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Mikołaj Karpiński1 • Paweł M. Rowiński1
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Abstract The motion of bedload particles is diffusive and occurs within at least three

scale ranges: local, intermediate and global, each of which with a distinctly different

diffusion regime. However, these regimes, extensions of the scale ranges and boundaries

between them remain to be better defined and quantified. These issues are explored using a

Lagrangian model of saltating grains over the uniform fixed bed. The model combines

deterministic particle motion dynamics with stochastic characteristics such as probability

distributions of step lengths and resting times. Specifically, it is proposed that a memo-

ryless exponential distribution is an appropriate model for the distribution of rest periods

while the probability that a particle stops after a current jump follows a binomial distri-

bution, which is a distribution with lack of memory as well. These distributions are

incorporated in the deterministic Lagrangian model of saltating grains and extensive

numerical simulations are conducted for the identification of the diffusive behavior of

particles at different time scales. Based on the simulations and physical considerations, the

local, intermediate, and global scale ranges are quantified and the transitions from one

range to another are studied for a spectrum of motion parameters. The obtained results

demonstrate that two different time scales should be considered for parameterization of

diffusive behavior within intermediate and global scale ranges and for defining the local–

intermediate and intermediate–global boundaries. The simulations highlight the impor-

tance of the distributions of the step lengths and resting times for the identification of the

boundaries (or transition intervals) between the scale ranges.
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1 Introduction

It has been proposed that the motion of bedload particles is diffusive [6, 19] and consists of

at least three ranges of scales: local, intermediate, and global [16, 17]. The local range

relates to the distance that the particle travels during a single jump. The intermediate range

corresponds to the longer times, involving many jumps while the global range of scales

consists of many intermediate ranges (Fig. 1). Based on physical considerations, Nikora

et al. [16, 17] suggested that each of these ranges exhibits a different diffusion regime:

ballistic diffusion in the local range c = 1; normal c & 0.5 or anomalous (super- c[ 0.5

or sub- c\ 0.5) diffusion in the intermediate range; and sub-diffusion c\ 0.5 in the global

range (Fig. 1). The parameter c is a scaling (diffusion) exponent in X02 / t2cX and

Y 02 / t2cY , where ½X; Y � are the particle coordinates X0 ¼ X � X, Y 0 ¼ Y � Y , an overbar

defines ensemble averaging, and prime defines the deviation from the mean value. The

hypothesis of sub-diffusion in the global range has been motivated by observations that in

their motion the particles experience periods of prolonged rests.

The experimental information on the diffusion exponents for all three scale ranges

remains scarce making a defensible identification of the diffusion regimes difficult. Fur-

thermore, recent studies highlighted that the scaling behavior within a particular scale

range as well as the boundaries between the ranges may depend on specific transport

conditions or motion modes [5, 10, 14, 18, 22]. For instance, the transition from the

intermediate scale range to the global range, expressed in terms of tu�=d (t is time, u� is

friction velocity, d is particle diameter) has been found to vary from tens [14, 17] to

hundreds [3, 22]. This discrepancy is likely to be a result of using the same dimensionless

argument tu�=d for all scale ranges while it may be applicable only at shorter times

corresponding to the local and intermediate scale ranges where particle dynamics effects

are dominant. The quantification of the transition from the intermediate range to the global

range may require another scaling that involves information on the resting times, which is

Fig. 1 Schematic presentation of a conceptual model of a bed particle diffusion, adapted from Nikora et al.
[16, 17]
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missing in tu�=d. To clarify these issues, an approach based on numerical simulations may

be useful.

As the diffusion regimes and associated scales reflect statistical properties of the particle

motion such as distributions of rest periods and step lengths (e.g., jump lengths at a local

scale and/or travel distances between the rests at an intermediate scale), it may be helpful

to explore these distributions and involve them into consideration of diffusive properties of

moving particles. Available data suggest that particle step lengths at the intermediate scale

(i.e., distances between long rests) are likely to follow exponential [7, 8, 13], gamma [12],

or two-parameter gamma [11] distributions. In these references, it can also be found that

the mean step lengths may vary, depending on travel conditions, from 100 to 150 particle

diameters. The information on the empirical distributions of rest periods is less extensive.

The available data advocate that this distribution is exponential [7, 8, 11] or follows the

power law when the deposited particles are buried by other particles [14, 15, 20]. The

information on the step length and resting time distributions can be incorporated in a

deterministic Lagrangian model of saltating grains [3], which in turn can provide a basis

for extensive numerical simulations for the identification of the diffusive behavior of

particles at different time scales.

The objectives of this study therefore include: (1) identification of appropriate proba-

bility distributions for step lengths and resting times and expansion of a Lagrangian model

of Bialik et al. [3] by combining deterministic particle motion dynamics with these

Fig. 2 Schematic presentation of possible options for selecting starting points for diffusion analysis
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distributions; (2) identification of physically-relevant scaling for the time argument in the

diffusion relationships suitable for particular ranges of scales; and (3) analysis of the

statistical distributions and second-order statistics of particle trajectories, and quantifica-

tion of diffusion regimes, extensions of the scaling ranges, and the boundaries between

them.

Before we proceed to the next section, it should be noted that there are several potential

options for selecting starting points for diffusion analysis. In this paper we analyze the

diffusive properties of moving particles by superimposing particle trajectories considering

instances of particle ‘placement/release’ on the bed as reference points (i.e., including

some waiting time before first entrainment, Fig. 2a), rather than instances of direct

entrainment (as in [3], Fig. 2b) or randomly selected points of particle-bed contact (as in

[16, 17], Fig. 2c). This approach (i.e., Fig. 2a) permits identification of the ‘near-field’

diffusive behavior [1, 3] instead of the pure ballistic diffusion of already saltating particles.

In other words, at small diffusive times the ‘near-field scale’ associated with a particle

trajectory just after its ‘release’ on the bed is explicitly resolved in our analysis. More

details on the effects of diffusion starting points and their influence on the diffusion

regimes can be found in [1, 3, 21].

2 Deterministic-stochastic Lagrangian model of particle motion
and simulation scenarios

A deterministic-stochastic Lagrangian model of particle motion that we propose here is

based on a deterministic 3D model of Bialik et al. [3], which is an extension of the earlier

2D model [2]. The deterministic 3D model represents the balance of the fundamental

forces acting on moving particles in a fluid flow: drag force FD, lift force FL, virtual mass

force Fv, and a gravity force Fg. The general form of the underpinning equation of motion

is:

qp
pd3

6

dup

dt
¼ FD þ FL þ Fv þ Fg; ð1Þ

where t is time, up denotes the particle velocity vector, qp stands for the density of

particles, and d is the diameter of saltating particles. In the model, Eq. (1) is supplemented

with a trajectory equation, bed-collision sub-model based on the impulse momentum

equations, and a Monte-Carlo generator of flow velocity field, initially proposed in [16]

and later also used to simulate saltating grains movement in a 2D model [2]. The model

equations can easily be solved numerically using the fourth-order Runge–Kutta method

and employing the following initial conditions [3, 4]: xp(t0) = 0, yp(t0) = 0, zp(t0) = 0.5d,

up(t0) = 0, vp(t0) = 0 and wp(t0) = 0 to analyze the incipient motion of a particle; coor-

dinates xp, yp, zp describe particle positions in streamwise, transverse and vertical direc-

tions, respectively, and up, vp, wp are particle velocity components in the streamwise,

transverse and vertical directions, respectively. More details on this 3D model including

the description of the model for generation of flow velocity field, numerical simulation

details, and entrainment procedure can be found in [3].

The described model has been extended in this work by adding a stochastic (Monte-

Carlo-type) sub-model that generates data on intermediate step lengths and resting times.

This sub-model incorporates the following theoretical reasoning. Let us consider a

sequence of Bernoulli trials in which success is a particle stop after its current jump while
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its further movement is failure. In addition, let us assume that the particle stops (the first

success has occurred) after a number of jumps T. Then P(T[ k) = qk, where q is the

probability of failure in the current jump, and k [ N? describes the kth trial. Next, let us

consider that no success has occurred during the first R jumps. In such a situation,

P(T[ k ? R | T[R) is also equal to qk since:

PðT [Rþ kjT [RÞ ¼ PðT [Rþ k; T [RÞ
PðT[RÞ ¼ PðT [Rþ kÞ

PðT [RÞ ¼ qRqk

qR
¼ qk ð2Þ

and it is independent of the number of preceding R failures. Equation (2) expresses a

property of exponential and geometrical probability distributions and is called memoryless.

It should be noted that from a physical point of view the rest periods and step lengths are

likely to be unrelated to each other and that the previous history does not influence the

probability of a given particle to be eroded, which was first highlighted by Einstein [7, 8].

Thus, the rest period and step length distributions seem most appropriate for describing

statistics of the particle motion, particularly for the case of sediment transport over the

uniform fixed bed, where the deposited particle cannot be buried by other particles, as is

considered in this study. Sediment transport in a bedrock stream may serve as an example

of potential occurrence of the studied case.

Let us invoke the following theorem: ‘‘The conditional probability that the waiting time

terminates at the kth trial, assuming that it has not terminated before, equals p0 (the

probability at the first trial). We claim that pk = (1 - p0)kp0, so that T has a geometric

distribution’’ [9]. Let us now assume that the mean travel distance (i.e., step length between

entrainment and settlement) is equal to N particle diameters, and that the particle jumps

may be properly described by mean jump length Ls, obtained based on the numerical

simulations using the saltation model. Then the unknown probability p that the particle will

stop after its current jump is equal to:

p ¼ Ls

N
ð3Þ

as according to the theorem quoted above the following relation is hold:

N ¼ Lspþ 2Lspð1 � pÞ þ 3Lspð1 � pÞ2 þ 4Lspð1 � pÞ3 þ . . .

¼ Lsp 1 þ 2ð1 � pÞ þ 3ð1 � pÞ2 þ 4ð1 � pÞ3 þ . . .
� �

¼ Lsp
1

p

1

p

� �
¼ Ls

p
:

ð4Þ

Thus, a binomial distribution with the probability p of success for each trial may be applied

for the simulation. In addition, assuming that the duration of rest periods, which is a

random variable F, may be described with the exponential distribution, by analogy with

Eq. (2) we obtain:

PðZ[ t þ s Z[ tÞ ¼ PðZ[ sÞj : ð5Þ

The above probabilistic relations are combined in this study with the 3D deterministic

model, described at the beginning of this section, to generate long trajectories of particle

motion covering all three ranges of scales (i.e., local, intermediate, and global). The

following parameters were used in the simulations presented in the next section: (i) relative

size of the moving particles was selected to be d/D = 1 where D is the size of the static bed

particles and d = 2 mm is the size of mobile particles; (ii) the mobility parameter K

(Eq. 6) was selected to be 1.5, which corresponds to the low bed-load transport rate;
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(iii) mean rest periods �s are selected as �s = 0, 10 s, and 100 s; (iv) the entire diffusion

(simulation) time t = 2 h; and (v) the mean travel distance for the cases with mean periods

of rest �s = 0 was assumed to be N = 120d. The mobility parameter K is defined as:

K ¼ 1

hc

qu2
�

ðqs � qÞgd ; ð6Þ

where hc = 0.05 is the critical value of the dimensionless bed shear stress known as

Shields parameter; q and qs are the water and sediment densities, respectively; g is gravity

acceleration; and u� is the friction velocity.

Fig. 3 Particle trajectories: a X(t)/d and b Y(t)/d for �s = 0 s; c X(t)/d and d Y(t)/d for s = 10 s; e X(t)/d, and
f Y(t)/d for �s = 100 s (for clarity only first 30 min of the simulations are shown)
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The particle trajectories including stops and rest periods have been obtained as follows:

(i) in the first step, a single jump trajectory between two collisions with the bed is cal-

culated using the 3D model [3]; (ii) second, during each collision with the bed the random

number generator, based on the binomial distribution with the probability p, is used to

obtain the logical values of 0 or 1 (if it is 1 then the particle stops after its current jump

while if it is 0 then the particle continues motion); (iii) if the particle stops after collision

with the bed (the success has occurred), then a duration of a rest period is determined from

the exponential distribution with the assumed mean periods of rest �s from Eq. (5); and (iv)

if a failure (the particle has not stopped) occurs, then the next particle jump is calculated

and the previous procedure is repeated. The simulation of a sample particle trajectory

continued for 2 h and at least 300 trajectories, simulated independently, were obtained and

used for calculating the variance of particle positions.

3 Scale ranges, their boundaries, and diffusion regimes

Figure 3 shows the examples of temporal changes of the particle locations for three

considered cases: (a, b) �s = 0; (c, d) �s = 10 s; and (e, f) �s = 100 s. The diffusion behavior

can be recognized in all plots. For two cases with non-zero rest periods, the step lengths,

particle deposition, and duration of rest periods are clearly identifiable (Fig. 3c–f).

Fig. 4 Histograms of typical travel times of particle movement for �s = 100 s: a acceleration time of a
particle after entrainment; b single jump time duration (between two consecutive collisions with the bed);
c travel time between entrainment and stop (disentrainment); and d particle travel time between consecutive
entrainments
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The empirical distributions of specific time periods corresponding to (a) time period of

particle acceleration, which is equal to the period of time when the acceleration of a

particle after entrainment is greater than zero, (b) durations of individual jumps, (c) travel

times between consecutive entrainments and stops (disentrainments), and (d) time periods

between consecutive entrainments for the case �s = 100 s are shown in Fig. 4. The dis-

tribution of the durations of individual jumps in Fig. 4b resembles a gamma-distribution

shape and it quantitatively agrees with the experimental data of Roseberry et al. [18].

Considering the histogram in Fig. 4d it is important to note that the distribution of time

periods between consecutive entrainments is a convolution of the exponential-like distri-

bution of the particle travel time from entrainment to stop in Fig. 4c with the assumed

exponential distribution of rest periods.

Table 1 summarizes the main statistical parameters for both cases, �s = 10 s and

�s = 100 s (in Table 1 s95% defines the 95th quantile). We believe that the data in Table 1

may appear to be instrumental in the identification of specific scale ranges of particle

diffusion.

Figure 5 shows the time evolution of the normalized variance of particle positions in the

longitudinal and transverse directions, employing the normalized time coordinate ðtu�Þ=d.

One may observe that for �s = 10 s and �s = 100 s at least five distinct diffusion regimes

X02 / t2cX and Y 02 / t2cY with different scaling exponents cX and cY can be identified for

the X and Y coordinates (recall that an overbar defines ensemble averaging while prime

defines the deviation from the mean value). For the extreme case of �s = 100 s it is possible

to identify the following diffusion regimes in Fig. 5 (95th quantiles of the specific time

distributions from Table 1 are used):

(1) Local-near-field range for ðtu�Þ=d\ 0.99 with cX, cY [ h2.0, 2.0i;
(2) Local-ballistic range for 0.99\ ðtu�Þ=d\ 1.7 with cX, cY [ h1.0, 1.5i;
(3) Intermediate range for 1.7\ ðtu�Þ=d\ 22 with cX, cY [ h0.7, 1.0i;
(4) Transition between intermediate and global ranges for 22\ ðtu�Þ=d\ 3150 with

cX, cY [ h0.12, 0.15i (although the given exponents likely characterize the pseudo-

scaling behavior within this range); and

(5) Global range for 3150\ ðtu�Þ=d with cX, cY [ h0.50, 0.50i.
Note that here we subdivided the local range into two subranges: ‘near-field’ subrange

influenced by particle acceleration [1] and ballistic sub-range dominated by the particle

inertia [16, 17].

At another extreme case without rest periods (�s = 0), the global range is not present by

definition, while the intermediate range starts at ðtu�Þ=d * 30 and is extended to very

Table 1 Mean and the 95th quantile values of characteristic times of particle motion for �s10 = 10 s and
�s100 = 100 s

Time of particle
acceleration

Single jump
durations

Travel times between
entrainments and stops

Travel times between
consecutive entrainments

(ms) tu�=d (ms) tu�=d (ms) tu�=d (ms) tu�=d

�s10 15 0.32 21 0.44 316 6.64 10,968 230.32

s95%(10) 48 1.01 82 1.72 991 20.81 24,268 507.53

�s100 15 0.32 21 0.44 310 6.51 96,891 2034.71

s95%(100) 47 0.99 81 1.70 1051 22.07 150,051 3151.07
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large diffusion times, with cX * 0.50 and cY * 0.50. The difference of these exponents

from those shown above for the intermediate range at �s = 100 s can be due to ‘contam-

ination’ of the genuine intermediate range by the effects of the local range at smaller times

and by the effects of the global range at larger times. Therefore, the identification of the

intermediate range boundaries in Fig. 5 should be treated with caution.

Considering Fig. 5 one may note that at small diffusion times (local and intermediate

ranges) the data for different mean resting times �s collapse around single curves. For the

large diffusion times, however, a significant separation of curves occurs pointing to

inapplicability of the dimensionless time tu�=d for the global range. This could be expected

Fig. 5 Time evolution of the second-order moments of particle positions: a X02=d2 ¼ f ðtu�=dÞ and b

Y
02=d2 ¼ f ðtu�=dÞ
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as moving from the local and intermediate scale ranges to the global range we observe

transition from the dominance of the particle dynamics (characterized by u�=d) to the

dominance of the resting times (characterized by �s). Thus, to account for this transition in

the dominant factors influencing the particle trajectories, different time normalization for

the global range is required. We propose therefore that the time coordinate for the global

range should be normalized on �s. This consideration is strongly supported by the simu-

lation data presented in Fig. 6. In contrast to Fig. 5, the data at large diffusion times in

Fig. 6 exhibit a superb collapse on single curves while at small times the data show

significant data separation, as one would expect. Figure 6 clearly shows that at large times

the variances tend to normal diffusion with X02 / Y 02 / t, i.e., cX ¼ cY ¼ 0:5.

The success of normalizations tu�=d and t=�s in different ranges of scales highlights that

two different mechanisms are responsible for the diffusion of particles in different scale

ranges. At small diffusion times related to the local and intermediate ranges the diffusion

process is largely controlled by particle dynamics as was suggested by Nikora et al. [17].

At large times associated with the global scale range the diffusion processes are dominated

by resting times as supported by numerical simulations in this study.

4 Discussion and conclusions

A number of findings in our study, in which a Lagrangian model of saltating grains over the

uniform fixed bed was used, contribute to a ‘bigger picture’ of bed particle diffusion. First,

the local range in our study exhibits two subranges: (1) ‘near-field’ subrange dominated by

the effects of particle acceleration at the beginning of entrainment with cX * cY * 2.0, as

suggested in [1] and numerically found in [3]; and (2) ballistic subrange due to particle

inertia with cX * cY * 1.0, as suggested in [16, 17]. This result complements the original

conceptual model of Nikora et al. [16, 17] that treated particle diffusion without

Fig. 6 Time evolution of the second-order moments of particle positions: X
02=d ¼ f ðt=�sÞ and

Y
02=d ¼ f ðt=�sÞ
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considering ‘near-field’ acceleration effects. Our simulation results for the local range

strongly support analysis of Ballio et al. [1] who found that for the (near-field) local range

1.0\ cX\ 2.0 (at least for X direction) and who explained this result by the initial

unsteady phase of particle motion after entrainment. Recently, based on the 3D PIV

measurements Witz [21] has also found exponents cX for the local range varying from 2.29

to 2.38, which are much greater than for the ballistic diffusion. He explained this difference

by the additional streamwise acceleration which allows particles to escape from the bed

and move to the saltation mode.

For the intermediate range we found for �s = 0 that cX * cY * 0.5, which should also

be expected for s = 10 s and �s = 100 s. However, Fig. 6 reveals for these cases that the

exponents are higher than 0.5, which is likely due to the contamination from the adjacent

diffusion ranges. Our findings also suggest that the data of Drake et al. [6], which earlier

were interpreted as a global range in [17], are likely to be in a transition from the inter-

mediate range to the global range. The simulation data show that this transition range

occurs within 22\ ðtu�Þ=d\ 3150, at least for �s = 100 s and reflects the transition in

diffusion mechanisms from particle dynamics dominance to resting times dominance,

quantified with �s. This parameter clearly plays an important role in diffusion within the

global scale range when the first moment of the resting time distribution exists. The

parameter �s, however, may not be applicable if the resting time distribution is of a power

type with non-existing first moment �s. In this case, alternative measures could be used such

as, e.g., the median value. Our findings highlight the fact that in order to compare the

results of particle diffusion at large time scales, the information about the resting times is

needed. Thus, the next step in studying particle diffusion processes at large scales should

involve physical experiments that would provide information on particle coordinates at

large diffusion times including the rest periods.
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