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Abstract Using transversality and a dimension reduction argument, a result ofBezdek
and Kuperberg is applied to polycylinders, showing that the optimal packing density
of D2 × R

n equals π/
√
12 for all natural numbers n.
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1 Introduction

Open and closed Euclidean unit n-balls will be denoted by B
n and D

n respectively.
The closed unit interval is denoted by I. A general polycylinder C is a set congruent to∏i=m

i=1 λiD
ki inRk1+···+km , where λi is in [0,∞]. For this article, the term polycylinder

refers to the special case of an infinite polycylinder over a two-dimensional disk of
unit radius. A polycylinder is a set congruent to D

2 × R
n in R

n+2. A polycylinder
packing of Rn+2 is a family C = {Ci }i∈I of polycylinders Ci ⊂ R

n+2 with mutually
disjoint interiors. The upper density δ+(C ) of a packing C of Rn is defined to be

δ+(C ) = lim sup
r→∞

Vol(C∩rBn)
Vol(rBn)

.

The upper packing density δ+(C) of an object C is the supremum of δ+(C ) over all
packings C of Rn by C .
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This article proves the following sharp bound for the packing density of infinite
polycylinders:

Theorem 1 δ+(D2 × R
n) = π/

√
12 for all natural numbers n.

Theorem 1 generalizes a result of Bezdek and Kuperberg [1] and improves on results
that may be computed using a method of Fejes Tóth and Kuperberg [3], cf. [2,5]; it
gives some of the first sharp upper bounds for packing density in high dimensions.

2 Transversality

This section introduces the required transversality arguments from affine geom-
etry. A d-flat is a d-dimensional affine subspace of R

n . The parallel dimension
dim‖{F, . . . ,G} of a collection of flats {F, . . . ,G} is the dimension of their max-
imal parallel sub-flats. The notion of parallel dimension can be interpreted in several
ways, allowing a modest abuse of notation.

– For a collection of flats {F, . . . ,G}, consider their tangent cones at infinity
{F∞, . . . ,G∞}. The parallel dimension of {F, . . . ,G} is the dimension of the
intersection of these tangent cones. This may be viewed as the limit of a rescaling
process Rn → rRn as r tends to 0, leaving only the scale-invariant information.

– For a collection of flats {F, . . . ,G}, consider each flat as a system of linear equa-
tions. The corresponding homogeneous equations determine a collection of linear
subspaces {F∞, . . . ,G∞}. The parallel dimension is the dimension of their inter-
section F∞ ∩ · · · ∩ G∞.

Two disjoint d-flats are parallel if their parallel dimension is d, that is, if every line in
one is parallel to a line in the other.

Lemma 1 A pair of disjoint n-flats inRn+k with n ≥ k, has parallel dimension strictly
greater than n − k.

Proof Let F and G be such a pair. By homogeneity of Rn+k , let F = F∞. As F∞
and G are disjoint, G contains a non-trivial vector v such that G = G∞ + v and v is
not in F∞ + G∞. It follows that

dim(Rn+k) ≥ dim
(
F∞ + G∞ + span(v)

)
> dim(F∞ + G∞)

= dim(F∞) + dim(G∞) − dim(F∞ ∩ G∞).

Count dimensions to find n + k > n + n − dim‖(F∞,G∞). 
�
Corollary 1 A pair of disjoint n-flats in R

n+2 has parallel dimension at least n − 1.

3 Dimension Reduction

3.1 Pairwise Foliations

The core ai of a polycylinder Ci congruent to D
2 × R

n in R
n+2 is the distinguished

n-flat defining Ci as the set of points at most distance 1 from ai . In a packing C of
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R
n+2 by polycylinders, Corollary 1 shows that, for every pair of polycylinders Ci and

C j , one can choose parallel (n − 1)-dimensional subflats bi ⊂ ai and b j ⊂ a j and
define a product foliation

F bi ,b j : Rn+2 → R
n−1 × R

3

with R
3 leaves that are orthogonal to bi and to b j . Given a point x in ai , there is a

distinguished R3 leaf F
bi ,b j
x that contains the point x . The foliationF bi ,b j restricts to

foliations of Ci and C j with right-circular-cylinder leaves.

3.2 The Dirichlet Slice

In a packing C of Rn+2 by polycylinders, the Dirichlet cell Di associated with a
polycylinderCi is the set of points inRn+2 which lie no further fromCi than from any
other polycylinder in C . The Dirichlet cells of a packing partition R

n+2, as Ci ⊂ Di

for all polycylinders Ci . To bound the density δ+(C ), it is enough to fix an i in I and
consider the density of Ci in Di .

Consider the following slicing of the Dirichlet cell Di . Given a fixed polycylinder
Ci in a packing C of Rn+2 by polycylinders and a point x on the core ai , the plane px
is the 2-flat orthogonal to ai and containing the point x . The Dirichlet slice dx is the
intersection of Di and px .

Note that px is a sub-flat of F
bi ,b j
x for all j in I.

3.3 Bezdek–Kuperberg Bound

For any point x on the core ai of a polycylinderCi , the results of Bezdek andKuperberg
[1] apply to the Dirichlet slice dx .

Lemma 2 A Dirichlet slice is convex and, if bounded, a parabola-sided polygon.

Proof Construct the Dirichlet slice dx as an intersection. Define d j to be the set of
points in px which lie no further from Ci than from C j . Then the Dirichlet slice dx is
realized as

dx = { ⋂

j∈I
d j}.

Each arc of the boundary of dx in px is given by an arc of the boundary of some
d j in px . The boundary of d j in px is the set of points in px equidistant from Ci and
C j . Since the foliation F bi ,b j is a product foliation, the arc of the boundary of d j in

px is also the set of points in px equidistant from the leaf Ci ∩ F
bi ,b j
x of F bi ,b j |Ci

and the leaf C j ∩ F
bi ,b j
x of F bi ,b j |C j . This reduces the analysis to the case of a pair

of cylinders in R
3. From [1], it follows that d j is convex and the boundary of d j in

px is a parabola; the intersection of such sets d j in px is convex, and a parabola-sided
polygon if bounded. 
�
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Let Sx (r) be the circle of radius r in px centered at x .

Lemma 3 The vertices of dx are not closer to Sx (1) than the vertices of a regular
hexagon circumscribed about Sx (1).

Proof A vertex of dx occurs where three or more polycylinders are equidistant, so
the vertex is the center of a (n + 2)-ball B tangent to three polycylinders. Thus B is
tangent to three disjoint unit (n + 2)-balls B1, B2, B3. By projecting into the affine
hull of the centers of B1, B2, B3, it is immediate that the radius of B is no less than
2/

√
3 − 1. 
�

Lemma 4 Let y and z be points on the circle Sx (2/
√
3). If eachof y and z is equidistant

from Ci and C j , then the angle yxz is smaller than or equal to 2 arccos(
√
3 − 1) =

85.8828 . . .◦ .

Proof Following [1,4], the existence of a supporting hyperplane of Ci that separates
int(Ci ) from int(C j ) suffices. 
�

In [1], it is shown that planar objects satisfying Lemmas 2, 3 and 4 have area no less
than

√
12. As the bound holds for all Dirichlet slices, it follows that δ+(D2 × R

n) ≤
π/

√
12 in R

n+2. The product of the dense disk packing in the plane with R
n gives

a polycylinder packing in R
n+2 that achieves this density. Combining this with the

result of Thue [6] for n = 0 and the result of Bezdek and Kuperberg [1] for n = 1,
Theorem 1 follows.
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