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Chaotic behavior and detailed parameter analysis of stretch-twist-fold (STF) flow are investigated. STF flow is associated with 
fluid particle motion which naturally arises in the dynamo theory. It proposes a mechanism, by which a celestial bodies, such as 
earth and sun, can maintain and amplify the magnetic field continuously. Parameter analysis is performed using linearization the-
ory for different choices of parameters. The existence of Heteroclinic trajectory of Sil’nikov type is proved using an undetermined 
coefficient method. It connects two non trivial equilibrium points. As a consequence, the Sil’nikov criterion guarantees that STF 
flow has Smale horseshoes chaos.  
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During last few decades, existence of chaos in nonlinear 
dynamical system became an attractive field for researchers 
[1,2]. In most of the technological fields, chaos has an im-
mense prospective use, for example in signal processing, 
information and computer science, biomedical system anal-
ysis and flow dynamics [3–5]. STF flow is defined in the 
unit sphere which is a two parameter family of incompress-
ible steady Stokes’ flow. This flow represents mechanism of 
stretch, twist and fold which is prototype of a fast dynamo 
action that is, in astrophysics, natural growth of magnetic 
field caused by the motion of electrically conducting fluid. 
Vainshtein et al. [6] introduced STF mechanism for the first 
time in physical manners rather than mathematical, which is 
the example of fast dynamo action. ‘Fast dynamo action’ or 
STF action is shown in Figure 1. If we apply similar ap-
proach on magnetic flux tube in a conducting fluid and re-
peat the process again and again, the repetition of stretch, 
twist and fold mechanism results in an exponential growth 
of magnetic field [6]. On the conjecture of Vainshtein et al. 
[6], researchers invented a most conductive particular 
quadratic flow in the magneto hydrodynamics which exhib-
its the stretch, twist and fold mechanism [7,8] and modified 

by Bajer [9]. It is observed that a rich chaotic Lagrangian 
structure is present in a class of three dimensional incom-
pressible steady STF flows [10]. These flows incorporated 
the stretch-twist-fold fast dynamo process and for this rea-
son these are called stretch-twist-fold flows. Earth is not the 
only body which manifests magnetic activity but such phe-
nomenon also exists on the other stars. Rotation of the earth 
produces a Coriolis effects which rotate the liquid iron in 
the outer core of earth. The liquid iron in the outer core of 
the earth induces the constant magnetic field. The results 
obtained from the STF flow are useful to explore the mag-
netic field structure [8]. Because of the spontaneous growth 
of terrestrial space magnetic field, researchers are interested 
to explore novel techniques and tools for non fuel consump-
tion magnetism propulsion for low earth orbit spacecrafts, 
such as Lorenz force method [11], solar sailing [12], photon 
propulsion [13] and electrodynamics tethers [14]. Mag-
netism propulsion gets effectively thrust force by producing 
static magnetic field and interaction with the terrestrial 
space magnetic field which is produced by the fast dynamo 
action. 

Over the past few decades three-dimensional nonlinear 
quadratic systems gained much attention in physics, math-
ematics, and engineering communities [15]. In studying the 
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non linear dynamical system, researchers try to find the 
complex and long term behavior solution for the differential 
equation. Since the pioneering work of Lorenz [16], many 
other simple chaotic systems have been discovered such as 
Lu system [17] and Chen system [18]. Bao and Yang [19] 
developed a novel technique for the determination of homo-
clinic and heteroclinic orbits. Undetermined coefficient 
method is developed by Zhou et al. [20]. It is an analytic 
technique, which is used for the existence of heteroclinic or 
homoclinic orbits of the Sil’nikov type in the dynamical 
systems. The dynamical system will exhibit Smale horse-
shoes chaos if Sil’nikov criterion is validated. This tech-
nique is used by many researchers [21–24]. Some basic and 
complex properties of the STF flow are analyzed by Bao 
and Yang [25]. We present a detailed analysis of local be-
havior of the equilibrium points for the different choices of 
parameters of the STF flow in this work. Existence of 
Sil’nikov chaos in STF flow is proved by novel technique of 
undetermined coefficient method. Sil’nikov criterion [24,26] 
gives a surety for existence of Smale horseshoes chaos in 
STF flow for the typical values of the parameters. It is 
proved that this system contains heteroclinic orbit which 
joins the two different saddle foci and satisfies all condi-
tions of the Sil’nikov theorem [24,26]. It is the criteria for 
existence of Smale horseshoes chaos. 

1  Sil’nikov Theorem 

Consider the third order autonomous system: 

   3d
, , ,

d

x
f x x R t R

t
    (1) 

where the vector field    3 3: 2 .rf x R R C r    

For the existence of chaos, we summarize the heteroclin-
ic Sil’nikov method which is known as Sil’nikov criterion. 

Theorem (The heteroclinic Sil’nikov Theorem [24,26]).  
For the third order autonomous system (1), consider that 
there are two different equilibrium points designated by x1 
and x2, which are assumed to be saddle foci having eigen-
values k , and k ki   which satisfy the Sil’nikov ine-

quality given by 

 0, 0, 0, 1,2,k k k k k k          (2) 

with the further constraint 

 

 

Figure 1  The stretch-twist-fold sequence. 

 1 1 1 10 or 0.       (3) 

Suppose a heteroclinic orbit exists, which joins x1 and x2, 
it gives 

(i) The Sil’nikov map, has a countable number of Smale 
horseshoes in its discrete dynamics, which is defined in a 
neighborhood of the heteroclinic orbit. 

(ii) For any sufficiently small C1-perturbation h of f, the 
perturbed system 

   3d
, ,

d

x
h x x R

t
    (4) 

defined near the heteroclinic orbit, has at least a finite num-
ber of Smale horseshoes in the discrete dynamics of 
Sil’nikov map. 

(iii) The perturbed system (4) and original system (1) 
both have horseshoes type of chaos. 

For convenience, a heteroclinic orbit satisfying (2) and (3) 
is referred to as Sil’nikov type. The heteroclinic Sil’nikov 
criterion implies that if system (1) has one heteroclinic orbit 
of Sil’nikov type, which connects two distinct saddle foci of 
the system, then it has Smale horseshoes chaos. 

2  The stretch-twist-fold (STF) flow model 

STF is steady incompressible flow in a unit sphere, which is 
a prototype of the stretch-twist-fold mechanism of the 
magnetic field generation [7–9] and given as 

 

 
 
 

2 2 2

8 ,

11 3 3,

2 ,

x t z xy

y t x y z xz

z t x yz xy
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 

 

    

   







  (5) 

where   3, ,x y z R  and , R    are positive real pa-

rameters which show the relationship of the ratios of inten-
sities of stretch, twist and fold ingredients of flow [6–8]. It 
can be observed that STF flow 2 2( 8 ,11 3u z xy x y    

2 3, 2 )z xz x yz xy         satisfies 0;
S

u u n    

0,  where S is the surface of the unit sphere [6–8]. When 
α=0.2, β=2, its behavior is chaotic as shown in Figure 2, 
meanwhile the chaotic time series of trajectories x(t), y(t), 
z(t) appear in Figure 3. 

3  Parameter analysis of STF flow 

Parameter analysis of STF-flow is considered only for equi-
librium points because at equilibrium points the behavior of 
the system remains constant with the passage of time. Now 
we discuss the possible choices of the parameters values.  

Case I  If α=0, β=0, system (5) has two equilibria: 
p1=(0,1,0) and p2=(0,1,0). 
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Figure 2  Phase portrait of chaotic system (5) with α=0.2, β=2. (a) In x-y-z space; (b) in x-y plane; (c) in x-z plane; (d) in y-z plane. 

 

Figure 3  Chaotic time histories of trajectory x(t) (a), y(t) (b) and z(t) (c). 

The Jacobian matrix of system (5) evaluated at p1 gives 
characteristic equation as 3 52 96 0,     that has roots: 

1 2 36, 2, 8,       so p1 is a saddle.  

The characteristic equation evaluated at p2 is 
3 52   

−96=0, which has following roots: 1 2,36, 3    2 4 ,i  

so p2 is a saddle focus. 
Case II  If α=0, β>0, system (5) has two equilibria: 

p3=(0,1,0) and p4=(0,1,0), which is the same as case I, so 
p3 is saddle and p4 is saddle focus. 

Case III  If α>0, β=0, system (5) has six equilibria for 
16α2>0: 
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4 5 4 2 5

1 16 1 16
, , .

4 5 4 2 5

p

p

p

p

  

  

  

  

  
   
 
 
  
   
 
 
  
 
 
 
  
   
 
 

 

Characteristic equation evaluated at p5 is 3 (52   
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2 2) (96 6 ) 0       that has roots: 1 2,36,   

23 25 .     If 25α2≥0, then p5 has saddle and if 
25α2<0, then p5 has saddle focus. 

Characteristic equation evaluated at p6 is 3 (52   
2 2) ( 96 6 ) 0        that has roots: 1 2,36,     

23 25 .   If 25α2≥0, then p6 is a saddle and if 
25α2<0, then p6 is a saddle focus. 

Characteristic equation evaluated at p7 is 

 3 2 317
32 3 48 0

4
          

 
 that contains roots: 

2
1 2,3

3 3
, 41 512 .

2 4
         If 41α2512≥0, then 

p7 is a saddle and if 41α2512<0, then p7 is a saddle focus. 
Characteristic equation evaluated at p8 is the same as for 

equilibrium point p7, so if 41α2512≥0, then p8 is a saddle 
and if 41α2512<0, then p8 is a saddle focus. 

Characteristic equation evaluated at p9 is 

 3 2 317
32 3 48 0

4
          

 
 that has roots: 

2
1 2,3

3 3
, 41 512.

2 4
         If 41α2512≥0, then p9 

is a saddle and if 41α2512<0, then p9 is a saddle focus. 
Characteristic equation evaluated at p10 is the same as for 

equilibrium point p9, so if 41α2512≥0, then p10 is a saddle 
and if 41α2512<0, then p10 is a saddle focus.  

Case IV  If α>0, β>0, system (5) has six equilibria for 
/ 0,  / 0J F K G  :  
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where  

2 2

2 2

2
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Characteristic equation evaluated at p11 is 3   

   2 252 96 6 6 0            that has roots: 

2
1 2,36, 3 25 .          Therefore if 225   

0,   then p11 is a saddle and if 225   0,   

then p11 is a saddle focus. 
Characteristic equation evaluated at p12 is 

   3 2 252 96 6 6 0               that has 

roots: 2
1 2,36, 3 25 .          Therefore if 25 

2 0,     then p12 is a saddle and if 
225 0,     

then p12 is a saddle focus.  
The Jacobian matrix of system (5), evaluated at p13 is 
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(6) 

Characteristic equation of 
13pJ  is  
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Observe that the term λ2 is missing in the characteristic 
polynomial (7), so we use the Cardano’s formula to solve this 
cubic equation. According to Cardano’s formula, we have 

 
2 3

.
2 3

q p        
   

  (8) 

When ∆>0, eq. (7) has a unique real root, 1 = 1 and   
one conjugate pair of complex roots, 2 = 1 = i1 and     

3 = 1 = i1, where 1 1
1 1 1 11,  ,  ,

2
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
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q q           

Obviously, 1 1 0    and 1 1 0,    if ∆>0. 

If ∆>0, then p13 is a saddle focus and if ∆<0, then p13 is a 
saddle. 

Observe that, the Jacobian matrix of system (5) evaluated 
at equilibrium point p14 gives the same characteristic equa-
tion as in eq. (7). Therefore if ∆>0, then p14 is a saddle fo-
cus and if ∆<0, then p14 is a saddle node. 

Characteristic equation of 
15pJ  is  
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Observe that the term λ2 is missing in the characteristic 
polynomial (9), so we use Cardano’s formula to solve this 
cubic equation. According to Cardano’s formula, we have 

 
2 3

1 1
1 .

2 3

q p        
   

  (10) 

When 1>0, eq. (9) has a unique real root 1 = 2, and  
one conjugate pair of complex roots 2 = 2 = i2 and 3 =    

2 = i2, where 2 2
2 2 2 21, , ,

2
i
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   


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,
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  with 1 13 3

2 1 2 1, .
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q q
          

Obviously, 2 2 0    and 2 2 0,    if 1>0.  

If 1>0, then p15 is a saddle focus and if 1<0, then p15 is 
a saddle. 

Observe that the Jacobian matrix of system (5) evaluated 
at the equilibrium point p16 gives the same characteristic 
equation as eq. (9). Therefore if 1>0, then p16 is a saddle 
focus and if 1<0, then p16 is a saddle. 

4  Series expansion of Heteroclinic orbit and its 
convergence 

From Figure 2, we see that in chaotic STF flow (5), the tra-
jectories are swirling between the two equilibria. Therefore 

we can assume that a Heteroclinic orbit which joins two 
equilibria may exist there. To prove the existence of hetero-
clinic orbit of the system (5), which links two equilibria p13 
and p14, we apply the undetermined coefficient method and 
present the exact algebraic expressions of Heteroclinic orbit. 
Without loss of generality, one may stipulate a definite di-
rection as follows: from p13 to p14 corresponds to forward 
asymptotic time t → ∞, while from p14 to p13 corre-
sponds to reverse asymptotic time t → ∞. 

In case of t>0, let  
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 (11) 

where <0 is undetermined constant,  , , 0k k ka b c k   are 

also undetermined coefficients. Substituting (11) into (5) 
gives  

 
 
 
 

2 3
1 2 3

1 13 1 13 1

2
2 13 2 13 1 1 2

3
3 13 3 13 1 1 2 2 3

  2 3 ...

8 8

  8 8 8

  8 8 8 8 ...

t t t

t

t

t

a e a e a e

b x a y c e

b x a y a b c e

b x a y a b a b c e

  







  







  

   

    

      

 

 
(12)
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1

2 3
1 2 3

1 13 1 13 1 13 1 13 1 13

2 13 2 13 2 13 2 13 2 13

2 2 2 2
1 1 1 2

3 13 3 13 3 13 3 13 3 13

2 2
2 2 2

  2 3 ...

(22 6 2 )

  (22 6 2

     11 3 )

  (22 6 2

     22 6 2

t t t

t

t

b e b e b e

a x c x b y c z a z e

a x c x b y c z a z

a b c a c e

a x c x b y c z a z

a b c

  





  

 
 



 

  

    

    

   

    

   2 3
1 2 2 1) ...ta c a c e    

 

 

(13)

 

 

2 3
1 2 3

1 13 1 13 1 13 1 13 1

2 13 2 13 2 13 2 13 1 1

2
2 1 1

3 13 3 13 3 13 3 13 1 2

3
2 1 3 1 2 2 1

  2 3 ...

( 2 2 )

  ( 2 2 2

      )

  ( 2 2 2

      2 ) .

t t t

t

t

t

c e c e c e

b x c y a y b z a e

b x c y a y b z b c

a a b e

b x c y a y b z b c

b c a a b a b e

  







  

  
 

 
 

  

  

     

     

 

     

     ..

  

(14)

 

Now, comparing the coefficients of like powers of k te  , 
for k=1, in system (12)–(14), we have  

13 13 1

13 13 13 13 13 1

13 13 13 13 1

8 8 0

22 6 2 0 .

2 2 0

y x a

x z y z x b

y z x y c

 
  

   

      
               
             

 

It can be written as 

 
13

1

1

1

0

0 ,

0
p

a

I J b

c


   
          
      

 (15) 

where 
13pJ  is the Jacobian of system (5) evaluated at the 

equilibrium point p13. 
Now for k≥2, we have  

 

 

 

13

1

1

1

1

1

1

8

11 3 .

2

k

i k i
i

k k

p k i k i i k i i k i i k i
i

k k

i k i i k i
i

a b

a

k I J b a a b b c c a c

c

b c a b

 










   




 


 
 

  
           
     

 
 






                                          (16) 

Assume that 1 1 1( , , ) (0,0,0)a b c  , otherwise, we can 

gain ( , , ) (0,0,0)k k ka b c   for all k>1. In this case, it might 

be surprising to observe that in eq. (15), 
13pJ  is the Jaco-

bian of the linearized system at the equilibrium point p13. 
Since 

13pJ  has the unique negative , so that 

13
det( ) 0.pI J    If 

13
det( ) 0,pI J    then 

13
ker( ) 0,pI J    it implies that there exist non zero val-

ues of a1, b1 and c1. Therefore if 
13

det( ) 0,pI J    then 

1 1 1( , , ) (0,0,0).a b c   Note that 
13

det( ) 0pk I J    for k>1. 

From eqs. (15) and (16),  1 ,ka k    1kb k   and 

 1kc k   can be determined by η, α, β, a1, b1 and c1.  

For t>0, the first part of the Heteroclinic orbit is estab-
lished. For remaining part, one can assume that for t<0 
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1

14
1

14
1

( ) ,

( ) ,

( ) ,

k t
k

k

k t
k

k

k t
k

k

x t x a e

y t y b e

z t z c e






















 

 

 







 (17) 

where 0   is undetermined constant, , , ( 1)k k ka b c k   

are also undetermined coefficients. 
As in case of t>0, one can obtain   . Also from the 

continuity of the solution at t=0, from eq. (11) and eq. (17), 
we have  

 

13 14
1 1

13 14
1 1

13 14
1 1

,

,

.

k k
k k

k k
k k

k k
k k

x a x a

y b y b

z c z c

 

 

 

 

 

 

  

  

  

 

 

 

  (18) 

It determines the values of a1, b1 and c1. Consequently, 

 1 ,ka k    1kb k   and  1kc k   have been com-

pletely determined by a1, b1, c1,   , α and β. Thus, if α 

and β satisfy some conditions (for example, α=0.2 and β=2), 
STF flow has following Heteroclinic orbit: 
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1

, 0,

( ) 0, 0,
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 (19) 
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 (20) 
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1
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1

, 0,

( ) 0, 0,

, 0,

k t
k

k

k t
k

k

z c e t

z t t

z c e t




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  (21) 
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which joins the equilibria p13 and p14.  
Now the convergence of the Heteroclinic orbit series ex-

pansion (11) is taken into an account. Here, we consider the 
case of STF flow with typical parameter set that generates 
chaotic behavior. STF flow is chaotic with typical parame-
ters α=0.2, β=2. In this case x13=0.538874495, y13= 
0.03903882, z13=0.849913082 and 0.236043     

is determined by eq. (15). Then ( 1)ka k  , ( 1)kb k   and 

( 1)kc k   can be observed by eqs. (15) and (16). Notice 

that ( 1)ka k  , ( 1)kb k   and ( 1)kc k   are bounded. 

There exists a M>0, such that ka M , kb M  and 

kc M , 1,2,...k   then  

1 0

1 0

1 0

, 0,

, 0,

, 0.

k t k t
k k

k k

k t k t
k k

k k

k t k t
k k

k k

a e M a e t

b e M b e t

c e M b e t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obviously 13
0

,k t
k

k

x a e 




  13
0

k t
k

k

y b e 




  and 13z   

0

k t
k

k

c e 



  are convergent on (0, ∞). In the same way, we 

can prove that 14
0

,k t
k

k

x a e 






  14
0

k t
k

k

y b e 






  and 

14
0

k t
k

k

z c e 






  are convergent on (∞, 0). 

System (5) has a Heteroclinic orbit that links p13 and p14 
with the suitable parameters α=0.2, β=2, which is in the 
form of (19)–(21), which is shown in Figure 4. The proof is 
the same for other values of parameters, if Heteroclinic orbit 
exists. 

5  Existence of conjugate STF trajectory 

From Sil’nikov theorem, we can infer a result that if STF  

 

Figure 4  Heteroclinic orbit of STF flow for α=0.2, β=2.  

system (5) has two saddle foci that fulfill the criteria (2) and 
(3) and a Heteroclinic orbit that links two equilibria, then 
STF system (5) has horseshoes chaos. First of all we discuss 
the presence of chaotic trajectory of system (5) with the 
suitable parameters. When α=0.2 and β=2 at equilibria 
p13(p14), we have the following three eigen values: 1 = 
−0.234233, 2 = 0.117116−6.4937i, 3 = 0.117116+6.4937i, 
which satisfy |−0.234233|>0.117116. Therefore STF flow (5) 
has two saddle foci p13 and p14. In the previous section, we 
proved the presence of Heteroclinic orbit that links p13 and 
p14; thus STF flow (5) has Smale horseshoes type chaos.  

Now we enhance this idea for other values of parameters 
α, β, so to prove the Sil’nikov inequalities, we need to prove 

2 3

0
2 3

q p         
   

, we calculated 
2 3

2 3

q p        
   

, 

where p and q are given in Section 3, from this we deduced 
the result that if  

 
 

2 5 4 3 2

4 3 2 2

3 2

[75 50 6768 4512 125952

  75 50 4368 2912 64

  83968] / 150 100 10086 6724 ,

     

    

  

    

    

   

 

then 
2 3

2 3

q p        
   

 is positive. For other parameters if 

they satisfy α>0, β>0 and 
2 3

0
2 3

q p         
   

, system (5) 

has two saddle foci that fulfill the Sil’nikov criteria (2) and 
(3). Note that, this condition obviously satisfies for the typ-
ical parameter set.  

6  Conclusions 

In our analysis, one Heteroclinic orbit of system (5) with 
typical parameter sets is indentified using undetermined 
coefficient method. With typical parameter values of α=0.2, 
β=2, it is shown that the STF flow has Smale horseshoes 
chaos. Parameter analysis is given for different choices of 
parameters. It is important to note, numerically it is difficult 
to identify the Heteroclinic orbit of chaotic system. Use of 
undetermined coefficient method provides a powerful tool 
for doing so. Based on Sil’nikov theorem, we proved that 
typical values of parameters which satisfy some conditions 
chaos can exist in STF flow. 

Chaotic behavior of the STF flow is investigated. Not so 
much research has been done on this system, so this work 
can be extended to explore further complex dynamical be-
havior of STF flow. Results obtained from the STF flow are 
useful to explore the magnetic field structure in plasma and 
astronomy.  
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