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Abstract This paper proposes a novel approach to com-

pensate buses voltage and current harmonics through dis-

tributed generation (DG) interfacing converter in a multi-

bus microgrid. The control approach of each individual DG

unit was designed to use only feedback variables of the

converter itself that can be measured locally. In the pro-

posed approach, the adjacent bus voltage is indirectly

derived from the measured DG converter output voltage,

DG line current and line impedance. A voltage closed-loop

controller and a current closed-loop controller are designed

to achieve both functions of DG real power generation and

harmonics compensation. Therefore, the traditional

harmonic measurement devices installed at the bus as well

as the long distance communication between the bus and

the DG converter are not required. The proposed approach

can compensate the current harmonics, mitigate the buses

voltage distortion and enable the customer devices to be

operated in normal conditions within the multi-bus

microgrid, and meanwhile relieve the burden of power

quality regulator installed at the point of common coupling.

Matlab simulations and experimental results are presented

to show the operational effectiveness of the proposed

approach.

Keywords Multi-bus microgrid, Distributed generation,

Grid-tied converter, Harmonic compensation control

1 Introduction

The microgrid as a new concept has been brought about

due to the development of renewable energy systems,

storage devices and coordinate converter control scheme. It

has been an important role in electric industry restructure

due to the increasing attentions on environmental, eco-

nomical, and social interests [1–4]. With the increasing

penetration of DG units and rapid growth of distributed

loads, the single bus microgrid to some extent cannot sat-

isfy the demand of power supply system construction. The

multi-bus microgrid consisted of several buses is a practi-

cal solution to connect the wide area distributed DG units

and loads, which can realize the objective of optimizing

network operation, minimizing the distribution network

losses and maintaining the voltage profiles [5–7]. The

proliferation of nonlinear loads in power systems has been

increasing in an unprecedented pace in recent years due to

the advance of power electronics technologies. As a result,
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the power quality issue, induced by the nonlinear loads, has

become a crucial factor that may affect the normal opera-

tion of both customer devices and power systems [8, 9]. As

a conventional approach, ancillary devices, such as passive

filters and active power filters (APF), can be installed in the

grid to overcome the distribution network harmonic prob-

lems. These ancillary devices, however, are undesirable

because of their high installation costs.

In the multi-bus microgrid, the DG interfacing con-

verters can be considered as active cells for control and

management purposes [10, 11]. Although the DG inter-

facing converters may introduce harmonics into the power

network, and cause power quality issues, they are also able

to improve system efficiency and power quality if designed

and controlled properly. Thus, DG units have the ability to

enhance the power quality as well as the reliability of

microgrids. Using DG units as harmonics compensators

can reduce the need for adding extra devices in multi-bus

microgrids. This leads to the result that a significant growth

of DG penetration in multi-bus microgrids will require new

control scheme in order to exploit the power quality

improvement capability of DG units. Therefore, a merging

concept is to use these power electronic interfaced DG

systems to simultaneously realize real power generation

and harmonic compensation functions.

A shunt resistive active power filter (R-APF) control

scheme based on voltage detection for the purpose of

harmonic compensation has been proposed in [12, 13]. The

APF was controlled as a small virtual resistance at selected

harmonic frequencies, and therefore it is possible to damp

out harmonic propagation. But this control scheme is

affected by the location of APF, the detection point and the

network characteristics. Therefore, the value of the virtual

resistance should be chosen carefully, otherwise, other

buses’ voltage distortion may be deteriorated. Further, a

cooperative control of two APFs with communication was

proposed in [14] to damp out harmonic propagation within

the power distribution system, where a central controller

regulates the virtual resistance value according to the

voltage distortions at each APF installation position.

However, the mutual communication increases the invest-

ment cost and reduces the operational reliability. In [15],

the compensation approach for PCC harmonics is derived

by setting the DG unit to work as an R-APF. The DG

system works as a small resistance at selected harmonic

frequencies. Therefore, the harmonic currents of nonlinear

loads installed at the PCC can be absorbed by DG system,

resulting in an improved PCC voltage and line current

quality with low total harmonic distortion (THD). Never-

theless, the prerequisite of implementing this control

function is that additional measurement devices, e.g. volt-

age and current transducers and communication channels,

are required to provide the PCC distortion information

since the DG units normally locate far away from PCC.

Similarly, the virtual resistance should be chosen carefully

to attenuate the harmonic distortion. In [16], a harmonic

impedance synthesis technique was presented for voltage-

controlled distributed generation inverters in order to damp

harmonic voltage distortion in a distribution network.

Negative harmonic inductances and positive harmonic

resistances are synthesized at the dominant harmonic fre-

quencies. Thus, the harmonic voltage drop on the grid-side

inductance can be effectively attenuated. Nevertheless, the

synthesized harmonic impedance should be designed

carefully, which will affect the harmonic damping perfor-

mance and the operational stability. Also in [17], a selec-

tive virtual impedance loop is considered to improve the

sharing accuracy of load harmonic currents among the DG

units, which however needs low-bandwidth data commu-

nication signals among individual distributed generation

systems. Unfortunately, the communication among DG

units will increase the system complexity and reduce the

operational reliability in a multi-bus microgrid.

In order to improve the power quality regulation capa-

bility and operational reliability of wide area distributed

multi-bus microgrids, this paper proposes a novel approach

to compensate bus voltage and current harmonics, which

only requires the local information of DG units, i.e., the

converter output voltage and current. The proposed con-

troller has a cascaded structure, whose outer loop voltage

controller regulates the distorted bus voltage without using

the directly measured bus information and the accompa-

nied long distance communication. An inner loop harmonic

current compensator regulates the current harmonics. This

control scheme enables the DG unit to absorb the harmonic

currents introduced by the nonlinear loads, so that the

current quality injected into the main bus is improved, and

the sub-bus voltage distortion can be mitigated. Therefore,

the burden of the power quality regulator installed at per

level bus is relieved. The detailed illustration of the pro-

posed control scheme will be elaborated in the following

Sections. Matlab simulations and experimental prototype

have verified the performance of the proposed power

quality control approach in a multi-bus microgrid.

2 General illustration of power quality in a multi-
bus microgrid

The single-line diagram of a general multi-bus micro-

grid is shown in Fig. 1 as an example for illustration. The

multi-bus microgrid comprises one 10 kV bus, two 380 V

buses and three feeders. Two 380 V buses are connected to

the 10 kV bus through step-up transformers. Three com-

binations of linear and nonlinear loads are supplied by the

multi-bus microgrid. Two DG units are equipped with a
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grid-interfacing converter and a hybrid energy resource

which contains energy sources and energy storage system.

Each DG unit is able to supply any amount of real power

within the pre-specified limits. ZLinen (n = 1,2,…, i) repre-

sents the line impedance which cannot be neglected in the

multi-bus microgrid. As shown in Fig. 1, a static switch is

inserted between the utility grid and the multi-bus micro-

grid to connect/disconnect the multi-bus microgrid during

the online/offline operation. With the increasing applica-

tions of nonlinear loads, the power quality of the multi-bus

microgrid would be significantly deteriorated due to the

harmonics propagation. A unified power quality condi-

tioner (UPQC) can be installed at the main bus to com-

pensate harmonics.

However, the complex structure of the multi-bus

microgrid increases the difficulty of harmonics compen-

sation. For example, the UPQC installed at Bus 1 as shown

in Fig. 1 can improve the current and voltage quality of

Bus 1, however, it cannot restraint the harmonic propaga-

tion within the multi-bus microgrid and guarantee the

power quality of sub-buses (e.g. Bus 2 and Bus 3), which

directly supply the distributed loads. With the harmonic

current flowing in the multi-bus microgrid, the voltage of

sub buses will be distorted due to the voltage drop on the

line impedance. The distorted bus voltage will seriously

affect the normal operation of distributed loads.

In order to illustrate the harmonic propagation within the

microgrid, a two-bus network interconnected through an

isolation transformer is shown in Fig. 2 as a simple

example. The DG unit and distributed loads are connected

to the sub-bus, and a diode rectifier with an RC load is

considered as the nonlinear load to produce harmonic

currents.

For the conventional control method, the DG unit is

controlled to generate real power and its output current iDG

injected to the sub-bus is sinusoidal, as shown in Fig. 2a.

Hence, the harmonic currents introduced by the nonlinear

load mainly flow to the main bus due to the lower impe-

dance of the utility grid. The harmonic propagation within

the multi-bus network will unavoidably generate the volt-

age harmonics as expressed below:

_VLine ¼ ZLine h � _Ih ð1Þ

Static transfer switch

Utility grid

Multi-bus microgrid

DG Unit1

Distributed 
loads 2

Bus 2

F1 F2

380 V/10 kV

ZLine1 ZLine5

ZG

Distributed 
loads 1

Bus 1

DG Unit2

Distributed 
loads 3

Bus 3

F3

Distributed 
source

Energy
strorage

DG unit 1

DG Unit1

Distributed 
source

Energy
strorage

DG unit 2

10 kV/380 V

ZLine2

ZLine3 ZLine4

ZLine6

ZLine7

ZLine8

ZLine9 ZLine10

UPQC

380 V/10 kV380 V/10 kV

Fig. 1 General illustration of a multi-bus microgrid with power electronics interfaced DG systems
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where _VLine is the harmonic voltage matrix; _Ih is the har-

monic current matrix and ZLine_h is the corresponding order

harmonic impedance matrix, respectively. The harmonic

voltage will lead to the sub-bus voltage distortion within

the multi-bus microgrid.

When the main bus is connected to many sub-buses with

distributed nonlinear loads, as shown in Fig. 1, the current

flowing to the utility grid is the sum of currents flowing

from the sub-buses to the main bus, which can be expressed

as:

iG ¼
Xm

k¼1

ik ð2Þ

where ik is the current flowing from kth sub-bus to the main

bus and m is the total number of sub-buses.

Due to the nonlinear loads, the currents flowing to the

main bus contain harmonics, and (2) can be rewritten as:

iG ¼
Xn

h¼1

iGh ¼
Xm

k¼1

Xn

h¼1

ikh ð3Þ

where ikh is the hth order component of the current flowing

from kth sub-bus to the main bus.

The total harmonic distortion of the current injected to

the utility grid from the multi-bus microgrid can be

expressed as:

THDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

h¼2

IGh2

s

IG1

� 100% ð4Þ

where IG1 and IGh are the rms values of the fundamental

and hth harmonic components of the current injected to the

utility grid, respectively.

When the multi-bus microgrid contains many nonlinear

loads, the harmonics propagation will lead to serious power

quality problems within the multi-bus microgrid. Mean-

while, the harmonic currents flowing to the utility grid will

aggravate the THD of the grid current. In other words, the

main bus handles all burdens of the harmonic currents

introduced by the distributed nonlinear loads. This will

increase the burden of the UPQC installed at the main bus.

In contrast, the current iDG can be controlled to contain

harmonics according to the distortion information of the bus

voltage, and the DG unit can absorb the harmonic currents

introduced by the nonlinear load as shown in Fig. 2b.

Therefore, this can help compensate the harmonic currents

flowing from the sub-bus to the main bus by dispatching the

harmonic currents introduced by the nonlinear load. With the

decreasing distortion of the current flowing to the main bus,

the voltage quality of sub buses will be improved, and the

burden of the harmonic compensation devices installed at the

main bus can be relieved. This will benefit the customer

devices, the multi-bus microgrid and the utility grid simul-

taneously. However, a reliable approach to acquire the

information of voltage and current harmonics at any level

buses is not straightforward. The communication between

the bus and the DG will reduce the operational reliability of

the whole system and increase investment to guarantee the

bandwidth of communication channels. Especially, relying

on communication is not practical when the communication

distance is long. This paper thus proposes a new method to

indirectly acquire the distortion information of the bus

voltage without communication, and the DG units could

accurately compensate current harmonics. The details will

be presented in the next Section.

3 Proposed control principle

In order to illustrate the control principle, a two-bus

network is derived from Fig. 1. In specific, the configura-

tion of two buses network and its control block diagram are

Sub bus

DG unit

Feeder
ZLine

ZLine

CN RN

Nonlinear load

10 kV/380 V

ZLine

Main  bus

iDG

vMain-bus

vSub-bus

iHarmonic

DG unit

Sub bus

Feeder
ZLine

ZLine

Nonlinear load

10 kV/380 V

ZLine

Main  bus

iDG

vMain-bus

vSub-bus

RN
CN

iHarmonic

(a) The conventional control method

(b) The proposed control method

Fig. 2 Comparison of harmonic currents flow
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shown in Fig. 3. It can be seen that Bus 2 is connected to

Bus 1 through a step-up transformer. The DG unit 1 and the

distributed loads 2 composed of linear and nonlinear loads

are connected to Bus 2. The nonlinear load represented by

a rectifier circuit with an RC load could introduce current

harmonics. The DG unit 1 connects to Bus 2 through a

distribution line represented by ZLine3. When properly

controlled, the DG unit can compensate the harmonic

currents, and in consequence, improve the voltage quality

of Bus 2, as shown in Fig. 2b. The main control blocks

include bus voltage calculation, phase locked loop (PLL)

and cascaded voltage and current controller, which will be

next illustrated in detail.

3.1 Bus voltage calculation

It should be noted that the proposed control scheme is to

deal with power quality issues in a multi-bus microgrid,

where the DG converter is installed far away from the ac

bus. To well illustrate this scenario, a single line repre-

sentation is drawn in Fig. 4, where ZLine3 represents the

impedance between DG unit 1 and its adjacent Bus 2,

whose value can be easily obtained by calculating the

known cable or line parameters. In practice, the DG units

and distributed loads will at times locate far apart, and then

the line impedance cannot be neglected. As a result, the

harmonic propagation in the multi-bus microgrid will lead

to the Bus 2 voltage distortion, which is definitely

unwanted for both loads supplied by Bus 2 and the multi-

bus microgrid. Compared with the traditional control

scheme that directly measures the Bus 2 voltage and

delivers the distortion information to the DG units via a

communication system, the proposed approach indirectly

obtain the Bus 2 voltage by only measuring the DG unit 1

line current injected into the ac bus and the converter

output voltage. The Bus 2 voltage depicted in Fig. 4 can

then be calculated as:

_VBus2 1

_VBus2 5

_VBus2 7

..

.

_VBus2 n

2
66666664

3
77777775

¼

_VDG1 1

_VDG1 5

_VDG1 7

..

.

_VDG1 n

2
66666664

3
77777775

�

ZLine3 1 0 0 � � � 0

0 ZLine3 5 0 � � � 0

0 0 ZLine3 7 � � � 0

..

. ..
. ..

. ..
.

0 0 0 � � � ZLine3 n

2

66666664

3

77777775

�

_IDG1 1

_IDG1 5

_IDG1 7

..

.

_IDG1 n

2
66666664

3
77777775

ð5Þ

where _VBus2 is the Bus 2 voltage vector; _VDG1 is the con-

verter output voltage vector; ZLine3 is the line impedance

Bus 2 voltage 
calculator

dq

abc

PLL

PWM

vBus2_d 

θ

θ
θ

vOUT1 

iDG1

vBus2

θ

DG unit 1
LF1

CF1

ZLine3 ZLine2 

Nonlinear load 

CN RN

Rd1

vBus2_f

abc

dq

iDG1 

To Bus 1

Bus 2

Linear load 

RL2

Distributed loads 2

380 V/10 kV

vBus2_q 

LN

ZLine4

dq

abc

iDG1_f 

0

iq

id 

id*

iq*

id_h Guh(s)

Guh(s)

Gi(s)

Gi(s)

PLL

Fig. 3 Overall illustration of the circuit configuration and control diagram
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vector; _IDG1 is the output current vector of DG unit 1; n is

the highest harmonic order, respectively.

The information of line impedance between the DG and

the Bus can be obtained through the following methods.

The first one is that the line information can be obtained

from the power network design and construction parame-

ters. The line impedance value is generally designed in

accordance with the requirement of microgrid stability and

the requirement of power sharing. The parameters of the

line impedance can be relatively accurate. Other methods

discussed in literature [18–20], inject a perturbation into

the grid and then measure the PCC voltage and current to

analyze and calculate line impedance at each frequency,

these methods can accurately and rapidly measure the line

impedance at each frequency, and it is suitable for the

applications which need to measure harmonic impedance

rapidly. For instance, the real resistance and inductance of

feeder in [20] are 1 X and 6.1 mH, meanwhile, the mea-

sured values are 1.05 X and 6.01 mH. The measurement

error is below 5%. It can be seen that the estimated values

are very close to the real values of the feeder impedance.

Further discussion on detailed line impedance estimation

schemes is out of the scope of this paper.

It is noted that both voltage and current are the sum of

weighted fundamental and harmonic components. Hence,

the Bus 2 voltage can be rewritten as (6).

vBus2 ¼
Xn

h¼1

vBus2 h ð6Þ

where h = 1,2,…,n, represents the harmonic order. The

Bus 2 voltage calculated by (6) will be next used for PLL

calculation as shown in Fig. 5.

3.2 Phase locked loop

In the proposed approach, the voltage and current con-

troller are designed in the rotating dq reference frame. The

estimation of ac voltage parameters, such as voltage

amplitude and phase angle, will act as a crucial role in the

overall performance of the synchronization algorithm.

With a low pass filter used to eliminate the harmonics, a

synchronous reference frame phase locked loop (SRF-PLL)

[21–23] as shown in Fig. 5 is used in the proposed control

strategy. In spite of the good behavior of the SRF-PLL

under sinusoidal conditions, its performance is deteriorated

when the three phase input signal becomes distorted. When

the three-phase instantaneous voltage waveforms are

transformed from the abc reference frame into the rotating

dq reference frame by means of the Park transformation

[24, 25], the fundamental and (6n±1)th harmonics in the

abc reference frame are represented by DC component and

6nth harmonics in the rotating dq reference frame. In the

rotating dq reference frame, two low pass filters (LPFs)

with high cutoff frequency, e.g. 150 Hz, implemented in

the control scheme can easily eliminate the 6th and higher

order harmonics to obtain the DC components of vd and vq.
The LPFs have few affects to the DC components of the vd
and vq. Therefore, the SRF-PLL with LPFs in the rotating

dq reference frame can provide a good performance of the

phase angle and magnitude estimation under distorted

condition. In the rotating dq reference frame, the DC

component of the vd represents the amplitude of the fun-

damental component of Bus 2 voltage, which is subse-

quently set as the voltage reference in the next

subsection. A feedback control loop is used to control the

angular position by forcing the vq component to be zero. As

depicted in Fig. 5, the estimated grid frequency is x. As a

feed forward signal, the nominal angular frequency is

conventionally adopted to improve the dynamics of the

phase estimation h derived by integrating x.

3.3 Control scheme based on bus voltage calculation

After obtaining the phase angle of Bus 2 voltage from

the SRF-PLL, the three-phase instantaneous Bus 2 voltage

calculated in the above subsection can be transformed from

the abc reference frame into the rotating dq reference frame

by means of the Park transformation. The d- and q-axis

components of Bus 2 voltage should be incorporated into a

voltage control loop to achieve proper harmonic voltage

tracking performance as depicted in Fig. 3. In order to

provide voltage harmonic compensation, the d-axis voltage

component should be subtracted from the amplitude of

fundamental voltage derived from the SRF-PLL and the q-

Bus 2

vBus2vDG1

iDG1 ZLine3
LF1

CF1

DG unit1

Rd1

iBus2 ZLine2 ZLine1

Bus 1

Fig. 4 Single-line illustration of the DG system in the multi-bus

microgrid

abc

dq PI ∫

ω*

ω
vBus2

θ

θLPF

LPF vBus2_fvd 

vq 

Fig. 5 Block diagram of the SRF-PLL
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axis voltage reference should be set to zero simply, as

illustrated in (7).

vBus2 h d ¼ vBus2 d � vBus2 f

vBus2 h q ¼ vBus2 q � 0

(
ð7Þ

where vBus2_h_d and vBus2_h_q are the d- and q-axis har-

monic components of the Bus 2 voltage; vBus2_d and vBus2_q
are the measured d- and q-axis components of the Bus 2

voltage and vBus2_f is the amplitude of the fundamental

component of Bus 2 voltage, respectively.

The voltage control loop uses a proportional controller

plus multiple paralleled resonant controllers to achieve

proper harmonic voltage tracking performance as expres-

sed in (8).

GuhðsÞ ¼ Kup þ
Xk

n¼1

Kuhs

s2 þ ð6nx0Þ2
ð8Þ

where Kup is the proportional gain; k is the highest har-

monics order selected for compensation; Kuh is the resonant

gain and x0 is the nominal angular frequency, respectively.

It should be noted that the resonant controller in the syn-

chronous reference frame is more effective than that in the

stationary frame, since it represents two equivalent reso-

nant terms in the stationary frame for compensating two

adjacent odd harmonics [26–28].

Similarly, the three-phase instantaneous DG line current

injected to Bus 2 can also be transformed from the abc

reference frame into the rotating dq reference frame. The

current reference can be obtained by combining the har-

monic current reference and the fundamental current ref-

erence as illustrated in (9).

iDG1 ref ¼ iDG1 f þ ih ð9Þ

where iDG1_ref is the current reference; iDG1_f is the

fundamental current command and ih is the current

harmonics reference to compensate. From (7), (8) and

(9), the current reference iDG1_ref can be derived as:

iDG1 ref ðsÞ ¼ iDG1 f ðsÞ þ GuhðsÞvBus2 hðsÞ ð10Þ

For the inner current control loop, a proportional

integral (PI) controller plus multiple paralleled resonant

controllers as shown in Fig. 3 are used in the synchronous

dq frame in order to force the DG line current to track the

reference [29, 30], as expressed in (11).

GiðsÞ ¼ Kpi 1þ 1

Tis

� �
þ
Xk

n¼1

Kihs

s2 þ ð6nx0Þ2
ð11Þ

where Kpi is the proportional gain; Ti is the integral time

constant; Kih is the resonant gain and x0 is the nominal

angular frequency, respectively.

4 Analysis of harmonic compensation capability
in a multi-bus microgrid

In order to briefly illustrate the compensation capabil-

ity of the proposed control method in a multi-bus

microgrid, a comparison for three different scenarios is

presented below. In detail, for the first scenario, the multi-

bus microgrid only has one UPQC installed at the main

bus to compensate harmonics. For the second scenario,

additional APFs are installed at all sub-bus to compensate

the current harmonics raised by the local nonlinear loads.

For the third scenario, the distributed converters could

perform as the active power filters to compensate the

current harmonics by using the proposed method in this

paper, while eliminating the APF installed at each sub-

bus.

For clear illustration, this section assumes that there are

only 5th and 7th harmonic currents in the multi-bus

microgrid as shown in Fig. 1, where, the 5th harmonic

currents introduced by the distributed loads 1 to 3 are 0.02,

0.02 and 0.01 in per unit, and the 7th harmonic currents

introduced by the distributed loads 1 to 3 are 0.01, 0.01 and

0.005 in per unit, respectively.

In the first scenario, the DGs are controlled to inject real

power, and only the UPQC installed at the main bus can

compensate the harmonics introduced by all nonlinear

loads. The maximum rms value of APF part compensation

current can be calculated as:

IAPF max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

h¼2

IAPF h maxð Þ2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

h¼2

Xm

k¼1

Ikh

 !2
vuut

¼ 0:0557ðp:u:Þ
ð12Þ

where Ikh is the rms value of hth harmonic current intro-

duced by the kth distributed load; m is the total number of

distributed loads and n is the highest harmonics order,

respectively. In this scenario, the APF part of UPQC can

guarantee the quality of current injected into the utility grid

and the main bus voltage. However, it cannot attenuate the

harmonic propagation within the multi-bus microgrid and

guarantee the power quality of sub-buses.

In order to improve the power quality within the multi-

bus microgrid, the second scenario can be assumed, where

the additional APF0 and APF00 are installed at Bus 2 and

Bus 3, respectively. In this scenario, APF0 and APF00

compensate the harmonics introduced by the distributed

loads connected to Bus 2 and Bus 3, respectively. The

maximum rms value of APF0 and APF00 compensation

current can respectively be calculated as:
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IAPF0 max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

h¼2

IAPF0 h

� �2

s
¼ 0:0224ðp.u.Þ

IAPF00 max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

h¼2

IAPF00 h

� �2

s
¼ 0:0112ðp.u.Þ

8
>>>><

>>>>:

ð13Þ

Because of the compensation capability of APF0 and APF00,
the APF part of the UPQC at the main bus only needs to

compensate the current harmonics introduced by the

distributed load 1, and the maximum rms value of APF

part compensation current reduces to 0.0224 p.u..

Compared to the first scenario, the power quality within

the multi-bus microgrid can be significantly improved and

the burden of the APF part is relieved. However, this

scenario needs additional APF installed at each sub-bus,

which would definitely increase the installation

investment.

In the last scenario, the DGs are controlled to realize real

power generation and harmonic compensation functions.

Being different from the above two scenarios, DG 1 and

DG 2 are controlled to absorb the current harmonics

introduced by the distributed loads. Therefore, they can

perform like APF0 and APF00 to compensate the current

harmonics at Bus 2 and Bus 3. The maximum rms value of

APF part compensation current is the same as the second

scenario. Therefore, the last scenario can guarantee the

power quality within the multi-bus as well but reduce the

investment for additional power quality devices. The

comparison among these three scenarios is summarized in

Table 1.

When the grid voltage is distorted, a UPQC installed at

the main bus can help guarantee the microgrid power

quality. The dynamic voltage restorer (DVR) part is used to

compensate the harmonic voltages of the main bus voltage.

Meanwhile, the APF part is used to compensate the har-

monic currents injected to the grid. Doing so, the proposed

control scheme can provide a good performance under the

distorted gird voltage condition.

In microgrid, the line impedance can be classified into

three categories: resistive impedance, inductive impedance

and capacitive impedance, respectively. In the proposed

control scheme, the calculation accuracy of bus voltage and

the harmonic compensation performance are not affected

by the impedance type. However, the large error between

the real line impedance value and estimated value will

affect the accuracy of the harmonic voltage calculation,

and the complete compensation cannot be achieved. But

when considering the closed control loop can achieve

proper fundamental and harmonic current tracking perfor-

mance and the estimated values are very close to the real

values of the feeder impedance [18–20], the proposed

harmonic compensation scheme can still significantly

improve the power quality of the microgrid.

5 Simulation and experimental verifications

To verify the performance of the proposed power quality

control approach in a multi-bus microgrid, Matlab simu-

lations were first conducted according to the configuration

of multi-bus microgrid shown in Fig. 1. The detailed cir-

cuit and control parameters of the simulated multi-bus

microgrid are listed in Table A1 of Appendix A.

In simulation, the fundamental current commands of DG

unit 1 and DG unit 2 are 30 A and 50 A, respectively.

When the DG units are first controlled to inject real power

and do not carry out the function of harmonics compen-

sation, the simulation results are shown in Fig. 6. From

Fig. 6c and f, it can be seen that the currents injected to the

multi-bus microgrid from the DG units are sinusoidal. The

current harmonics introduced by the nonlinear loads now

flow to the main bus. Therefore, the Bus 2 and Bus 3

voltages as shown in Fig. 6a, d and the currents injected

into the Bus 1 from sub-buses as shown in Fig. 6b, e are all

distorted, where the THD of vBus2 and vBus3 are 2.45% and

2.95%, the THD of iBus2 and iBus3 are 23.88% and 14.64%,

respectively. In order to guarantee the power quality of the

main bus, the compensated current of the APF part

installed at Bus 1 is large, as shown in Fig. 6g. However,

this UPQC cannot improve the power quality of sub-buses

as analyzed in Section 4. Figure 7 shows the simulated

results with the proposed harmonic compensation strategy.

In this case, the current harmonics introduced by the

nonlinear loads are compensated by the controlled DG

units, leading to improved power quality of Bus 2 and Bus

3 currents injected to the Bus 1, as shown in Fig. 7b and e

respectively. Meanwhile, the voltage distortions of Bus 2

and Bus 3 are mitigated as shown in Fig. 7a and d,

Table 1 Comparison of compensation capability of three scenarios

Scenario APF capacity Compensation performance

APF part of UPQC (p.u.) APF0 (p.u.) APF00 (p.u.) Bus 1 Bus 2 Bus 3

1 0.0559 No No Well compensated N.A. N.A

2 0.0224 0.0224 0.0112 Well compensated Well compensated Well compensated

3 0.0224 No No Well compensated Well compensated Well compensated
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respectively. The THDs of Bus 2 and Bus 3 voltages are

now reduced to 0.94% and 1.25%, and the THDs of Bus 2

and Bus 3 currents are reduced to 1.62% and 1.24%,

respectively. The currents spectrum of APF part operated

under both conditions are shown in Fig. 8. It can be seen

that the currents compensated by the APF part of UPQC

installed at Bus 1 are reduced significantly as analyzed
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when the DG units carry out the function of harmonics

compensation. Therefore, the power quality within the

multi-bus microgrid can be significantly improved, while

the burden of the APF part at the main bus is relieved

without using any communication between DG units and

buses. It is noted that the UPQC installed the main bus can

compensate the harmonics introduced by the distorted grid

voltage, and maintain the main bus voltage quality. The

harmonic compensation performance under distorted volt-

age condition is almost the same as the simulation results

shown in Fig. 7. Therefore, the simulation results under

distorted grid voltage condition are not shown here.

Another simulation was conducted to verify the perfor-

mance of the proposed power quality control approach under

the inaccurate line impedance condition, In the simulation,

the error of the line impedance was selected higher than the

usual error of the estimated and the real impedance value,

where the impedance value used in the Bus 2 voltage cal-

culation is 10% higher than its real value, and the impedance

value used in the Bus 3 voltage calculation is 10% lower than

its real value. The simulation results are shown in Fig. 9. In

this case, the THDs of Bus 2 and Bus 3 voltages are 1.02%

and 1.36%, and the THDs of Bus 2 and Bus 3 currents are

2.86% and 1.76%, respectively. Figure 10 shows the cur-

rents spectrum of APF part operated with the accurate and

inaccurate line impedance value. It can be seen that the

harmonics compensation shown in Fig. 9 is deteriorated a

little compared to the accurate line impedance condition

shown in Fig. 7. But the harmonic compensation can still

improve the power quality of the microgrid.

To validate the performance of the proposed compen-

sation scheme in experiments, a hardware prototype was

implemented in the laboratory based on the circuit con-

figuration shown in Fig. 3 and the parameters listed in

Table A2 of Appendix A. For the experimental system, a

programmable DC source was used to represent the DG

and connected to the microgrid through a three-phase

converter. The developed control algorithm was executed

on a dSPACE1103 real-time platform.

The steady-state experimental results without harmonic

compensation are shown in Fig. 11, where the DG is

controlled to only inject real current, which is commanded
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to 4.2 A. It can be seen that the bus voltage and bus current

injected into the main bus are severely distorted because of

the large current harmonics induced by the nonlinear load

and the non-negligible line impedance. As a result, the

THD of vBus2 and iBus2 are found to be 5.26% and 28.76%,

respectively. In contrast, when the harmonic compensation

function is implemented, the DG will simultaneously inject

real power to the microgrid and absorb most of the har-

monics introduced by the nonlinear load. The corre-

sponding experimental results are shown in Fig. 12. It can

be seen that the power quality of both bus voltage and bus

current are improved significantly, and the THD of vBus2
and iBus2 are now reduced to 2.41% and 4.63%, respec-

tively. Figure 13 shows the spectrum analysis of Bus 2

voltage and Bus 2 current operated under both conditions.

6 Conclusion

This paper has proposed a novel control approach of DG

interfacing converter for harmonic compensation in a

multi-bus microgrid. The proposed control approach can

simultaneously enable the DG units to deliver real power

into the multi-bus microgrid and compensate the harmonics

appeared in the bus voltages and currents introduced by

nonlinear loads within the multi-bus microgrid without

communication. It only requires local information of the

DG unit, such as the converter output voltage and current

and the line impedance, to derive the distortion information

of its adjacent bus. As a consequence, the traditional

measurement devices installed at the bus as well as the long

distance communication between the bus and the converter

can be eliminated. An outer voltage control loop and an

inner current control loop are designed to guarantee the DG
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real power generation and harmonics compensation func-

tions. The proposed approach is suitable for a multi-bus

microgrid since the DG units can compensate the current

harmonics, mitigate the buses voltage distortion, and

ensure the customer devices in normal operations within

the multi-bus microgrid, while significantly relieve the

burden of the power quality regulators installed at the PCC.

Matlab simulations and experimental verifications are

presented to show the performance of the proposed control

approach.
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