15.2 73.1 

3/Rotor 47.1 ± 11.2 54.0 ± 7.7 62.8 ± 6.5 73.0 ± 8.8 89.3 ± 12.8 111.6 ± 17.9 73.0 

4/Rotor 48.6 ± 18.9 55.0 ± 5.6 63.4 ± 6.2 74.6 ± 7.5 89.4 ± 10.7 106.8 ± 14.6 73.0 

5/Circular 47.4 ± 2.1 54.7 ± 2.4 62.8 ± 3.3 73.9 ± 4.8 90.4 ± 6.8 115.1 ± 11.9 74.1 

VE in L/min.  Values are expressed as means ± SD.  

 

 

Table 8: Volume of Carbon Dioxide Production with a Circular and Rotor Q-Ring 

Week/ 
Chainring 

Power Output (Watts) 

 150 180 210 240 270 300 LSM 

 0/Circular 1.9 ± 0.2 2.2 ± 0.1 2.5 ± 0.1 2.9 ± 0.1 3.4 ± 0.1 4.0 ± 0.1 2.8 

1/Rotor 1.9 ± 0.2 2.2 ± 0.2 2.5 ± 0.3 3.0 ± 0.3 3.5 ± 0.7 4.0 ± 0.2 2.8 

2/Rotor 1.8 ± 0.2 2.1 ± 0.3 2.5 ± 0.4 3.0 ± 0.5 3.5 ± 0.5 4.0 ± 0.2 2.8 

3/Rotor 1.9 ± 0.5 2.2 ± 0.5 2.5 ± 0.2 2.9 ± 0.2 3.4 ± 0.3 4.0 ± 0.2 2.8 

4/Rotor 1.9 ± 0.7 2.2 ± 0.2 2.6 ± 0.2 3.0 ± 0.2 3.5 ± 0.2 4.0 ± 0.2 2.9 

5/Circular 1.9 ± 0.2 2.2 ± 0.2 2.5 ± 0.2 3.0 ± 0.2 3.5 ± 0.2 4.1 ± 0.2 2.9 

VCO2 in L/min. Values are expressed as means ± SD.  
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Respiratory Exchange Ratio 

A significant main effect for week/chainring type was observed for respiratory exchange 

ratio (RER) (p < 0.05). However, post hoc analysis indicated no significant differences when 

comparing the Rotor Q-Ring to circular chainrings (p = 1.0) (see Table 9). There was no 

significant interaction between week/chainring and power (p = 1.00). 

 

Table 9: Respiratory Exchange Ratio with a Circular and Rotor Q-Ring 

Week/ 

Chainring 

Power Output (Watts) 

 150 180 210 240 270 300 LSM 

 0/Circular 0.83 ± 0.03 0.85 ± 0.03 0.87 ± 0.02 0.91 ± 0.03 0.95 ± 0.04 1.01 ± 0.04 0.90 

1/Rotor 0.85 ± 0.03 0.87 ± 0.04 0.90 ± 0.05 0.93 ± 0.06 0.97 ± 0.08 1.01 ± 0.07 0.92 

2/Rotor 0.85 ± 0.03 0.88 ± 0.05 0.90 ± 0.07 0.94 ± 0.06 0.98 ± 0.06 1.03 ± 0.06 0.93 

3/Rotor 0.84 ± 0.06 0.87 ± 0.07 0.90 ± 0.04 0.92 ± 0.04 0.97 ± 0.05 1.02 ± 0.05 0.92 

4/Rotor 0.86 ± 0.08 0.88 ± 0.03 0.91 ± 0.03 0.94 ± 0.03 0.98 ± 0.04 1.01 ± 0.05 0.93 

5/Circular 0.87 ± 0.05  0.88 ± 0.05 0.90 ± 0.05 0.93 ± 0.05 0.98 ± 0.50 1.03 ± 0.06 0.93 

Values are expressed as means ± SD. 

 

Blood Lactate Concentration 

 No main effect was observed for week/chainring type for measured blood lactate 

concentration (p = 0.86). There was a main effect for power (p < 0.05), however, the increases in 

blood lactate correspond to the increases in workload during the graded exercise test (see Table 

10). There was no significant interaction between week/chainring type and power (p = 0.99). 

 

Table 10: Blood Lactate Concentration with a Circular and Rotor Q-Ring 

Week/ 
Chainring 

Power Output (Watts)  
LSM 150 180 210 240 270 300 

0/Circular 1.0 ± 0.2 1.1 ± 0.3 1.5 ± 0.4 2.3 ± 0.8 3.8 ± 1.5 6.3 ± 1.6 2.68 

1/Rotor 1.1 ± 0.2 1.1 ± 0.6 1.6 ± 1.3 2.5 ± 2.3 3.9 ± 1.4 5.8 ± 1.8 2.63 

2/Rotor 1.1 ± 0.6  1.2 ± 1.3 1.7 ± 2.5 2.5 ± 0.9 4.0 ± 1.3 5.5 ± 1.6 2.65 

3/Rotor 1.1 ± 1.4 1.2 ± 2.5 1.6 ± 0.2 2.4 ± 0.6 3.7 ± 0.8 5.3 ± 1.7  2.52 

4/Rotor 1.3 ± 2.0 1.4 ± 0.3 1.7 ± 0.3 2.5 ± 0.7 3.7 ± 1.2 5.4 ± 1.8  2.65 

5/Circular 1.1 ± 0.3 1.3 ± 0.4 1.7 ± 0.5 2.6 ± 0.7 4.1 ± 0.9 5.7 ± 1.4 2.75 

Lactate in mmol/L. Values are expressed as means ± SD.  
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Efficiency 

 A significant main effect for week/chainring type was observed for gross efficiency (GE) 

(p < 0.05), but no significant main effect was found for delta efficiency (p = 0.53). Delta 

efficiency was only calculated for 210 Watts and above (~65% of VO2 max) based on previous 

research (42). Both GE and DE showed a decrease as workloads progressed during the graded 

exercise tests. Post hoc analysis for GE indicated that there were no significant differences 

between week/chainring type and power (p = 0.99).  

 

Table 11: Gross Efficiency with a Circular and Rotor Q-Ring 

Week/ 

Chainring 

Power Output (Watts)  

LSM 150 180 210 240 270 300 

0/Circular 19.9 ± 1.5 21.0 ± 1.1 21.4 ± 1.0 21.9 ± 1.0 21.8 ± 0.8 21.5 ± 0.8 21.3 

1/Rotor 20.3 ± 1.2 21.3 ± 0.6 21.7 ± 0.9 21.8 ± 0.8 21.9 ± 0.8 21.8 ± 0.6 21.5 

2/Rotor 20.6 ± 1.1 21.9 ± 1.2 22.2 ± 0.5  22.2 ± 0.5 22.1 ± 0.4 21.8 ± 0.4 21.8 

3/Rotor 20.3 ± 1.8 21.5 ± 0.8 22.1 ± 1.0 22.3 ± 0.9 22.1 ± 0.7 21.8 ± 0.8 21.7 

4/Rotor 19.9 ± 1.8 21.2 ± 1.1 21.9 ± 0.9 22.0 ± 0.6 22.0 ± 0.7 21.8 ± 0.6 21.5 

5/Circular 20.2 ± 1.1 21.3 ± 0.9 21.8 ± 0.9 22.0 ± 1.0 21.7 ± 0.8 21.3 ± 0.7 21.4 

Values are expressed as means ± SD.  

 

 

Table 12: Delta Efficiency with a Circular and Rotor Q-Ring 

Week/ 

Chainring 

                                Power Output (Watts) 

210 240 270 300 LSM 

0/Circular 24.4 ± 1.6 26.5 ± 7.1 21.5 ± 2.2 19.2 ± 2.8 25.4 

1/Rotor 25.7 ± 4.5 22.3 ± 1.8 22.5 ± 2.1 20.7 ± 3.9 26.0 

2/Rotor 25.2 ± 4.4 22.2 ± 3.2 21.9 ± 2.3 20.1 ± 3.3 24.6 

3/Rotor 27.1 ± 5.0 24.0 ± 2.9 21.0 ± 2.0 19.6 ± 4.3     29.3 

4/Rotor 27.2 ± 3.5 24.1 ± 4.2 21.7 ± 2.3 19.3 ± 2.1 27.3 

5/Circular 25.6 ± 3.2 23.5 ± 2.8 20.0 ± 1.0 18.3 ± 1.6 23.6 

Values are expressed as means ± SD. 
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Maximum Oxygen Consumption 

As seen in Figure 7 and Table 13, the type of chainring used during maximal testing 

failed to produce significant differences when comparing pre-testing to week 4 and week 5.  

There were no significant differences in either absolute (p = 0.99) or relative oxygen 

consumption (p = 0.84) between pre-testing with the circular chainrings, Rotor Q-Rings at the 

end of four weeks of training, and final testing with circular chainrings (i.e., week 5/Post-test).   

 

Table 13: Absolute and relative VO2 max values during maximal testing 

 Week/Chainring 

VO2 Max  

(L/min) 

VO2 Max  

 (mL/kg/min) 

Pre-Test/Circular 4.47 ± 0.41 61.74 ± 4.86 

4/Rotor 4.46 ± 0.44 61.77 ± 4.55 

5/Circular 4.46 ± 0.44 61.29 ± 4.49 

Values expressed as mean ± SD. 

 

 

Figure 7: Absolute and relative VO2 max values with week/chainring type 

         

Values expressed as mean ± SE.  No significant differences were found between any of the 

week/chainring conditions (p<0.05). 
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1 Kilometer Time Trial Performance Results 

Performance Time 

Performance time in the 1km time trial was significantly lower in all trials with Rotor Q-

Rings when compared to standard circular chainrings (p<0.05). The least square means of 1 k 

performance time after submaximal testing were significantly faster with the Rotor Q-Rings 

during week 1, week 2, and week 3 compared to the circular chainrings during week 0 (p < 0.05) 

(Table 14/Figure 8). This was the same for week 4 on Rotor Q-Rings compared to circular 

chainrings during week 5, with Rotor Q-Rings being significantly faster (p < 0.05) (Table 

15/Figure 9). 

 

Table 14: 1 k time trial performance after submaximal testing 

Week/ 

Chainring 

Time  

(s) 

Avg  Power 

(W) 

Max 

Power (W) 

Avg Speed 

(kph) 

Max Speed 

(kph) 

Lactate 

(mmol/L) 

0/Circular 85.4 ± 3.0   421 ± 53 705 ± 89 42.3 ± 1.5 46.2 ± 2.5 9.4 ± 2.3 

1/Rotor 83.9 ± 2.9 * 447 ± 54 † 732 ± 97 43.0 ± 1.5 † 47.6 ± 2.0 10.0 ± 1.9 

2/Rotor 83.7 ± 3.1 * 449 ± 58 † 717 ± 115 43.1 ± 1.6 † 46.9 ± 2.4 10.4 ± 2.0 

3/Rotor 83.9 ± 2.6 * 446 ± 53 † 740 ± 108 43.0 ± 1.5 † 46.9 ± 1.8 9.4 ± 2.3 

Values expressed as mean ± SD. *Significantly lower than circular chainring (p<0.05). † Significantly greater than 

circular chainring. 

 

Table 15: 1 k time trial performance after maximal testing 

Week/ 
Chainring 

Time  
(s) 

Avg  
Power (W) 

Max 
Power (W) 

Avg Speed 
(kph) 

Max Speed 
(kph) 

Lactate 
(mmol/L) 

4/Rotor 84.2 ± 1.8 * 440 ± 32 † 739 ± 110 42.8 ± 0.9 † 46.9 ± 1.6 11.7 ± 2.3 

5/Circular 85.5 ± 2.4 422 ± 39 733 ± 118 42.2 ± 1.1 46.2 ± 1.2 11.6 ± 2.0 

Values expressed as mean ± SD. *Significantly lower than circular chainring (p<0.05). † Significantly greater than 

circular chainring. 
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Figure 8: Average 1k time after submaximal testing Figure 9: Average 1k time after maximal testing 

 
Values expressed as means ± SE. *Significantly 

lower than Circular Chainring (p<0.05). 

Values expressed as means ± SE. *Significantly 

lower than Circular Chainring (p<0.05).

 

 

Power and Speed 

Average power (Watts) and average speed (kph) were significantly higher in all trials 

with the Rotor Q-Ring compared to circular chainring (p < 0.05). These results occurred in both 

conditions in which a 1km time trial was performed after the submaximal testing (Table 14; 

Figure 10 and 12) and after maximal testing (Table 15; Figure 11 and 13).  

No main effect was observed for week/chainring type for maximum power after 

submaximal testing (p = 0.37) or after maximal testing (p = 0.81). There was also no main effect 

observed for week/chainring type for maximum speed after submaximal testing (p = 0.07) or 

after maximal testing (p = 0.32). 
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Figure 10: Average power after submaximal testing         Figure 11: Average power after maximal testing 

Values expressed as means ± SE. †Significantly 

greater than Circular Chainring (p<0.05). 

 

Values expressed as means ± SE. †Significantly 

greater than Circular Chainring (p<0.05). 

 

 

 

Figure 12: Average speed after submaximal testing   Figure 13: Average speed after maximal testing

 
Values expressed as means ± SE. †Significantly 

greater than Circular Chainring (p<0.05). 

Values expressed as means ± SE. †Significantly 

greater than Circular Chainring (p<0.05). 

 

Blood Lactate Concentration 

No main effect was observed for chainring type for blood lactate concentration after 

submaximal testing (p = 0.10) or after maximal testing (p = 0.83) measured three minutes after 

the 1k time trial. 
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Chapter 5: Discussion 

Summary 

The purpose of this study was to examine physiological and biomechanical effects of 

chainring type (circular vs. non-circular Rotor Q-Ring) on elite cyclists during submaximal 

graded exercise testing and performance in a 1 k time trial. Performance measures during the 

time trial (i.e., speed; power) were used to assess the efficacy of the Rotor Q-Rings compared to 

circular chainrings. In order to examine possible adaptation effects, physiological measures (i.e., 

oxygen consumption, heart rate, blood lactate, efficiency) collected during maximal and 

submaximal testing were also examined over the entire time span of the study. The main findings 

were: 1) Participants were on average 1.6 seconds faster in the 1 k time trial with Rotor Q-Rings 

compared to a circular chainrings. 2) There was a significant increase in average power (26.7 

watts) and average speed (0.7 kph) during the 1 k time trial with Rotor Q-Rings. 3) Oxygen 

consumption (during weeks 2-4) and heart rate (weeks 1-3) were significantly lower with Rotor 

Q-Rings during submaximal testing when compared to circular chainrings. However, in contrast 

to our hypotheses no benefits were observed for other submaximal dependent measures (i.e., 

CO2, VE, RER, RPE, GE, DE, and lactate). Making direct comparisons between these results on 

the Rotor Q-Rings with previous research is difficult, as the majority of previous research was 

performed with different shape chainrings or crank systems. However, the results of this current 

study are in line with similar systems as discussed in the physiological measures and 

performance results below. 

Physiological measures 

During week 0 through week 5, metabolic measures were recorded during graded 

submaximal test sessions and also during maximal test sessions for the Pre-test, week 4, and 

week 5 (Post-test). While all of the response variables displayed trends typically observed due to 
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increases in workload, there were two notable effects (oxygen consumption and heart rate) due to 

cycling with the Rotor Q-Ring. 

Oxygen consumption and Heart Rate  

First, as seen in Figure 4, during all submaximal testing, cycling with the Rotor Q-Ring 

resulted in lower absolute oxygen consumption for weeks 2, 3, and 4. Our results also indicated 

that oxygen consumption was not significantly different between the Pre-test and final testing on 

week 5 (Post-test), both occurring while cycling with circular chainrings. This Pre-test, Post-test 

comparison is notable since it demonstrated that subjects in this study were not realizing 

improvements simply through repeated exercise bouts over the course of five weeks, but instead 

clearly show that the Rotor Q-Ring was directly responsible for the observed changes.  

These results are similar to those of Henderson et al. who found a significant decrease 

(2.4%) in VO2 using elliptical chainrings at 900 kpm/min (11). Although not significant, this 

author also noted that VO2 tended to be lower at all power outputs. In a similar fashion, Cullen et 

al. found that VO2 was lower at 70 rpm with a Biopace chainring, but did not reach significance 

(5). Hue and his co-workers mentioned in one of their unpublished studies (15) that at a constant 

power output, oxygen consumption was lower in an eccentric crank system and Zamparo and his 

co-workers (46) found similar effects in their study. In contrast, other studies found no 

differences in oxygen consumption when comparing circular versus non-circular chainrings (5, 

22, 27, 39). Rodriguez-Marroyo et al. (40) also found no significant difference in oxygen 

consumption with the Rotor crank system and circular chainring systems in submaximal aerobic 

tests. However, when comparing findings from the anaerobic test, mean power output increased 

with the altered crank system used in their study.  Rodriguez-Marroyo and his co-workers also 

suggested that the subject must be adapted to the equipment in order to improve performance. 
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Our findings would partially support that ideal in that significantly lower absolute oxygen 

consumption was not evident until the second week of testing with the Rotor Q-Ring (i.e., week 

2). Subjects in their study were tested only once in each condition and long term exposure to the 

non-circular chainring was not examined.  

Secondly, in the current study, we observed a significantly lower heart rate during 

submaximal testing with the Rotor Q-Ring during weeks 1, 2, and 3 across all workstages (for 

comparison, approximately 2% lower).  Martinez and his co-workers (26, 27) found that the use 

of Rotor Q-Rings led to a lower heart rate when compared to circular rings at the same workload 

(also about 2% lower). In an unpublished study, Conconi (3) found a similar relationship 

between heart rate and wattage with subjects able to produce greater work (approximately 7-9%) 

with an eccentric crank system, but at the same heart rate using a conventional crank system.  

However, in the study by Cullen et al. (4), there were no significant differences in heart rate, and 

similar results were also reported by Lucia et al. (21) in that the type of chainring had no 

influence on heart rate. The ability of an athlete to work at a lower heart rate at the same 

workload will enable the athlete to perform at a higher level before fatigue (6). The lower heart 

rate found in this study combined with lower oxygen consumption could potentially have a 

significant impact on cycling performance. 

Ventilation, Carbon dioxide production, and Respiratory Exchange Ratio 

 There was no measureable significance found for ventilation, however on average VE 

was lower across workloads with Rotor Q-Rings as shown in Table 5. CO2 production and RER 

also had no significant differences between Rotor Q-Rings and circular chainrings. This result is 

in line with Rodriguez-Marroyo who found no significant difference in the Rotor crank system 

and circular chainring systems in submaximal aerobic tests (40). Ratel and Martinez also found 
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no significant differences in RER or VE with the use of noncircular Harmonic chainrings and 

Rotor Q-Rings, respectively, when compared to circular chainrings (27, 39). 

Blood Lactate Concentration and Rate of Perceived Exertion 

Several studies have examined the effects of chainrings and eccentric crank systems on 

blood lactate, but the findings are inconsistent. Martinez et al. (27) found that cycling with Rotor 

Q-Rings led to a lower production of lactate at the same workload compared to circular 

chainrings, and when testing the Biopace chainring, Hansen et al. (10) found a significance 

difference in lactate (on average 0.2 mmol/L lower). In the previously mentioned study by 

Conconi (3), he found that after 12 incremental tests, the lactate concentration was always higher 

with a traditional crank system compared to the eccentric crank system.  In comparison, Belen et 

al. (2), and Cullen et al. (4), found no significant differences in blood lactate between circular 

chainrings and eccentric crank systems. In the current study, we did not observe a significant 

main effect of week/chainring type on blood lactate. While a closer inspection of Table 8 

indicated that blood lactate decreased while cycling with the Rotor Q-Ring at 270 and 300 watts, 

without a significant interaction, we urge caution when reading the findings even though the 

differences in lactate production appear to be ecologically meaningful. 

Rate of perceived exertion (RPE) can have a large impact on an athlete’s performance 

(6), and the use of a noncircular chainring such as a Rotor Q-Ring can in theory lower RPE (5). 

However, in our current study RPE only reached borderline significance during the graded 

exercise tests. Therefore, there seems to be no measureable impact on perceived exertion with 

our sample. RPE increased as expected due to increased workload. 
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Efficiency 

Gross mechanical efficiency has been defined as ratio of work done to the total metabolic 

cost (5). This variable can provide insight into the effects due to different equipment used, in our 

case, between different types of chainrings. Delta efficiency can be defined as the change in 

power over the change in metabolic rate with increasing work rate (5). Examining delta 

efficiency can also be used to analyze changes as workloads increase, such as in this study. An 

increase in efficiency would lower the rate of oxygen uptake at any given power output or speed, 

and be advantageous for longer duration exercise/performance (10). 

Since a decrease in VO2 was found with Rotor Q-Rings in the current study, this 

improvement in theory should have contributed to an increase in efficiency. However, there are 

several factors that impact efficiency during cycling (i.e., duration, workload, pedaling rate), and 

the theoretical improved efficiency of the Rotor Q-Rings was most likely too small to reach a 

measureable significance to demonstrate improved efficiency with our lower oxygen 

consumption values.. 

Slight increases in cycling efficiency, up to 3%, were found when the Rotor crank system 

was compared to a traditional crank system (41, 45).  Henderson et al. (11) also found that 

caloric outputs were 2.5% lower with a noncircular system at respective workloads versus a 

circular system.  However, Jobson et al. (17) found no changes in gross efficiency after six 

weeks of training with a Rotor crank system, and neither did Lucia and his co-workers (21). In 

the current study, we did not observe a significant difference in gross efficiency or delta 

efficiency due to chainring type. While the various methods used to calculate efficiency from the 

observed metabolic and workload data are valid, they are not universally standard. Since we did 

not observe significant differences in ventilation, respiratory exchange ratio, and carbon dioxide 
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production, the failure to find any significance difference in efficiency is not surprising. While 

there were significant effects due to chainring type on oxygen consumption and heart rate in the 

current study, the testing protocol employed in the current study (i.e., graded submaximal 

exercise test) may not have been the most robust for revealing changes in efficiency.  A thorough 

examination of these measures is beyond the scope of the current study, however, for an in depth 

discussion of efficiency measures during cycling, see Sidossis et al. (43). 

1 k Time Trial  

Results from the 1 k time trial indicated that cycling with the Rotor Q-Ring led to 

increased average speed (by 1.7 kph) and increased average power (by 26.7 watts) compared to 

cycling with circular chainrings, thereby improving performance time on average of 1.6 seconds. 

This is in line with studies by Hue et al. (14) that employed a 1 k all out performance test in a 

laboratory setting using an “eccentric” chainring. However, when performing the 1 k time trial 

on a 333m outdoor track, Hue and his co-workers found no differences in performance (12). Our 

findings are also in line with those of Martinez et al. in that a variable crank system (27) and 

Rotor Q-Ring (28) allowed cyclists to produce greater power. Rodriguez-Marroyo et al. found 

that use of the Rotor crank system with elite cyclists leads to increased power in maximal 30-s 

anaerobic sprints (38). Previous works that examined performance over longer distances failed to 

show significant improvements in performance while employing an elliptical chainring during a 

10 k time trial (35), or an eccentric crank system in a 40.23 k time trial (17). It appears that 

shorter duration events that afford a higher effort can more readily take advantage of the 

mechanical alteration provided by the non-circular design of the chainring. That is, if the cyclist 

is able to exert greater amounts of force during cycling, there are greater benefits in performance 

that are not elicited in longer duration events in which the cyclist typically lowers the application 
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of force in order to complete the distance. Small power increases at submaximal workloads may 

actually become significant at higher workloads which may be a reason only small differences in 

VO2 and HR were found in our results. Therefore, during a 1 k time trial or other event where 

power output is near maximal, the mechanical advantage provided by the Rotor Q-Rings 

provides significant performance benefits as shown in our results. 

Conclusion 

In this study, we employed a Pre-test, Intervention, Post-test approach to examine the 

efficacy of cycling with Rotor Q-Rings compared to traditional circular chainrings.  Most of the 

previous works examining the effects of using an eccentric chainring (or eccentric crank system) 

on cycling performance did so with minimal exposure to the modified system (4, 10, 11, 12, 13, 

14, 16, 21, 27, 38, 39, 41, 35, 45) with Jobson et al. (17) as the exception.  In the current study, 

we were interested in uncovering any signs indicating that adaptations were necessary to exploit 

the claimed benefits of the Rotor Q-Ring and we specifically targeted the testing period to occur 

during the middle part of the competitive racing season to avoid any confounding effects of 

increased cardiovascular efficiency that would most likely be evident during pre-season training. 

Rotor Q-Rings are designed to provide a mechanical advantage and it is possible that without 

sufficient habituation cyclists are unable to benefit as they are forced to carry out a movement 

pattern that would necessarily recruit the active musculature in an unfamiliar way (33). For this 

reason, participants taking part in this study trained solely with the Rotor Q-Rings for four weeks 

during the testing period. 

 Evidence from this study indicated that for these well trained cyclists and triathletes, 

performance improved after just one week employing the Rotor Q-Rings.  The maximal oxygen 

consumption results from the Pre-test, week 4, and week 5 Post-test further demonstrate that 

positive performance effects were only evident with the Rotor Q-Rings and did not transfer to 
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circular rings after four weeks of exposure. While it appears from this study that there may also 

be positive long term effects as noted by the significant reduction in submaximal oxygen 

consumption and heart rate during the intervention period (i.e., cycling with Rotor Q-Rings), the 

majority of the physiological measures we examined do not equivocally support the notion that 

an adaptation period is necessary for this increased 1 k time trial performance.   

In the current study, we also compared the effects cycling with Rotor Q-Rings on 1 k 

time trial performance over four weeks and found that the effect was essentially the same over 

four weeks in which the Rotor Q-Ring was employed. Consequently, when subjects discontinued 

using the Rotor Q-Rings and were tested on circular rings at the conclusion of the study (i.e., 

week 5) performance measures returned to week 0 values with circular rings.   

The 1 k performance tests and metabolic data collected during the submaximal and 

maximal testing also suggest that the central nervous system was not confronted with a task that 

is markedly different than pedaling with circular chainrings. That is, the Rotor Q-Rings did not 

cause an initial increase in oxygen consumption or heart rate indicating a disruption to the 

coordinative structure used to apply force to the pedals. Conversely, it appears that the well 

established coordination pattern used in conventional cycling is well suited to take advantage of 

this alteration to the bicycle drive train. 

We did not collect respiratory gases during the 1 k time trial and therefore, cannot 

thoroughly evaluate the metabolic consequences during this maximal effort test. However, Hue 

et al. (14) did analyze respiratory gases during the same test employed in the current study (i.e., 1 

k time trial in a laboratory setting) and found no significant differences in metabolic 

measurements. As seen in Table 14 and 15 in the current study, there was an increase in blood 

lactate concentration after completion of the time trial during with the Rotor Q-Ring, however 
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significance was not reached. Our subjects also repeated this test after maximal testing on weeks 

4 and 5. As expected, blood lactate concentrations in this condition were greater compared to 

samples taken after submaximal testing, but the type of chainring failed to produce a significant 

difference (see Table 14 and 15). 

The most important findings from our current study show that there is a significant 

improvement in 1 k performance time (average of 1.6 seconds faster) as well as an increase in 

average power (26.7 watts) and average speed (0.7 kph) with the Rotor Q-Rings when compared 

with the circular chainrings. The significance of these findings can be emphasized when 

observing performance times from the 2011 UCI Track World Cycling Championships in which 

the difference between first and second in the Men’s 1 k time trial was only a slender 0.386 

seconds (6). This shows that very small gains in time, speed and power through the use of a 

Rotor Q-Ring can mean the difference between a silver and gold medal. Oxygen consumption 

(during weeks 2-4) and heart rate (weeks 1-3) were significantly lower with Rotor Q-Rings 

during submaximal testing when compared to circular chainrings. 

In conclusion, our findings indicate that Rotor Q-Rings provide an ergogenic effect that is 

apparent after only one week of exposure.  Our performance test was limited to a 1 k time trial, 

but the Rotor Q-Ring could also prove beneficial in criterium style racing events and at the end 

of a long road race in which bicycle racers often perform at similar intensities for a similar 

amount of time. Furthermore, when considering the reduction in oxygen consumption and heart 

rate observed during submaximal testing, it also seems tenable that a greater energy savings 

could be realized for endurance type cycling.   

Recommendations 

 Rotor Q-Rings are a variable gear chainring that has five different orientation settings. 

Our current study used setting three, which is the recommended starting position, for all the 
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participants. Future research should look at the optimal chainring position for each participant 

and its potential benefits. As previously noted, due to activation-deactivation dynamics, there is a 

trade-off between maximizing the time in the power phase (downstroke) and minimizing the 

negative work that results while the muscles are deactivating during the upstroke (33). Neptune 

has stated that the optimal chainring shape for an individual cyclist most likely varies depending 

on a rider’s fiber type distribution (i.e., activation-deactivation dynamics). For example, an 

endurance cyclist may have predominately slow-twitch fibers with slower deactivation dynamics 

and a decreased average power output. This would result in increased negative work with a more 

eccentric noncircular chainring shape. Conversely, a cyclist with predominantly fast-twitch fibers 

(fast deactivation dynamics) would benefit from the more noncircular chainring shape without 

increased negative work and an increase in average power due to the reduction of negative work. 

This theory of increasing power output by prolonging the positive work phase is consistent with 

work-loop studies using animal models showing considerable increases in power output during 

cyclical tasks by extending the positive work phase (1). Therefore, further research with different 

orientation settings on the Rotor Q-Rings could show even greater performance depending on the 

athlete’s fiber type. 

In addition to different fiber type, rider experience could also play a factor in the 

performance benefit to Rotor Q-Rings. Further research should look at non-cyclists or beginner 

athletes to see if there may be a measurable difference in efficiency. Perhaps the differences were 

too small in this study with competitive cyclists to reach significance. It is also of interest to see 

if beginner athletes take longer to adapt to an eccentric chainring design with similar 

performance benefits. In a similar manner, looking at highly elite or professional cyclists may 

present different results. Our participants were both competitive cyclists and triathletes that 
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individually kept their workouts similar throughout the testing period, however their training 

distances within the eight subjects varied. Having highly trained participants that are riding 

longer distances everyday may have led to a better sample size with different results. 

Finally, some studies have suggested that performing testing in the laboratory compared 

to in the field (i.e., 1 k on the velodrome or open road) could potentially affect results because of 

the different setting (13). Outdoor testing with skilled track cyclists could possibly elucidate this 

discrepancy in performance results, however indoor testing in a controlled setting in still highly 

preferable in cycling research since multiple confounding factors can be controlled (e.g., 

temperature, humidity, wind) especially across multiple testing dates spanning seven weeks 

during our testing. Future research in outdoor settings with various distances (i.e., time trials) 

would be the next step in determining the ecological validity of this modification to the bicycle 

drivetrain. 
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Appendices 

APPENDIX A. 

Pilot Data Statistical Analysis 

Minitab 16 statistical software (Minitab Inc., State College, PA) was used for statistical 

analysis of the pilot data and to calculate sample size. 1 k performance time and blood lactate 

concentration were the two dependent measures chosen for analysis based on their importance. A 

General Linear Model ANOVA was used to determine time versus participant and chainring, as 

well as blood lactate versus participant, chainring, and power and their interactions. Due to the 

nature of the design, each participant underwent each condition of different chainrings with both 

tests allowing comparisons to be done 'within subject'. Because each participant performed the 

lactate threshold test and 1 k time trial with each chainring, the effect of the chainring interaction 

was evaluated 'within subject' and a Tukey's post hoc analysis was administered with 95% 

confidence. 

Sample Size Calculation 

One kilometer performance time and blood lactate concentration from the pilot data was 

used to calculate the sample size for this study. Using a general linear model, a mean difference 

of four seconds was found during pilot testing in the 1 k time trial with a standard deviation of 

0.71 seconds and power of .99. Using eight participants, performance time computations were 

carried out using a standard deviation of 0.71 seconds to detect a difference of .95 seconds with α 

= 0.05 with power of 0.9 (refer to data set 1). Blood lactate computations were carried out using 

a standard deviation of 0.61 mmol/L to detect a difference of .82 mmol/L with α = 0.05 with 

power of 0.9, using a sample size of eight participants (refer to data set 2). Therefore, using 8 

participants was deemed to be significant for data collection. 
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Data Set 1: 
  

General Linear Model: Time versus Subject, Chainring  

 
Factor     Type    Levels  Values 

Subject    random       3  1, 2, 3 

Chainring  fixed        2  Circular, Rotor 

 

Analysis of Variance for Time, using Adjusted SS for Tests 

 

Source     DF   Seq SS   Adj SS  Adj MS       F      P 

Subject     2  109.000  109.000  54.500  109.00  0.009 

Chainring   1   24.000   24.000  24.000   48.00  0.020 

Error       2    1.000    1.000   0.500 

Total       5  134.000 

 

S = 0.707107   R-Sq = 99.25%   R-Sq(adj) = 98.13% 

 

Expected Mean Squares, using Adjusted SS 

 

              Expected Mean Square 

   Source     for Each Term 

1  Subject    (3) + 2.0000 (1) 

2  Chainring  (3) + Q[2] 

3  Error      (3) 

 

Error Terms for Tests, using Adjusted SS 

                                  Synthesis 

   Source     Error DF  Error MS  of Error MS 

1  Subject        2.00     0.500  (3) 

2  Chainring      2.00     0.500  (3) 

 

 

Variance Components, using Adjusted SS 

         Estimated 

Source       Value 

Subject    27.0000 

Error       0.5000 

 

 

Least Squares Means for Time 

Chainring   Mean 

Circular   89.00 

Rotor      85.00 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

Chainring  N  Mean  Grouping 

Circular   3  89.0  A 

Rotor      3  85.0    B 

 

Means that do not share a letter are significantly different. 
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Main Effects Plot for Time 
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Power and Sample Size  

 
1-Sample t Test 

 

Testing mean = null (versus not = null) 

Calculating power for mean = null + difference 

Alpha = 0.05  Assumed standard deviation = 0.71 

 

 

            Sample  Target 

Difference    Size   Power  Actual Power 

 

 

Power Curve for 1-Sample t Test  
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Power and Sample Size  

 
1-Sample t Test 

 

Testing mean = null (versus not = null) 

Calculating power for mean = null + difference 

Alpha = 0.05  Assumed standard deviation = 0.71 

 

Sample 

  Size  Power  Difference 

     8    0.9    0.952680 

  

Power Curve for 1-Sample t Test  

1.00.50.0-0.5-1.0

1.0

0.8

0.6

0.4

0.2

0.0

Difference

P
o

w
e

r

A lpha 0.05

StDev 0.71

A lternativ e Not =

A ssumptions

8

Size

Sample

Power Curve for 1-Sample t Test

 
  

 

Data Set 2: 

General Linear Model: Lactate versus Subject, Chainring, Power  

 
Factor     Type    Levels  Values 

Subject    random       3  1, 2, 3 

Chainring  fixed        2  circular, noncircular 

Power      fixed        5  150, 180, 210, 240, 270 

 

Analysis of Variance for Lactate, using Adjusted SS for Tests 

Source             DF   Seq SS   Adj SS  Adj MS      F      P 

Subject             2   5.7307   5.7307  2.8653   7.76  0.114 

Chainring           1   1.5413   1.5413  1.5413   4.17  0.178 

Subject*Chainring   2   0.7387   0.7387  0.3693   1.28  0.306 

Power               4  21.7687  21.7687  5.4422  18.83  0.000 

Chainring*Power     4   0.3153   0.3153  0.0788   0.27  0.891 

Error              16   4.6240   4.6240  0.2890 

Total              29  34.7187 

 

 

S = 0.537587   R-Sq = 86.68%   R-Sq(adj) = 75.86% 
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Unusual Observations for Lactate 

Obs  Lactate      Fit   SE Fit  Residual  St Resid 

  5  4.90000  4.04667  0.36724   0.85333      2.17 R 

 25  2.40000  3.22667  0.36724  -0.82667     -2.11 R 

 

R denotes an observation with a large standardized residual. 

 

Expected Mean Squares, using Adjusted SS 

 

   Source             Expected Mean Square for Each Term 

1  Subject            (6) + 5.0000 (3) + 10.0000 (1) 

2  Chainring          (6) + 5.0000 (3) + Q[2, 5] 

3  Subject*Chainring  (6) + 5.0000 (3) 

4  Power              (6) + Q[4, 5] 

5  Chainring*Power    (6) + Q[5] 

6  Error              (6) 

 

Error Terms for Tests, using Adjusted SS 

                                          Synthesis 

   Source             Error DF  Error MS  of Error MS 

1  Subject                2.00    0.3693  (3) 

2  Chainring              2.00    0.3693  (3) 

3  Subject*Chainring     16.00    0.2890  (6) 

4  Power                 16.00    0.2890  (6) 

5  Chainring*Power       16.00    0.2890  (6) 

 

Variance Components, using Adjusted SS 

                   Estimated 

Source                 Value 

Subject              0.24960 

Subject*Chainring    0.01607 

Error                0.28900 

 

Least Squares Means for Lactate 

Chainring          Mean 

circular         2.1000 

noncircular      1.6467 

Power 

150              1.0667 

180              1.2000 

210              1.4833 

240              2.2500 

270              3.3667 

Chainring*Power 

circular    150  1.2000 

circular    180  1.3333 

circular    210  1.6667 

circular    240  2.5333 

circular    270  3.7667 

noncircular 150  0.9333 

noncircular 180  1.0667 

noncircular 210  1.3000 

noncircular 240  1.9667 

noncircular 270  2.9667 
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 Main Effects Plot for Lactate  
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Interaction Plot for Lactate  
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Power and Sample Size  

 
1-Sample t Test 

 

Testing mean = null (versus not = null) 

Calculating power for mean = null + difference 

Alpha = 0.05  Assumed standard deviation = 0.61 

 

 

Sample 

  Size  Power  Difference 

     8    0.9    0.818499 

 

  

Power Curve for 1-Sample t Test  
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APPENDIX B. Complete Statistical Analysis 

Submaximal Graded Exercise Testing Comparisons 

Absolute Volume of Oxygen Consumption 

VO2 L/min Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 5 239 5.41 <.0001 

Power 5 239 2229.19 <.0001 

Chainring*Power 25 239 0.34 0.9989 

 

VO2 L/min Least Squares Means 

Effect Chainring Estimate DF t Value Pr > |t| 

Chainring Week0Circular 3.0829 9.4 91.34 <.0001 

Chainring Week1ROTOR 3.0418 9.4 90.12 <.0001 

Chainring Week2ROTOR 2.9884 9.4 88.54 <.0001 

Chainring Week3ROTOR 3.0153 9.4 89.34 <.0001 

Chainring Week4ROTOR 3.0319 9.4 89.83 <.0001 

Chainring Week5Circular 3.0471 9.4 90.28 <.0001 

VO2 L/min Differences of Least Squares Means 

Effect Chainring Chainring Estimate DF t Value Pr > t Adjustment Adj P 

Chainring Week0Circular Week1ROTOR 0.04106 239 2.13 0.0173 Dunnett-Hsu 0.0655 

Chainring Week0Circular Week2ROTOR 0.09444 239 4.89 <.0001 Dunnett-Hsu <.0001 

Chainring Week0Circular Week3ROTOR 0.06754 239 3.50 0.0003 Dunnett-Hsu 0.0013 

Chainring Week0Circular Week4ROTOR 0.05095 239 2.64 0.0044 Dunnett-Hsu 0.0187 

Chainring Week0Circular Week5Circular 0.03582 239 1.86 0.0324 Dunnett-Hsu 0.1145 
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Relative Volume of Oxygen Consumption 

VO2 ml/kg/min Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 5 239 3.22 0.0078 

Power 5 239 1427.26 <.0001 

Chainring*Power 25 239 0.16 1.0000 

 

VO2 ml/kg/min Least Squares Means 

Effect Chainring Estimate Standard Error DF 

t Valu

e Pr > |t| 

Chainring Week0Circular 42.7807 1.6902 7.23 25.31 <.0001 

Chainring Week1ROTOR 42.2205 1.6902 7.23 24.98 <.0001 

Chainring Week2ROTOR 41.4929 1.6902 7.23 24.55 <.0001 

Chainring Week3ROTOR 42.3337 1.6902 7.23 25.05 <.0001 

Chainring Week4ROTOR 42.1728 1.6902 7.23 24.95 <.0001 

Chainring Week5Circular 42.0069 1.6902 7.23 24.85 <.0001 

VO2 ml/kg/min Differences of Least Squares Means 

Effect Chainring Chainring Estimate DF t Value Pr > t Adjustment Adj P 

Chainring Week0Circular Week1ROTOR 0.5602 239 1.69 0.0464 Dunnett-Hsu 0.1558 

Chainring Week0Circular Week2ROTOR 1.2878 239 3.88 <.0001 Dunnett-Hsu 0.0003 

Chainring Week0Circular Week3ROTOR 0.4470 239 1.35 0.0897 Dunnett-Hsu 0.2679 

Chainring Week0Circular Week4ROTOR 0.6080 239 1.83 0.0342 Dunnett-Hsu 0.1198 

Chainring Week0Circular Week5Circular 0.7738 239 2.33 0.0103 Dunnett-Hsu 0.0410 

 

 

 

 

 

 



59 
 

Heart Rate 

HR Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 5 239 8.67 <.0001 

Power 5 239 988.78 <.0001 

Chainring*Power 25 239 0.14 1.0000 

 

HR Least Squares Means 

Effect Chainring Estimate DF t Value Pr > |t| 

Chainring Week0Circular 153.39 7.55 56.95 <.0001 

Chainring Week1ROTOR 152.01 7.55 56.43 <.0001 

Chainring Week2ROTOR 150.82 7.55 55.99 <.0001 

Chainring Week3ROTOR 151.57 7.55 56.27 <.0001 

Chainring Week4ROTOR 154.08 7.55 57.20 <.0001 

Chainring Week5Circular 155.22 7.55 57.62 <.0001 

 

HR Differences of Least Squares Means 

Effect Chainring Chainring 

Estimat

e DF t Value Pr > t Adjustment Adj P 

Chainring Week0Circular Week1ROTOR 1.3822 239 1.73 0.0428 Dunnett-Hsu 0.1454 

Chainring Week0Circular Week2ROTOR 2.5685 239 3.21 0.0008 Dunnett-Hsu 0.0035 

Chainring Week0Circular Week3ROTOR 1.8190 239 2.27 0.0120 Dunnett-Hsu 0.0471 

Chainring Week0Circular Week4ROTOR -0.6917 239 -0.86 0.8058 Dunnett-Hsu 0.9774 

Chainring Week0Circular Week5Circular -1.8308 239 -2.29 0.9885 Dunnett-Hsu 0.9999 
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Volume of Carbon Dioxide Production 

VCO2 Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 5 239 1.45 0.2059 

Power 5 239 1666.93 <.0001 

Chainring*Power 25 239 0.34 0.9989 

 

 

Ventilation 

VE Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 5 239 0.42 0.8327 

Power 5 239 668.65 <.0001 

Chainring*Power 25 239 0.35 0.9986 

 

 

Respiratory Exchange Ratio 

RER Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 5 239 5.16 0.0002 

Power 5 239 183.52 <.0001 

Chainring*Power 25 239 0.19 1.0000 
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Gross Efficiency 

GE Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 5 239 3.66 0.0033 

Power 5 239 43.80 <.0001 

Chainring*Power 25 239 0.32 0.9994 

 

 

Delta Efficiency 

DE Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 5 197 0.83 0.5325 

Power 4 198 15.30 <.0001 

Chainring*Power 20 197 0.63 0.8911 

 

 

Blood Lactate Concentration 

Lactate Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 5 233 0.39 0.8587 

Power 5 233 190.35 <.0001 

Chainring*Power 25 233 0.36 0.9982 
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Rate of Perceived Exertion 

RPE Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 5 239 2.21 0.0540 

Power 5 239 628.20 <.0001 

Chainring*Power 25 239 0.43 0.9929 

 

 

1 k Time Trial Comparisons 

Performance Time after submaximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 3 21 6.47 0.0028 

 

Performance Time Least Squares Means 

Effect Chainring Estimate 

Standa

rd 

Error DF t Value Pr > |t| 

Chainring CIRCULAR 85.3987 1.0199 8.12 83.73 <.0001 

Chainring ROTORweek1 83.8675 1.0199 8.12 82.23 <.0001 

Chainring ROTORweek2 83.6550 1.0199 8.12 82.02 <.0001 

Chainring ROTORweek3 83.8800 1.0199 8.12 82.24 <.0001 
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Performance Time Differences of Least Squares Means 

Effect Chainring Chainring 

Estimat

e DF t Value Pr > t Adjustment Adj P 

Chainring CIRCULAR ROTORweek1 1.5312 21 3.42 0.0013 Dunnett-Hsu 0.0035 

Chainring CIRCULAR ROTORweek2 1.7438 21 3.89 0.0004 Dunnett-Hsu 0.0012 

Chainring CIRCULAR ROTORweek3 1.5188 21 3.39 0.0014 Dunnett-Hsu 0.0038 

Obs Effect Chainring _Chainring Estimate DF tValue Probt 

1 Chainring CIRCULAR ROTORweek1 1.5312 21 3.42 0.0026 

2 Chainring CIRCULAR ROTORweek2 1.7438 21 3.89 0.0008 

3 Chainring CIRCULAR ROTORweek3 1.5188 21 3.39 0.0028 

4 Chainring ROTORweek1 ROTORweek2 0.2125 21 0.47 0.6401 

5 Chainring ROTORweek1 ROTORweek3 -0.01250 21 -0.03 0.9780 

6 Chainring ROTORweek2 ROTORweek3 -0.2250 21 -0.50 0.6206 

 

Performance Time after maximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 1 7 5.64 0.0493 

 

Least Squares Means 

Effect Chainring Estimate DF 

t Va

lue Pr > |t| 

Chainring CircularWeek5 85.4763 9.07 115.

37 

<.0001 

Chainring ROTORweek4 84.2025 9.07 113.

65 

<.0001 

 

Obs Effect Chainring _Chainring Estimate DF tValue Probt 

1 Chainring CircularWeek5 ROTORweek4 1.2737 7 2.37 0.0493 
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Average Power after submaximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 3 21 7.06 0.0018 

 

Obs Effect Chainring _Chainring Estimate DF tValue Probt 

1 Chainring CIRCULAR ROTORweek1 -26.1875 21 -3.66 0.0015 

2 Chainring CIRCULAR ROTORweek2 -28.4500 21 -3.98 0.0007 

3 Chainring CIRCULAR ROTORweek3 -25.6875 21 -3.59 0.0017 

4 Chainring ROTORweek1 ROTORweek2 -2.2625 21 -0.32 0.7549 

5 Chainring ROTORweek1 ROTORweek3 0.5000 21 0.07 0.9449 

6 Chainring ROTORweek2 ROTORweek3 2.7625 21 0.39 0.7032 

 

Average Power after maximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 1 7 7.76 0.0271 

 

Least Squares Means 

Effect Chainring Estimate DF 

t Valu

e Pr > |t| 

Chainring CircularWeek5 421.91 8.01 33.50 <.0001 

Chainring ROTORweek4 440.19 8.01 34.95 <.0001 

 

Obs Effect Chainring _Chainring Estimate DF tValue Probt 

1 Chainring CircularWeek5 ROTORweek4 -18.2750 7 -2.79 0.0271 
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Maximum Power after submaximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 3 21 1.10 0.3712 

 

Maximum Power after maximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 1 7 0.06 0.8101 

 

Average Speed after submaximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 3 21 4.21 0.0176 

 

Least Squares Means 

Effect Chainring Estimate DF t Value Pr > |t| 

Chainring CIRCULAR 26.2987 8.16 78.73 <.0001 

Chainring ROTORweek1 26.7125 8.16 79.97 <.0001 

Chainring ROTORweek2 26.7625 8.16 80.11 <.0001 

Chainring ROTORweek3 26.7125 8.16 79.97 <.0001 
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Obs Effect Chainring _Chainring Estimate DF tValue Probt 

1 Chainring CIRCULAR ROTORweek1 -0.4137 21 -2.77 0.0114 

2 Chainring CIRCULAR ROTORweek2 -0.4637 21 -3.11 0.0053 

3 Chainring CIRCULAR ROTORweek3 -0.4137 21 -2.77 0.0114 

4 Chainring ROTORweek1 ROTORweek2 -0.05000 21 -0.34 0.7408 

5 Chainring ROTORweek1 ROTORweek3 5.83E-15 21 0.00 1.0000 

6 Chainring ROTORweek2 ROTORweek3 0.05000 21 0.34 0.7408 

 

 

Average Speed after maximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 1 7 6.43 0.0390 

 

Least Squares Means 

Effect Chainring Estimate 

Standard 

Error DF t Value Pr > |t| 

Chainring CircularWeek

5 

26.2000 0.2230 8.8

3 

117.50 <.0001 

Chainring ROTORweek

4 

26.5875 0.2230 8.8

3 

119.24 <.0001 

 

Obs Effect Chainring _Chainring Estimate StdErr DF tValue Probt 

1 Chainrin

g 

CircularWeek

5 

ROTORweek

4 

-0.3875 0.1529 7 -2.53 0.039

0 
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Maximum Speed after submaximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 3 21 2.70 0.0718 

 

Maximum Speed after maximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 1 14 1.05 0.3226 

 

Blood Lactate Concentration after 1 k after submaximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 3 21 2.39 0.0974 

 

Blood Lactate Concentration after 1 k after maximal testing condition 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

Chainring 1 7 0.05 0.8344 
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APPENDIX C. Participant Forms 

Informed Consent 

Form for Cal Poly Research 

 

INFORMED CONSENT TO PARTICIPATE IN RESEARCH STUDYING THE 

PHYSIOLOGICAL AND BIOMECHANICAL EFFECTS OF NON-CIRCULAR 

CHAINRINGS ON ELITE LEVEL CYCLISTS AND PERFORMANCE 

 

NATURE AND PURPOSE OF STUDY 

 A research project on the effects of ROTOR Bicycle Component’s Q-Rings is being 

conducted by Christie O’Hara, student researcher in the Department of Kinesiology at Cal Poly, 

San Luis Obispo under the supervision of faculty advisor, Dr. Clark. The purpose of the study is 

to examine the physiological and biomechanical effects of Rotor’s Q-Rings (oval shaped 

chainrings). Participants will perform initial testing with their conventional chainrings, followed 

by 4 weeks (1 laboratory test each week) of training and testing on non-circular chainrings, and 

post-testing on the original chainrings (for a total of 6 weeks for completion of the study). The 

testing each week will consist of a graded exercise test on the participant’s bicycle followed by a 

1 k time trial every week. Physiological measures such as heart rate, VO2 (oxygen consumption), 

RER (indication of carbohydrates versus fat burned), and blood lactate concentration will be 

measured as well as biomechanical markers involving spin scan analysis, efficiency, and power 

output. 

 You (the subject) are being asked to take part in this study because you are 18 to 39 years 

old, are in good health, and are a USA Cycling Category 1-3 rider or Men’s Collegiate A rider 

with a VO2 max >55mL/kg/min. Approximately 8 participants will be included in this study. If 

you decide to participate, it will require a time commitment of approximately 1 hour per week 

for 6 weeks for completion of the study (see below for more details). For the first and last test 

week you will be riding on your own chainrings, and the remaining 4 weeks will require you to 

ride, race and test with Rotor’s Q-Rings. The testing will take place at Cal Poly in the 

Kinesiology Department Building (43-A, first floor lab). Scheduling times will be randomized 

based on your availability, and each test will be no less than 6 days apart. Please be aware that 

you are not required to participate in this research and you may discontinue your participation at 

any time without penalty. 

 

PROCEDURES 

 If you decide to participate in this study, you will have an initial interview meeting. 

During this time, you will be asked to complete a health history questionnaire and physical 

activity readiness questionnaire (PAR-Q) to screen for any potential complications that may arise 

as a result of the exercise tests during the duration of this study. Height, weight, and blood 

pressure will also be recorded during this time. If you have no health risks or medical conditions, 

you will be asked to schedule a maximal oxygen consumption test to determine inclusion into the 

study (>55ml/kg/min). If you qualify for the study, you will then be asked to complete the 

conditions below: 
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Maximal Oxygen Consumption Test 

 Your initial physical fitness will be assessed during a maximal oxygen consumption test 

on your own bike mounted to a Computrainer (stationary electronic ergometer). You will be 

required to breathe into a mouthpiece with your nose clipped to collect expired air. You will also 

be wearing a heart rate monitor during the entire duration of the test. After a 15 minute warm up 

(at 125 watts), and calibration on the Computrainer, the test will begin. The first stage will start 

at 150 watts and increase 30 watts every 3 minutes. Each stage will become increasingly more 

difficult. You will be asked your rate of perceived exertion (RPE) on a scale of 6-20 toward the 

end of each stage, and then asked if you are ok to advance to the next stage. The test will end 

when you no longer wish to continue, the test administrator does not see any increase in VO2 or 

heart rate, or the test administrator notices adverse symptoms from the subject. Blood pressure 

will also be assessed every stage to insure safety of the subject. This test is physically demanding 

and you may feel fatigued afterward. After termination of the test, you will be encouraged to spin 

easy at a decreased power output for 5 minutes to allow your body’s physiological markers to 

return to near normal values. You will complete a final maximal oxygen consumption test your 

final week of testing. This test will follow the same procedures as the initial test. 

 

Weekly Exercise Testing Protocol  

Graded Exercise Test (Lactate Threshold Test) and 1 k Time Trial 

 A week after your initial maximal oxygen consumption test, you will complete an initial 

graded lactate threshold test followed by a 1 kilometer time trial with metabolic sampling. The 

graded exercise test will be similar to the maximal oxygen consumption test in that you will 

complete 3 minute stages followed by a 30 watt increase for each stage. The same warm up 

applies (15 minutes) followed by calibration of the Computrainer. The difference is that this test 

does not go to maximal exertion (so that the rest of your training day isn’t ruined). This test ends 

when a RPE of 15-18 is reached and lactate concentration is >4.0mmol/L with an increase from 

the previous value >1.0mmol/L. After the initial lactate threshold test, the participant will have 5 

minutes to recover at 150 watts before beginning the 1k time trial test. This is an all out test to 

measure max power and time.  

After the initial graded exercise test and 1k time trial, the chainrings on the subject’s 

bicycle will be changed over to the non-circular rings. Every week for 4 weeks, the participant 

will come in for the graded exercise test with metabolic sampling. Every other week, there will 

be blood sampling during the graded exercise test followed by the 1k time trial with the same 

procedures as mentioned before. 
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Blood Sampling 

An ear lobe blood sample will be used to determine blood lactate levels during the last 30 

seconds of each 3 minute stage in the submaximal graded exercise test.  Each measurement only 

requires a small drop of blood. The total amount of blood collected from each subject will be less 

than 50 microliters for each test session. A lancet will be used to prick the ear lobe, and a drop of 

blood will be applied to the test strip. Blood sampling for the next stage will be taken from the 

same site during the next stage if clotting does not occur. The ear lobe is used for sampling since 

it is not as painful as finger sticks, and produces similar results to the finger. Researchers will use 

alcohol swabs and wear latex lab gloves at all times during blood sampling and testing. Universal 

precautions, as recommended by the Centers for Disease Control and Prevention, will be used at 

all times. This includes using a sharps container lined with a biohazard bag for all sharp objects 

involved in the blood sampling; all other materials (i.e. gloves, gauze pads, etc.) used during the 

sampling will be put in a separate waste disposal unit lined with a biohazard bag. 

Food Consumption and Training Records 

 Your scheduled exercise test will occur in the morning after an overnight fast. You are 

allowed to drink water the morning of the test, but no breakfast or other beverages. You will be 

asked to consume the same meal the evening before each test, and will be provided a food 

journal to record what you ate during that time. 

 You will be provided with a training journal to record your mileage, average speed, heart 

rate, power output, and muscular soreness each day on the bike. You will fill this out every week 

and bring it with you on your testing day. Exercise should be avoided 12 hours before the test, 

and no intense exercise sessions should occur 24 hours before the test. Similar exercise sessions 

should occur the day before each test session in the lab. 

RISKS AND DISCOMFORTS 

According to the American College of Sports Medicine’s Guidelines for Exercise Testing 

and Prescription, the risk associated with maximal testing for individuals categorized as “low 

risk” is very minimal, and physician supervision is not necessary.  The amount and intensity of 

physical exertion in this study is comparable to what subjects would experience in a cycling 

competition. The conditions under which the exercise bouts are to take place (controlled 

laboratory setting with trained researchers) are likely safer than the typical training and 

competition environments of the subjects. Any subjects who are not accustomed to heavy cycling 

training, or who are deemed to be at risk for cardiovascular or metabolic diseases (as outlined by 

the ACSM) will not be allowed to participate in the study. In the unlikely event of cardiac or 

other complications during exercise, an emergency plan is in place.  This includes immediate 

access to a phone to call emergency personnel.  
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All possible attempts will be made to minimize the risks involved with research. Trained 

graduate students will conduct all laboratory procedures with your well-being as their first 

priority. All procedures will be explained and demonstrated until you are comfortable with your 

participation in the study. The possible risks associated with participation in this study include 

the following: 

Exercise Tests 

During any type of exercise, especially strenuous exercise, there are slight health risks, 

along with the possibility of fatigue and muscle soreness. Possible side effects of maximal 

exertion include brief feelings of nausea, lightheadedness, muscle cramps, or dizziness after 

completion of exercise.  However, any health risks are small in subjects who have no prior 

history of cardiovascular, respiratory or musculoskeletal disease or injury.  Any ordinary fatigue 

or muscle soreness is temporary and usually lasts 24-96 hours. 

Blood pressure and heart rate will be monitored during both the exercise tests. The 

exercise test will be stopped if any of the following conditions happen: onset of chest pain; signs 

of poor circulation, including pallor (changes in skin color), cyanosis (blue skin), or cold and 

clammy skin; severe shortness of breath; vertigo or confusion; leg cramps, or intermittent 

claudication (blood clotting that can cause intense leg pain). First aid and an automated external 

defibrillator (AED) will be on hand to treat any problems that may arise.  To minimize risk, all 

maximal testing will be conducted indoors on an electronically-braked cycling ergometer on the 

1
st
 floor of the Kinesiology Building.  

 

Blood Sampling 

 The total amount of blood taken during the entire study is extremely small. A small drop 

(approx. 5 microliters) is required for each blood measurement. Although the amounts are small, 

there are some minor risks involved. To minimize these risks, only trained research assistants 

using sterile techniques at all times will take the blood sample. There may be some slight pain 

associated with the prick on the earlobe. Although rare, there can be local infection if the site is 

not kept clean following the procedure. There is the possibility of bruising of the skin in the area 

around the site that poses no health risk and should subside within a few days. 

 

Injuries 

 If you should experience any injuries or emotional distress and you are a Cal Poly 

student, please be aware you may contact the campus Health Center at (805) 756-1211 and/or 

Cal Poly Counseling Services at (805) 756-2511. If you are not a Cal Poly student, please consult 

your personal doctor for treatment. You will be responsible for the costs of any treatment due to 

injuries sustained during this research. 
 

 

 

 

tel:%28805%29%20756-1211
tel:%28805%29%20756-2511


72 
 

CONFIDENTIALITY 

 Your confidentiality will be protected during the entire research period, and records will 

be destroyed 6 months after the completion of the study. All paperwork and assessment data 

from this study will be treated as confidential. Your name and the fact that you are in the study 

will be kept confidential. Information stored on a computer database will be password protected 

and only the primary investigator will have access to it. Information on questionnaires will be 

identified by participant ID and decoded using a separate protected list that only the primary 

investigator will have access to. All paperwork will be stored in a locked cabinet. 

BENEFITS OF PARTICIPATION 

Although your participation is strictly voluntary, a subject that completes the entire study 

will receive two free VO2 max assessments, and four lactate threshold tests in the Kinesiology 

Laboratory, along with copies of individual results at the end of the completed study. You will 

also get images of your spin scan analysis. A final meeting will occur in which you will receive 

copies of these results along with explanations. By taking part in this study, we hope that you 

will learn valuable biomechanical and physiological information that will continue to benefit you 

with your racing and training. 
 

WITHDRAWAL 

Your participation in this study is strictly voluntary.  You have the right to choose not to 

participate or to withdraw your participation at any point in this study without consequence. 

 

QUESTIONS 

If you have questions regarding this study or would like to be informed of the results 

when the study is completed, please feel free to contact Christie O’Hara (primary researcher) by 

phone at (201) 803-9724 and/or e-mail crohara@calpoly.edu, or Dr. Clark (faculty advisor) of 

Cal Poly's Kinesiology Department at (805) 756-0285 and/or rdclark@calpoly.edu. If you have 

questions or concerns regarding the manner in which the study is conducted, you may contact 

Dr. Steve Davis, Chair of the Cal Poly Human Subjects Committee, at 756-2754, 

sdavis@calpoly.edu, or Dr. Susan Opava, Dean of Research and Graduate Programs, at 756-

1508, sopava@calpoly.edu. 
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If you agree to voluntarily participate in this research project as described, please indicate 

your agreement by completing and returning the attached questionnaires and signing below. 

Please keep one copy of this form for your reference. Thank you for your participation in this 

research.   

 

 

I have read this consent form. I agree to take part in the research. I have had an opportunity to 

ask questions and all of my questions have been answered to my satisfaction. By signing this 

consent form, I willingly agree to participate in this study.  
 

 

 

____________________________________     ________________ 

                   Signature of Volunteer                                                  Date 

 

 

 

____________________________________     

                   Printed name of Volunteer                                                   

 

 

 

 

I have explained the research to the subject and answered all of his/her questions. I believe that 

he/she understands the information described in this consent form and freely consents to 

participate. I have fully explained to the above volunteer the nature and purpose, procedures, and 

possible risks of the research study.  

 

 

 

____________________________________     ________________ 

                   Signature of Researcher                                                   Date 
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California Polytechnic State University 

Kinesiology Department 

Health Status Questionnaire 

 

Instructions: Complete each question accurately. All information provided is confidential. 

Part I:  Demographic Information 

1.              
 Legal Name       Date 

 

2.          
 Nickname    

         

3.                
 Local Phone      Email 

 

4. Date of Birth              

    Month/ Day/ Year  Age 
 

5. Height: ____’____”        Weight: _____ lbs Blood Pressure: _____ 

 

Part II: Medical History 

6. Circle any that died of heart attack before age 50:  Father  Mother  Brother  Sister  Grandparent  

7. Date of last medical exam: _____________Last physical fitness test: _____________ 

8. Circle operations you have had:  Back   Heart   Kidney   Eyes    Joint    Neck     Ears     Hernia    

        Lung     Other ________________ 

9. Please circle any of the following for which you have been diagnosed of treated by a physician or 
health professional: 

Alcoholism   Diabetes   Kidney Problems 

Anemia (sickle cell)  Emphysema   Mental Illness 
Anemia (other)   Epilepsy   Muscular Injury 

Asthma    Eye Problems   Neck Strain 

Back Strain   Gout    Obesity 
Bleeding trait   Hearing Loss   Orthopedic Injuries 

Bronchitis, chronic   Heart Problem   Phlebitis 

Cancer    High Blood Pressure  Rheumatoid arthritis 
Cirrhosis, liver   Hypoglycemia   Stroke 

Concussion   Hyperglycemia   Thyroid problem 

Congenital defect  Infectious Mononucleosis Ulcer 

Other _____________________ 
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10. Circle all medications taken in the last six months: 
 

Blood thinner   Epilepsy medication  Nitroglycerin 

Diabetic pill   Heart-rhythm medication Other __________________ 

Digitalis   High-blood pressure medication 
Diuretic   Insulin 

 

11. Any of these health symptoms that occur frequently is the basis for medical attention. Circle the 
number indicating how often you have each of the following: 

5 = Very often    4 = Fairly often   3 = Sometimes   2 = Infrequently   1= Practically never 

a. cough up blood   f. chest pain 

    1   2   3   4   5         1   2   3   4   5 
 

b. abdominal pain   g. swollen joints 

    1   2   3   4   5                     1   2   3   4   5 

 
c. low back pain   h. feel faint 

    1   2   3   4   5         1   2   3   4   5 

 
d. leg pain    i. dizziness 

    1   2   3   4   5         1   2   3   4   5 

 

e. arm or shoulder pain    j. breathless on slight exertion 
    1   2   3   4   5         1   2   3   4   5 

 

Part III: Health Related Behavior 

12. Do you smoke?  Yes No 

13. How many times in a week do you spend at least 30 minutes in moderate to strenuous/vigorous 

exercise? 

 1 2 3 4 5 6 7 days per week 

14. Can you walk 4 miles briskly without fatigue? Yes No 

15. Can you jog 3 miles continuously at a moderate pace without discomfort? Yes      No 

16. Weight now: __________ lb.  One year ago: __________ lb   

17. USA Cycling Category:    

18. Collegiate Category (if applicable):    

19. Years competing in one of the above: ____________ 

20. Do you have any chronic injuries that could prevent you from riding? 

(circle one)       No        Yes (If so please explain): 
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Physical Activity Readiness Questionnaire (PAR-Q) 

 Regular physical activity is fun and healthy, and increasingly more people are starting to become 
more active every day.  Being more active is very safe for most people.  However, some people should 

check with their doctor before they start becoming much more physically active. 

 If you are planning to become much more physically active than you are now, start by answering 

the seven questions in the box below.  If you are between the ages of 15 and 69, the PAR-Q will tell you 
if you should check with your doctor before you start.  If you are over 69 years of age, and you are not 

used to being very active, check with your doctor. 

 Common sense is your best guide when you answer these questions.  Please read the questions 
carefully and answer each one honestly: 
Check YES or NO: 

 

I have read, understood and completed this questionnaire.  Any questions I had were answered to my full 
satisfaction. 

Name _________________________________   

Signature ______________________________  Date _________________________________ 

      NO to all questions  Delay becoming much more active: 

 If you are not feeling well because of a temporary 

illness such as a cold or a fever – wait until you feel 

better; or 

 If you are or may be pregnant – talk to your doctor 

before you start becoming more active. 

Please note:  If your health changes so that you then answer YES to 

any of the above questions, tell your fitness or health professional.  

Ask whether you should change your physical activity plan. 

YES to one or more questions 

 

If 

you 

answered: 

If you answered NO honestly to all PAR-Q 

questions, you can be reasonably sure that you can: 

 Start becoming much more physically 

active – begin slowly and build up 

gradually.  This is the safest and 

easiest way to go.  

 Take part in a fitness appraisal – this 
is an excellent way to determine your 

basic fitness so that you can plan the 

best way for you to live actively. 

Talk to your doctor by phone or in person BEFORE you start becoming much more physically active 

or BEFORE you have a fitness appraisal.  Tell your doctor about the PAR-Q and which questions 

you answered YES. 

 You may be able to do any activity you want – as long as you start slowly and build up 

gradually.  Or, you may need to restrict your activities to those which are safe for you.  Talk 

with your doctor about the kinds of activities you wish to participate in and follow his/her 

advice. 

 Find out which community programs are safe and helpful for you. 

YES NO    

  □   □ 1. Has your doctor ever said that you have a heart condition and that you should only do   

   physical activity recommended by a doctor? 

  □  □ 2.  Do you feel pain in your chest when you do physical activity? 

  □  □ 3.  In the past month, have you had chest pain when you were not doing physical activity? 

  □  □ 4. Do you lose your balance because of dizziness or do you ever lose consciousness? 

  □  □ 5. Do you have a bone or joint problem that could be made worse by a change in your   

   physical activity? 

  □   □ 6. Is your doctor currently prescribing drugs (for example, water pills) for your blood   

   pressure or heart condition? 

  □  □ 7. Do you know of any other reason why you should not do physical activity? 


