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Abstract

Purpose To construct a model to predict preference-

adjusted EuroQol 5D (EQ-5D) health utilities for patients

with metastatic castrate-resistant prostate cancer (mCRPC)

using the disease-specific health-related quality of life

(HRQoL) measure, functional assessment of cancer ther-

apy-prostate (FACT-P).

Methods HRQoL data were collected from patients with

mCRPC who were enrolled in an observational study

conducted in 47 centers across six European Union coun-

tries. Utility values were generated using a UK-specific

EQ-5D value set. The predictive validity of the five FACT-

P subscales, patient demographics, comorbidities and prior

chemotherapy was tested using ordinary least squares

(OLS), median, Gamma and Tobit multivariate regression

models.

Results FACT-P and EQ-5D questionnaires were com-

pleted by 602 (86 %) patients. Mean age [standard devia-

tion (SD)] was 72.1 (7.9) years, mean time from diagnosis

(SD) was 5.4 (4.4) years, and mean time since failure of

androgen deprivation therapy (SD) was 1.0 (1.6) years. At

study inclusion, 39 % of patients were chemotherapy-

naı̈ve, 37 % were undergoing chemotherapy, and 24 %

were post-chemotherapy. Mean FACT-P and EQ-5D utility

values were 104 and 0.66, respectively. OLS regression

was the best-performing model, explaining 61.2 % of the

observed EQ-5D variation. All FACT-P subscales were

significantly predictive; the physical and functional well-

being subscales had the highest explanatory value (coeffi-

cient 0.023 and 0.001, respectively, p \ 0.0001). The other

variables did not add additional explanatory value.

Conclusions The algorithm developed enables translation

of cancer-specific HRQoL measures to preference-adjusted

health status in patients with mCRPC. The function may be

useful in calculating EQ-5D scores when EQ-5D data have

not been gathered directly.

Keywords EQ-5D � FACT-P � Prostate cancer � Quality

of life � Mapping

Introduction

Prostate cancer is the most common cancer in Europe

among men [1]. In 2012, there were 417,000 new cases of

prostate cancer in Europe, representing 12.1 % of all new

cancers [1]. The economic burden associated with this high

incidence is substantial. For example, the combined cost of

direct healthcare, informal care and productivity loss

associated with prostate cancer was estimated at €7,848

million in the European Union, in 2009 [2].

Despite 80–90 % of metastatic prostate cancer patients

responding to androgen deprivation therapy [3], progression

to castration-resistant disease occurs in most patients after
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2–3 years, with a subsequent survival time of 24–48 months

[4]. The health-related quality of life (HRQoL) of patients

with prostate cancer declines substantially toward the end of

life [5]. Therefore, treatment of metastatic castration-resis-

tant prostate cancer (mCRPC) is mainly palliative, with the

aim of prolonging survival, relieving symptoms and

improving HRQoL. The European Association of Urology

guidelines recommend docetaxel as first-line chemotherapy,

together with corticosteroids, for the treatment of symp-

tomatic mCRPC [6]. Bisphosphonates are prescribed for the

management of metastatic bone disease (present in[90 % of

patients with mCRPC [7]) to prevent skeletal-related events

and improve symptom control [6]. Radionuclides, radio-

therapy and analgesics may also be considered for the

management of bone pain [6].

Cost-efficacyisimportantinthetechnicalevaluationofnew

therapies by reimbursement agencies. Generic preference

instruments, such as the EuroQol-5D (EQ-5D) [8], can aid

decision makers in resource allocation. These instruments

generatehealthstateutilitiesthatcanbeusedtocomparequality-

adjusted life years gained for interventions across different

patient groups and diseases. However, measurements of

HRQoLinclinicaltrialsoftenusedisease-specificinstruments

that address outcomes important to a particular patient popu-

lation,thuslimitingtheirusefulnessincost-utilityanalyses.One

solutionis toderivevalidatedalgorithms thatmapscores from

disease-specific HRQoL instruments onto generic preference

instruments.Thisapproachhasbeenacceptedbybodiessuchas

theUK’sNationalInstituteforHealthandCareExcellence,who

specificallyrequireEQ-5Dutilityvaluesaspartofhealth tech-

nologyassessmentsubmissions[9].

In line with such requirements, an increasing number of

strategies for mapping disease-specific responses to prefer-

ence-based instruments have been published. A database held

at the Health Economics Research Centre, Oxford University,

lists ninety studies of statistical mapping to predict EQ-5D

utilities [10]. However, only one of these focused on mCRPC.

Furthermore, 17 % of models were based on less than 200

observations and 39 % of studies used ordinary least squares

(OLS) regression as the single statistical tool.

The mCRPC study included in the database demonstrated

the feasibility of mapping the functional assessment of

cancer therapy-prostate (FACT-P) questionnaire, which

specifically measures the HRQoL of prostate cancer patients,

to EQ-5D scores [11]. However, application of the algorithm

to an external data set was found to yield mean EQ-5D values

greater than 1 [12], and the algorithm requires a correction

applicable to a truncated linear model [13].

Therefore, a requirement remains for the development

of a mapping function that adequately predicts EQ-5D

utility values based on responses to FACT-P. In this article,

we describe the construction of a prediction model using

data obtained from a large, cross-sectional, observational

study in patients with mCRPC. Furthermore, we assess the

performance of four regression models to predict EQ-5D

utility values from responses to the FACT-P questionnaire.

In addition to OLS, Tobit, median and Gamma regression

models were included to account for ceiling effects and to

anticipate any violations of normality and

homoscedasticity.

Methods

Study sample and data collection

Data were derived from a cross-sectional, observational

study conducted in six countries: Belgium, France, Ger-

many, Sweden, the Netherlands and the UK. The study

enrolled male patients aged C18 years presenting with

mCRPC at 47 specialist prostate cancer centers during a

10-month recruitment period. Consecutive patients who

visited the clinic during regular follow-up visits were

invited to participate. Patients were eligible for inclusion in

the study if they had a histologically or cytologically

confirmed diagnosis of adenocarcinoma of the prostate;

prostate cancer progression documented by prostate-spe-

cific antigen according to Prostate Cancer Working Group

2 (PCWG2) criteria or radiographic progression, and dis-

ease progression despite surgical or medical castration [a

testosterone level of\50 ng/dL (\1.735 nM) was required

if testosterone levels were routinely measured]. Exclusion

criteria included participation in any investigational drug

study or any expanded access program during the obser-

vation period. Patients’ HRQoL was assessed at the

inclusion visit by utilizing the EQ-5D and FACT-P

questionnaires.

Study instruments

FACT-P is a questionnaire that has been validated to

estimate HRQoL in men with prostate cancer [14]. The tool

comprises the 27-item FACT-General (FACT-G) ques-

tionnaire, which measures HRQoL in cancer patients, and a

12-item prostate cancer subscale, designed to measure

prostate cancer-specific HRQoL. The FACT-P is scored by

adding the subscales of the FACT-G plus the prostate

cancer subscale to yield a comprehensive HRQoL score.

The EQ-5D comprises five domains, which measure

general health status: mobility, self-care, usual activities,

pain/discomfort and anxiety/depression. In this study, the

‘3l,’ rather than the ‘5l’ version of the tool was used, which

subdivides each domain into three, rather than five levels.

The EQ-5D provides a simple descriptive profile and a

single utility index of health status and is widely used in

health economic analyses [8].

592 Qual Life Res (2015) 24:591–598

123



Model specifications—statistical analysis

Utility values were derived from EQ-5D profiles based on a

UK-specific EQ-5D value set. The mapping exercise was

conducted using responses from patients from multiple

countries, and UK preference weights were applied.

The predictive validity of the five FACT-P subscales,

patient demographics, comorbidities and prior chemother-

apy for utility values was tested using four different

regression models: (1) OLS regression was used to con-

struct linear prediction models of EQ-5D, describing dif-

ferences in mean EQ-5D as a function of mean patient

characteristics; (2) median regression was used to describe

differences in median health status; (3) generalized linear

models (GLM) with log link and Gamma family predicting

EQ-5D disutility (where disutility = 1—utility), which

allows for skewed distribution of utility values and pre-

vents prediction of utilities [1; (4) the Tobit model, also

called a censored regression model, designed to estimate

linear relationships between variables when there is either

left censoring or right censoring in the dependent variable.

Model validation and predictive ability

A prediction model usually performs better with the data that

were used in its development. Therefore, it is critical to

evaluate how well the model works with other data sets.

Similar to Wu et al. [11], we estimated the cross-validation R2

as the primary indicator of prediction model performance.

Tenfold cross-validation techniques were employed to derive

goodness of fit statistics. To calculate the cross-validation

model performance indicators, the study sample was first

divided into 10 equally sized groups. Each group was used

successively to test each model, and the remaining 90 % of the

sample were used to fit the prediction model. The resulting

estimated prediction model was then used to estimate the

performance of the original 10 % of the sample. Finally, the

estimated error terms were pooled to estimate the overall

performance of the model. Additionally, the root mean square

error and the mean absolute deviation were generated.

Predictive ability was assessed by comparing observed

and predicted EQ-5D scores for three patient subgroups that

were defined according to the chemotherapy status of

patients at study inclusion: chemotherapy-naı̈ve, undergoing

chemotherapy and previously treated with chemotherapy.

Results

Patient characteristics

The study included 699 patients. Questionnaire response

rates were high, and complete FACT-P and EQ-5D

questionnaires were available for 602 (86 %) patients. The

response rates were not related to any of the baseline

characteristics. The baseline characteristics of this popu-

lation are shown in Table 1. Patient characteristics were

generally similar across countries and between chemo-

therapy status subgroups, except for mean years since

prostate cancer diagnosis (7.0, 4.9 and 4.8 years for the

post-chemotherapy, chemotherapy-naı̈ve and undergoing

chemotherapy groups, respectively) and mean time since

mCRPC diagnosis (1.6, 0.7 and 0.9 years, correspond-

ingly), which were higher in patients who had received

chemotherapy previously. In the post-chemotherapy group,

Table 1 Patient characteristics at time of inclusion

Number of patients analyzed, n (%)

Total 602 (100)

Germany 272 (45.2)

France 94 (15.6)

Netherlands 89 (14.8)

UK 79 (13.1)

Belgium 45 (7.5)

Sweden 23 (3.8)

Mean age, years (SD) 72.1 (7.9)

Mean time since prostate cancer diagnosis, years (SD) 5.4 (4.4)

Mean time since initiation of androgen deprivation

therapy, years (SD)

4.1 (3.5)

Mean time since failure of androgen deprivation

therapy, years/diagnosis of mCRPC (SD)

1.0 (1.6)

Treatment status at inclusion, n (%)

Chemotherapy-naı̈ve 236 (39)

Undergoing chemotherapy 223 (37)

Post-chemotherapy 143 (24)

Comorbidity at inclusion, n (%)

Cardiovascular disease 266 (44.2)

Endocrine/metabolic disease 111 (18.4)

Genitourinary disease 88 (14.6)

Renal disease 42 (7)

Gastro-intestinal disease 61 (10.1)

Other 219 (36.7)

No comorbidity reported 114 (18.9)

Gleason score at initial diagnosis

B 5 29 (4.8)

6 51 (8.5)

7 150 (24.9)

8 125 (20.8)

9 129 (21.4)

10 12 (2)

Missing 106 (17.6)

mCRPC metastatic castrate-resistant prostate cancer, SD standard

deviation
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the median time since the end of chemotherapy was

3.7 months, and in those undergoing chemotherapy, the

median time since initiation of treatment was in

4.6 months.

Observed mean values for the EQ-5D utility, FACT-P

and the five dimensions of the FACT-P are presented in

Table 2. For all patients, the mean FACT-P and EQ-5D

utility scores were 104 and 0.66, respectively.

Model selection

All FACT-P subscales were included individually in the

regression model, together with binary comorbidity vari-

ables and treatment status (Table 1). Squared terms were

entered into each model to allow for nonlinear relationships

with utility measures. All variables that were significant at

the 0.05 level were retained in the final model.

The OLS model included most covariates of all models

and included all FACT-P subscales and age, with quadratic

terms for emotional well-being (EWB), functional well-

being (FWB) and age. Covariates that did not reach sta-

tistical significance were left out of the final model [social

well-being (SWB) in the median regression model; SWB,

EWB and FWB2 in the Gamma model; and FWB2 in the

Tobit model].

The cross-validation results for all prediction models are

presented in Table 3. The OLS, median and Tobit models

performed equally well and explained 61.2 % of the vari-

ation in the EQ-5D index, while the Gamma-based model

explained slightly less variation (59.8 %). OLS regression

generated a slightly lower root mean square error, while the

mean absolute deviation between observed and predicted

values was lowest for the OLS and median regression

models.

Table 4 presents the correlation values between

observed and estimated utility values for the different

models. The high correlations between estimated values for

OLS, median and Tobit regression illustrate that estimates

were very similar across the different statistical models.

Table 5 shows parameter estimates for the OLS model.

All FACT-P scales were found to be significantly predic-

tive with the physical well-being (PWB) (coeffi-

cient = 0.022, p \ 0.0001) and FWB (coefficient = 0.026,

p \ 0.0001) subscales having the highest explanatory

value. Nonlinear relationships were observed between age

Table 2 Mean (SE) FACT-P and EQ-5D values

Treatment status N PWB SWB EWB FWB PCS Total FACT-P EQ-5D utility

Chemotherapy-naı̈ve 236 21.9 (0.4) 20.7 (0.4) 16.6 (0.3) 17.6 (0.4) 30.1 (0.6) 106.9 (1.6) 0.70 (0.02)

Undergoing chemotherapy 223 20.3 (0.3) 20.9 (0.3) 17.2 (0.3) 15.9 (0.4) 30.1 (0.5) 104.5 (1.4) 0.66 (0.02)

Post-chemotherapy 143 18.8 (0.5) 20.2 (0.5) 16.0 (0.4) 15.4 (0.5) 28.3 (0.7) 98.6 (1.8) 0.60 (0.03)

All patients 602 20.6 (0.2) 20.6 (0.2) 16.7 (0.2) 16.5 (0.3) 29.7 (0.3) 104.0 (0.9) 0.66 (0.01)

EWB emotional well-being, FWB functional well-being, PWB physical well-being, SE standard error, SWB social well-being, PCS prostate

cancer subscale

Table 3 Cross-validation results by statistical model

Model R2 Mean absolute

deviation

Root mean

square error

OLS 0.612 0.148 0.198

Median regression 0.612 0.148 0.201

Gamma 0.598 0.157 0.201

Tobit 0.612 0.149 0.201

OLS ordinary least square

Table 4 Matrix of correlations between observed and estimated

utility values, by statistical model

Observed OLS Median Gamma Tobit

Observed 1.000 0.789 0.789 0.775 0.790

OLS 1.000 0.993 0.960 0.996

Median regression 1.000 0.965 0.991

Gamma 1.000 0.968

Tobit 1.000

OLS ordinary least square

Table 5 Parameter estimates for the OLS model

Estimate Standard

error

95 % confidence

level

p value

Intercept -1.7306 0.458 -2.6283 -0.833 0.0002

Age 0.0384 0.0129 0.0132 0.0636 0.0028

Age2 -0.0003 0.0001 -0.0005 -0.0001 0.002

PWB 0.0222 0.0023 0.0176 0.0267 \0.0001

SWB -0.005 0.0017 -0.0082 -0.0017 0.0026

EWB 0.027 0.0097 0.008 0.046 0.0054

EWB2 -0.0007 0.0003 -0.0013 -0.0001 0.0179

FWB 0.0263 0.0064 0.0137 0.0389 \0.0001

FWB2 -0.0005 0.0002 -0.0009 -0.0001 0.009

PCS 0.008 0.0016 0.0048 0.0111 \0.0001

EWB emotional well-being, FWB functional well-being, OLS ordinary

least squares, PWB physical well-being, SWB social well-being, PCS

prostate cancer subscale
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and both the EWB and FWB domains, and this was

accounted for by adding a squared term in the regression

model. Comorbidities and prior chemotherapy did not add

explanatory value.

Figure 1 shows the scatterplot of observed versus the

OLS-predicted values. The predicted utility value exceeded

one for a limited number of patients (n = 12, 2 %). The

highest predicted value was 1.05.

Predictive ability assessment

Figure 2 shows the mean observed and estimated utility

values as predicted by the four regression models accord-

ing to treatment status at inclusion. Figure 3 represents a

similar graph, stratified by number of years since mCRPC

diagnosis. Both graphs suggest that the OLS model pro-

vides the best fit for the observed utility values for each of

Fig. 1 Scatterplot of observed

versus OLS-predicted values

Fig. 2 Mean observed and

estimated utility values by

treatment status at inclusion
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the subgroups. As shown in Table 6, a similar fit between

observed and OLS-predicted utility was observed at the

country level.

Discussion

We have developed an algorithm to map FACT-P, a dis-

ease-specific instrument, to EQ-5D, a generic preference

instrument, based on data collected from mCRPC patients.

OLS was the best-performing model. It explained 61.2 %

of the variation in EQ-5D values following tenfold cross-

validation and provided good concordance between actual

and mapped EQ-5D utility scores in predictive assessment.

A previous study demonstrated the feasibility of map-

ping FACT-P to EQ-5D scores [11]. However, the equation

cannot be used without correction [13]. Furthermore, it has

been reported that linear regressions may not always

accurately predict the EQ-5D distribution for high and low

EQ-5D values [15, 16]. Our data tend to confirm this

observation; the mapping formula tended to overpredict

utility at the lower end of the scale (below 0.4; Fig. 1).

Additionally, linear regression may not account for the

bounded nature of the EQ-5D, leading to implausible

estimates outside of the possible range of values (1 to -

0.594). We used a range of regression models to estimate

EQ-5D utility values. Tobit regression was included in our

analyses to account for the ceiling effect, as it allows for

censored dependent variables, and censored the predicted

values at 1. However, the Tobit model operates poorly if

assumptions of normality and homoscedasticity are vio-

lated [17]. Median regression does not rely on these

assumptions. However, it has been reported that median

regression, while not explicitly dealing with censoring, is

equivalent to censored least absolute deviation (used by

other mapping studies) when censoring occurs in less than

50 % of the study sample [18]. We also used a generalized

linear model (Gamma regression) to account for any

skewed distribution of utility values and prevent prediction

of utilities [1.

Over the past decade, there has been an increase in the

number of studies that have mapped disease-specific

responses to preference-based instruments. In addition to

the Oxford database [10], a recent literature review iden-

tified ten studies that used mapping methods to determine

utilities from two cancer-specific instruments (QLQ-C30

and FACT) [19], of which only one study focused on

Fig. 3 Mean observed and

estimated utility values by years

since diagnosis

Table 6 Mean observed and estimated utility values, by country

Country Patients (n) Mapped utility value

Observed OLS predicted

Belgium 45 0.62 0.66

France 94 0.62 0.61

Germany 272 0.64 0.63

Netherlands 89 0.75 0.76

Sweden 23 0.78 0.72

UK 79 0.69 0.7

OLS ordinary least square
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mCRPC patients [11].While statistical models differed

across the ten studies, most employed an OLS method and

did not conduct an out-of-sample validation. Most studies

also used the statistical significance of the coefficients

corresponding to different components of the HRQoL scale

to determine which variables should be retained in the final

model, with a parsimonious approach to final model

selection. In doing so, most studies reported that OLS

regression performed best, irrespective of its strict

assumptions. All of the reviewed studies reported the

models’ explanatory power in terms of R2, with a range of

values between 0.417 and 0.909.

In our study, OLS regression performed equally well to

the median and Tobit models in predicting utility scores,

with an R2 (0.612) in the middle of the range reported by

the recent literature review [19]. In view of the relative

simplicity of applying OLS regression formulae to other

datasets, this was retained as our final model.

The patients included in this study provided FACT-P

and EQ-5D data in line with those previously reported. For

example, Sullivan et al. measured FACT-P and EQ-5D

scores in 280 patients with a mean time from initial diag-

nosis of prostate cancer to diagnosis of mCRPC of

3.51 years and mean time from diagnosis of mCRPC to

study entry of 1.5 years [20]. FACT-P prostate cancer

subscale scores ranged from 27.3 to 30.7 and the EQ-5D

utility ranged from 0.527 to 0.750 across the seven coun-

tries included. These compare to a mean FACT-P prostate

cancer subscale of 29.7 and mean EQ-5D utility of 0.66 in

our study. In both studies, the FACT-P scores and EQ-5D

utility index indicate the significant impact of prostate

cancer on patients’ HRQoL.

The mapping exercise in our study was similar to that

published previously by Wu et al. [11]. Both studies used

data from multinational studies and applied UK preference

weights. Mean observed values for EQ-5D and FACT-P

were very similar in both studies (EQ-5D:0.66 and 0.64;

FACT-P: 104 and 105 for the present study and Wu et al.,

respectively). In addition to the OLS and median regression

employed by Wu et al., we explored two additional sta-

tistical models. However, in both studies, OLS was

retained as the best-performing model. The estimates of the

coefficients of the FACT-P subscales based on the OLS

model were in similar directions, with a high weight

assigned to the PWB subscale in both studies. However,

the larger sample size in this present study (N = 602)

compared with Wu et al. (N = 280) may allow for the

generation of more precise parameter estimates.

The limitations of our study include the derivation of

utility values using the UK-specific EQ-5D value set.

Algorithms developed using country-specific preference

weights may account for differences in preferences arising

from cultural influences, and value sets should be appro-

priate to the economic analysis required. The extent to

which our algorithm can be generalized is strengthened by

the multinational nature of the population that was used.

However, further analysis is required to validate the algo-

rithm in other populations.

Although regression-based approaches are commonly

used to map HRQol instruments, a recent publication by

Fayers et al. (2014) suggests that such approaches may

result in biased estimates as a result of regression to the

mean [20].

Disease-specific instruments have been developed to

address aspects of health-related outcomes that are impor-

tant to specific patient populations and can overcome the

limitation of generic instruments, which may lack the

responsiveness to detect meaningful differences in HRQoL.

However, some studies have found that OLS regression

tends to overestimate the true value of EQ-5D utilities for

patients in poor health, while underestimating the true EQ-

5D utilities at the upper end of the scale [16, 21–23]. Such

considerations reinforce the use of a preference-based

measure when assessing HRQoL in clinical trials. Never-

theless, our analysis provides an algorithm that can effec-

tively translate FACT-P scores to generic utility values.

This study has developed an algorithm for mapping EQ-

5D index scores from FACT-P. The algorithm was found to

have good predictive ability, with a high degree of corre-

lation between observed and predictive EQ-5D-based

utility scores in defined subgroups of patients with

mCRPC. The algorithm provides an instrument for the

calculation of appropriate preference-based HRQoL scores

for use in analyses of interventions for mCRPC when a

generic measure is not available.
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