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Abstract We propose a method for coronary arterial dyna-
mics computation with medical-image-based time-depe-
ndent anatomical models. The objective is to improve the
computational analysis of coronary arteries for better under-
standing of the links between the atherosclerosis develop-
ment and mechanical stimuli such as endothelial wall shear
stress and structural stress in the arterial wall. The method has
two components. The first one is element-based zero-stress
(ZS) state estimation, which is an alternative to prestress cal-
culation. The second one is a “mixed ZS state” approach,
where the ZS states for different elements in the structural
mechanics mesh are estimated with reference configurations
based on medical images coming from different instants
within the cardiac cycle. We demonstrate the robustness of
the method in a patient-specific coronary arterial dynamics
computation where the motion of a thin strip along the arter-
ial surface and two cut surfaces at the arterial ends is specified
to match the motion extracted from the medical images.
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1 Introduction

Computational analysis in cardiovascular fluid and solid
mechanics now has powerful methods, encouraging the
development of even more powerful ones, and can deal with
a wide range of biomechanics problems, encouraging efforts
to further increase that range. For examples of the methods
developed and problems analyzed, see [1–32]. In this paper
we focus on the human coronary arteries, specifically the
right coronary artery (RCA).

The coronary arteries, feeding arteries to the myocardium,
are known as common sites of atherosclerotic narrowing,
which typically leads to myocardial infarction and sudden
cardiac death [33]. Links have been suggested between the
atherosclerosis development and mechanical stimuli such
as endothelial wall shear stress (WSS) and structural stress
in the arterial wall [34,35]. This has motivated studies on
quantification of the biomechanical stresses with computa-
tional fluid and structural mechanics methods and medical-
image-based anatomical models. Among such studies, those
on structural mechanics [36] and fluid–structure interaction
(FSI) [37,38] are rather sparse compared to those on fluid
mechanics and WSS [39,40]. One reason for that is the diffi-
culty in acquiring the wall thickness and the motion of a coro-
nary artery, which is substantial in the RCA. Approaches used
for acquiring such time-dependent anatomical data [39,41–
43] include the time-dependent anatomical-model extraction
method introduced in [43], which is based fully on magnetic
resonance imaging (MRI). This MRI-based method was used
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in [43] for blood flow analysis with cardiac-induced arterial
motion.

In this paper, we focus on coronary arterial dynam-
ics analysis, with the medical-image-based time-dependent
anatomical model coming from [43]. The long-term objective
is to have a better understanding of the interaction between
the blood flow and arterial dynamics, which is difficult to
observe experimentally. This requires FSI analysis, which
in turn requires a robust method for the coronary arterial
dynamics computation. The method has to be able to deal
with the computational challenges involved, such as the large
deformation of an incompressible material, including stretch,
bending and torsion.

Medical-image-based arterial geometries come from con-
figurations that are not stress-free. Therefore coronary
arterial dynamics computations with such time-dependent
anatomical models require prestress calculations or zero-
stress (ZS) state estimations. More explanation of this
requirement and references to some of the methods intro-
duced to meet this requirement can be found in [28]. The
methods mentioned in [28] include the original version of the
technique for calculating an estimated zero-pressure (EZP)
arterial geometry [44], and newer EZP versions introduced
in [10,17,45], which were also presented in [19,22]. They
also include the prestress technique introduced in [15] and
further refined in [18], which was also presented in [19,22].

A method was introduced in [28] for element-based ZS
state estimation. The method has three parts. 1. An iterative
method, which starts with an initial guess for the ZS state,
is used for computing the element-based ZS state such that
when a given pressure load is applied, the image-based target
shape is matched. 2. A method for straight-tube geometries
with single and multiple layers is used for computing the
element-based ZS state so that we match the given diameter
and longitudinal stretch in the target configuration and the
“opening angle.” 3. An element-based mapping between the
arterial and straight-tube configurations is used for mapping
from the arterial configuration to the straight-tube configu-
ration, and for mapping the estimated ZS state of the straight
tube back to the arterial configuration, to be used as the initial
guess for the iterative method that matches the image-based
target shape.

In coronary arterial dynamics computation with medical-
image-based time-dependent anatomical model, the method
we use for the ZS state estimation has two components. The
first one is the method introduced in [28] for element-based
ZS state estimation. The second one is a “mixed ZS state”
approach, where the ZS states for different elements in the
structural mechanics mesh are estimated with reference con-
figurations based on medical images coming from different
instants within the cardiac cycle. The overall method used
in the coronary arterial dynamics computation carried out
here, including the mixed ZS state approach, is described

Sect. 2. The results are presented in Sect. 3, and the conclud-
ing remarks are given in Sect. 4.

2 Method

2.1 MRI-based time-dependent anatomical model

The medical-image-based time-dependent anatomical model
comes from [43]. The MRI-based method used in extracting
that model can be found in [43]. The arterial cross-sectional
images were acquired at 14 instants within the cardiac cycle:
0, 50, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600,
725 and 850 ms, with 0 ms corresponding to the R-wave of
the electrocardiogram. The time-dependent lumen geometry
was constructed by associating to the points along the moving
centerline cycle-averaged cross-sections. The cross-section
for each point along the centerline was obtained, by aver-
aging over the cardiac cycle, from the MRI-obtained cross-
sections for that point. From that, for the computations car-
ried out here we reconstruct the lumen geometry by mapping
the cross-section for each point along the centerline to a circu-
lar cross-section. We construct the wall volume by extruding
the lumen outward, with a constant wall thickness, assumed
to be 0.5 mm from [42]. Then we generate a volume mesh
that has 135,450 nodes and 108,000 hexahedral elements,
with 4, 90 and 300 elements in the thickness, circumferen-
tial and length directions. The mesh is represented over the
cardiac cycle by using cubic B-splines in time and the ST-C
technique (see [46]).

2.2 Element-based ZS state estimation

An extensive description of the method for element-based
ZS state estimation can be found in [28]. Here we describe
some of the core concepts.

Let Ω0 ∈ R
3 be the material domain of a structure in

the ZS configuration, and let Γ0 be its boundary. Let Ωt ∈
R

3, t ∈ (0, T ), be the material domain of the structure in
the deformed configuration, and let Γt be its boundary. The
structural mechanics equations based on the total Lagrangian
formulation can be written as

∫

Ω0

w · ρ0
d2y
dt2 dΩ +

∫

Ω0

δE : S dΩ −
∫

Ω0

w · ρ0f dΩ

=
∫

(Γt )h

w · h dΓ. (1)

Here, y is the structural displacement, w is the virtual dis-
placement, δE is the variation of the Green–Lagrange strain
tensor, S is the second Piola–Kirchhoff stress tensor, ρ0 is
the mass density in the ZS configuration, f is the body force
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per unit mass, and h is the external traction vector applied on
the subset (Γt )h of the total boundary Γt .

The deformation gradient tensor F is evaluated for each
element:

Fe ≡ ∂x
∂Xe

0
, (2)

= ∂ (XREF + y)

∂Xe
0

, (3)

where Xe
0 is the ZS state for element e, and XREF is a refer-

ence configuration. In XREF, all elements are connected by
nodes, and we measure the displacement y from that con-
nected configuration.

The method for element-based ZS state estimation has
three parts. 1. An iterative method, which starts with an ini-
tial guess for Xe

0, is used for computing Xe
0 such that when

the pressure load associated with XREF is applied, XREF is
matched. During the iterations, the update method described
in Section 2.2 of [28] is used. 2. A method for straight-tube
geometries with single and multiple layers, described in Sec-
tion 3.1 of [28], is used for computing the element-based ZS
state so that we match the given diameter and longitudinal
stretch in the target configuration and the opening angle. In
the straight-tube computation here, we use a single layer.
Two parameters are specified in computations with a sin-
gle layer: the opening angle, φ, and the longitudinal stretch,
λz = L

L0
, where L and L0 are the tube lengths at the refer-

ence configuration and ZS state. 3. An element-based map-
ping between the arterial and straight-tube configurations,
described in Section 3.2 of [28], is used for mapping from
the arterial configuration to the straight-tube configuration,
and for mapping the estimated ZS state of the straight tube
back to the arterial configuration, to be used as the initial
guess for the iterative method that matches XREF.

In computing the arterial dynamics, we use as XREF the
mesh at t = 0 s. While the calculation of Xe

0 depends on the
XREF choice, the actual arterial dynamics computation for a
given Xe

0 does not. In the straight-tube computation we use φ

= 270◦ andλz = 1.2. The value of the opening angle in our def-
inition translates to half of that value, φ/2, in the commonly-
used definition, and that translation gives 135◦ in this case.

2.3 Material model

The arterial wall is made of Fung material. The density is
1,000 kg/m3. The Fung material constants D1 and D2 are
2.6447 × 103 N/m2 and 8.365 (from [47]), and the penalty
Poisson’s ratio is 0.45.

2.4 Mixed ZS state

As mentioned in Sect. 2.2, the calculation of Xe
0 depends on

the XREF choice. For each element e in the structural mechan-
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Fig. 1 Blood pressure profile

ics mesh, Xe
0 can be estimated with a reference configuration

based on the medical image coming from any instant within
the cardiac cycle. We can use this freedom of choice for try-
ing to reduce the chances of having compression regions in
the arterial dynamics computation covering a cardiac cycle,
which would in turn increase the robustness of the compu-
tations. This is the basic idea behind the mixed ZS state
approach.

In building the mixed ZS state here, we consider four
instants within the cardiac cycle where a reference configura-
tion based on the medical image can come from: (1) 0 ms, (2)
250 ms, (3) 500 ms, and (4) 750 ms. The pressure load asso-
ciated with each reference configuration is obtained from the
time-dependent blood pressure profile1 for the cardiac cycle
of 1.0 s, which can be seen in Fig. 1. We calculate four differ-
ent ZS sates corresponding to these four instants. Assuming
that the arterial deformation during a cardiac cycle is given
fully by the MRI-based time-dependent mesh deformation,
for each of the four ZS states we find for every element the
minimum value λz drops to during the cardiac cycle. For
each element, we pick as the ZS state the one that gives the
maximum of those four minimum-λz values. Figure 2 shows
a view of how the elements in each of the four ZS states are
distributed over the domain.

Figure 3 shows the artery after a partial longitudinal cut
(LC). For more on the “LC state,” see Sections 3.1 and 4.2.2
in [28]. Although we use a mixed ZS state, the opening angle

1 The pressure profile is based on the subject’s aortic pressure, which is
known to be similar to the coronary pressure [48]. The aortic pressure
was acquired using a commercial aortic pressure measurement system
pulseCor (Uscom Limited, Sydney). This system calculates the aortic
pressure based on the brachial pressure measured with a cuff wrapped
around the subject’s forearm. The system has been validated and used
in clinical studies [49].
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Fig. 2 A view of how the elements in each of the four ZS states are
distributed over the domain. The colors and numbers denote the instants
within the cardiac cycle where the medical-image-based reference con-
figuration used in the ZS state estimation is coming from

Fig. 3 Artery after a partial longitudinal cut

is somewhat uniform, reflecting φ = 270◦ in calculation of
all four ZS states.

2.5 Boundary conditions

On the lumen, we specify a time-dependent, uniform blood
pressure; on a thin strip along the arterial surface and two cut
surfaces at the arterial ends, we specify a motion that matches
the motion extracted from the medical images; and elsewhere
we specify zero traction. The time-dependent blood pressure
profile, which was already referenced in Sect. 2.4, can be
seen in Fig. 1. The parts of the boundary where we match
the motion extracted from the medical images are shown in
Fig. 4.

2.6 Other computational settings

In time integration of the arterial dynamics equations, we use
the generalized-α method [50]. The parameters used with the
method, in the notation of [22], are αm = 2, αf = 1, γ = 1.5,
and β = 1. The time-step size is 2.5 ms, which translates to
400 time steps for the cardiac cycle. The number of nonlinear
iterations per time step is 5, with 100, 300, 500, 500, and 500
GMRES [51] iterations in those 5 nonlinear iterations.

Fig. 4 The parts of the boundary where we specify a motion that
matches the motion extracted from the medical images. The strip along
the artery is 5-element wide, starts at distance of 10 elements from the
inlet (the left end in the picture), and ends at a distance of 9 elements
from the outlet

3 Results

Figure 5 shows the longitudinal stretch (λz). The maximum
value of λz in space and time is approximately 1.27. The
spatial average of the maximum variation of λz in time is
about 0.04. The stretch values in some areas are not smooth
because of the mixed nature of the ZS state. Those areas are
essentially at the boundaries of the regions of elements in
different ZS states (see Fig. 2 for the boundaries). However,
the actual deformation is smooth, and is also close to the
MRI-based deformation, except the radial deformation due to
the time-dependent pressure. That mode of the deformation
is represented in the arterial dynamics computation, but not
in the MRI-based deformation. We also show, in Fig. 6, the
circumferential stretch (λθ ), even though it is less significant
than the longitudinal stretch. The maximum value of λθ in
space and time is approximately 1.34. The spatial average of
the maximum variation of λθ in time is about 0.03.

4 Concluding remarks

Computational analysis of coronary arteries helps us gain a
better understanding of the links between the atherosclero-
sis development and mechanical stimuli such as endothe-
lial WSS and structural stress in the arterial wall. To
increase the reliability of the analysis, we have presented
a method for coronary arterial dynamics computation with
time-dependent anatomical models extracted from medical
images. The method has two components. The first one, intro-
duced recently in [28], is element-based zero-stress (ZS) state
estimation, which is an alternative to prestress calculation.
The second one is a mixed ZS state approach, where the ZS
states for different elements in the structural mechanics mesh
are estimated with reference configurations based on med-
ical images coming from different instants within the cardiac
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0.7 1.0 1.3

Fig. 5 Front (left) and back (right) views of the longitudinal-stretch
(λz) patterns at t = 0, 375 and 750 ms

0.7 1.0 1.3

Fig. 6 Front (left) and back (right) views of the circumferential-stretch
(λθ ) patterns at t = 0, 375 and 750 ms

cycle. We use the freedom of choice given to us by the mixing
in a process where we try to reduce the chances of having
compression regions in the arterial dynamics computation
covering a cardiac cycle. Reducing the chances of encounter-
ing compression increases the robustness of the computation
and results in a more realistic arterial dynamics. We demon-
strated the robustness of the method in a patient-specific coro-
nary arterial dynamics computation where the motion of a
thin strip along the arterial surface and two cut surfaces at
the arterial ends is specified to match the motion extracted
from the medical images. We expect this new ZS state esti-

mation method to become one of our frequently-used special
methods targeting cardiovascular FSI modeling.
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