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Abstract In this paper, an adaptive controller is pro-
posed to balance a rotary inverted pendulum with
time-varying uncertainties. The goal of the control is
to bring the pendulum close to the upright position re-
gardless of the various uncertainties and disturbances.
Its underactuated dynamics is first decoupled by Ol-
fati’s transformation into a cascade form, and then an
adaptive controller is designed to deal with the uncer-
tainties in the new space. Based on the Lyapunov-like
theory, the closed loop stability and boundedness of all
internal signals can be proved. The simulation results
show that the proposed scheme is capable of giving
good performance, as desired.

Keywords Rotary inverted pendulum · Adaptive
control · Time-varying uncertainties

1 Introduction

The rotary inverted pendulum (Fig. 1) was first intro-
duced by Furuta et al. [13]. Since it contains the well-
known underactuated dynamics, many reports can be
found in the literature for its stabilization [1, 3, 5, 25].
Most of the controls for the rotary inverted pendulum
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fall into one of several categories [6]. For example,
some considered the problem of stabilizing the pen-
dulum around the unstable vertical position [1, 6, 25,
26, 32]. Some swung the pendulum from its hanging
position to its upright vertical position [3, 9, 14, 15,
31]. Some others tried to create oscillations around its
unstable vertical position [2, 12, 30]. In this paper, we
would like to consider the control problem of stabiliz-
ing the pendulum around the unstable vertical position
when subjected to time-varying uncertainties.

Several robust controllers were proposed for deal-
ing with uncertainties and disturbances in the Furuta
system. Yu et al. [34] proposed a robust controller to
stabilize the Furuta pendulum under bounded pertur-
bation. Khanesar et al. [22] used a fuzzy sliding con-
troller to drive a rotary inverted pendulum to the verti-
cal position subject to bounded uncertainties and dis-
turbances. Park et al. [29] presented a swing-up and
stabilization control with coupled sliding mode con-
trol. Some other robust designs can be found in the
recent papers by Iraj et al. [21], Muske et al. [24],
Ashrafiuon and Whitman [4], and Uchiyama et al.
[33]. A common assumption to these robust designs is
that the variation bounds of the uncertainties and dis-
turbances have to be available; otherwise, the design
is not feasible.

The other approach to deal with system uncertain-
ties is the adaptive control. However, few reports can
be found. Matsuda et al. [23] proposed a variable
structure system type adaptive controller to stabilize
the pendulum at the upright position. Hirata et al. [16]
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Fig. 1 The Furuta pendulum system

presented a robust adaptive control for the stabiliza-
tion problem of the Furuta pendulum. Similar to the
traditional adaptive design, the uncertainties in these
approaches are assumed to be linearly parameterized
as a multiplication of a known regressor matrix and an
unknown constant vector. If this regressor form cannot
be achieved, the adaptive design fails. In this paper, we
consider the case when the system dynamics contains
time-varying uncertainties that cannot be represented
in the regressor form. Therefore, we may not apply
the traditional adaptive design. In addition, let us as-
sume that the variation bounds of these time-varying
uncertainties are not available; the conventional robust
designs are not feasible either. Here, we would like
to design a function approximation technique (FAT)
based adaptive controller to cover the time-varying un-
certainties [7, 8, 17–20].

The rotary inverted pendulum is well-known to be
an underactuated system [7, 11] where fewer actuators
are used to drive the system than its degree of free-
dom. To decouple the underactuated dynamics, Ol-
fati’s transformation [27, 28] is used to transform the

system into a special cascade form [7]. Together with
the FAT-based adaptive controller, the closed loop sta-
bility can be justified with the Lyapunov-like method.
Simulation cases are designed to justify the effective-
ness of the proposed method.

This paper is organized as follows. Section 2 de-
rives the system dynamics and introduces Olfati’s
transformation. The FAT-based adaptive controller is
proposed in Sect. 3. Section 4 presents the simulation
results. The last section concludes the paper.

2 System dynamics and Olfati’s transformation

Consider the rotary inverted pendulum shown in Fig. 1
where I1 is the moment of inertia of the arm, L1 is

the arm length, m3 is the mass of the pendulum, �3 is
the distance to the center of gravity of the pendulum,
J3 is the inertia of the pendulum around its center of
gravity, θ1 is the angular displacement of the arm, θ3

is the angular displacement of the pendulum, Fd is the
external force disturbance, and τ is the torque applied
to the arm. The system dynamics can be represented
by the set of differential equations

θ̇1 = θ2,

θ̇2 = f1(θ) + b1τ,

θ̇3 = θ4,

θ̇4 = f2(θ) + b2τ + Fd,

(1)

where θ = [θ1 θ2 θ3 θ4 ]T is a vector of states, and
functions f1, f2, b1, and b2 are defined as

f1(θ) = (J3 + m3�
2
3)m3�3θ̇3(L1θ̇3 sin θ3 − �3θ̇1 sin(2θ3)
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Suppose f1 and f2 are unknown functions without
knowing their variation bounds, while b1 is known.
The uncertain function b2 is assumed to be bounded
as bmin ≤ b2 ≤ bmax with known bounds. The nomi-
nal value of b2 is defined as bm = √

bminbmax so that
we may represent b2 as b2 = bm�b where �b is the
uncertainty satisfying 0 < δmin ≡ bmin

bm
≤ �b ≤ bmax

bm
≡

δmax.
Since the system is well-known to be underactu-

ated, we would like to apply Olfati’s transformation
[27, 28] to represent the system in a special cascade
form so that the underactuated dynamics can be elim-
inated. By using the coordinate transformation

z1 = θ1 + J3 + m3�
2
3

m3�3L1
ln | sec θ3 + tan θ3|,

z2 = θ2 + J3 + m3�
2
3

m3�3L1 cos θ3
θ4,

z3 = θ3,

z4 = θ4,

(2)

we have the system dynamics in the new space given
by

ż1 = z2,

ż2 = z3 + d(z),

ż3 = z4,

ż4 = f2(z) + b2u + Fd,

(3)

where z = [z1 z2 z3 z4 ]T is the new state vector and

d(z) = −z3 + f1(z) + J3 + m3�
2
3

m3�3L1 cos θ3
f2(z).

It is seen that system (3) is in a special cascade form
and d is a mismatched time-varying uncertainty with-
out knowing its variation bound. To deal with the mis-
matched uncertainty, a backstepping-like design called
multiple-surface sliding control is employed with the
function approximation technique to give appropriate
compensation. To unify the derivation, we would like
to represent (3) as

ż1 = z2 + d1,

ż2 = z3 + d2,

ż3 = z4,

ż4 = f2(z) + b2u + Fd,

(4)

where d1 = 0 and d2 = d(z).

3 Controller design

Define y = z1 as the output signal of system (4) and
yd(t) is its desired trajectory. Let us consider the error
signals

si = zi − zid , i = 1, . . . ,4, (5)

where zid is the desired value forzi . These error sig-
nals can be regarded as a set of surfaces in some error
space. Let z1d = yd(t). Then the time derivative of s1

can be found as

ṡ1 = s2 + z2d + d1 − ẏd . (6)

To stabilize (6), we may regard z2d as a virtual con-
trol, and it is selected to be z2d = ẏd − c1

s1
φ1

where c1

is a positive constant and φ1 > 0 is the thickness of
the boundary layer for the surface s1 = 0. With this
selection of z2d , (6) becomes

ṡ1 = s2 − c1
s1

φ1
. (7)

It can be seen that if s2 is small, then s1 will also be
small. Taking the time derivative of s2, we have

ṡ2 = s3 + z3d + d2 − ż2d , (8)

where ż2d = ÿd − c1
φ1

(z2 − ẏd ). To stabilize (8), we may
regard z3d as a virtual control which can be designed
as

z3d = ż2d − d̂2 − c2
s2

φ2
, (9)

where c2 and φ2 are positive constants, and d̂2 is an
estimate of the mismatched uncertainty d . Hence, (8)
can be derived as

ṡ2 = s3 + (d2 − d̂2) − c2
s2

φ2
. (10)

If s3 is small and some update law can be designed so
that d2 − d̂2 is small, then (10) implies that the magni-
tude of s2 is small. To evaluate the dynamics of s3, let
us take its time derivate as

ṡ3 = s4 + z4d − ż3d , (11)

where ż3d is a function of the uncertainty d2, so it is
also unknown. To simplify the derivation, let us define
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d3 = −ż3d and we may select z4d = −d̂3 − c3
s3
φ3

to
have

ṡ3 = s4 + (d3 − d̂3) − c3
s3

φ3
. (12)

Finally, the dynamics of s4 is found as

ṡ4 = f2 + b2u − ż4d .

Define f = f2 − ż4d , and we have

ṡ4 = f + bm�bu. (13)

We may thus design the control law as

u = 1

bm

[
−f̂ − c4

s4

φ4
− ur

]
, (14)

where f̂ is an estimate of f and c4 > 0 and φ4 > 0
are constants and ur is a robust term to be designed.
Substituting the control law u into (13), we have

ṡ4 = f − �bf̂ − c4�b
s4

φ4
− �bur ± f̂ ± c4

s4

φ4

= (f − f̂ ) − c4
s4

φ4
+ (1 − �b)

(
f̂ + c4

s4

φ4

)

− �bur . (15)

At this stage, we have already obtained the dynamics
of error surfaces in (7), (10), (12), and (15). Let us
collect them to form the error dynamics for the whole
system as

ṡ1 = s2 − c1
s1

φ1
, (16a)

ṡ2 = s3 − c2
s2

φ2
+ (d2 − d̂2), (16b)

ṡ3 = s4 − c3
s3

φ3
+ (d3 − d̂3), (16c)

ṡ4 = −c4
s4

φ4
+ (f − f̂ ) + (1 − �b)

(
f̂ + c4

s4

φ4

)

− �bur . (16d)

If a robust term ur can be designed so that the term
(1 − �b)(f̂ + c4

s4
φ4

) in (16d) can be properly cov-

ered, and an update law for f̂ can be found such that
f̂ → f , then we may have the convergence of s4.
Likewise, if an update law for d̂3 can be derived to sat-
isfy d̂3 → d3, then (16c) implies the convergence of

s3. Again, if we may design an update law for d̂2 such
that d̂2 → d2, then (16b) gives s2 → 0. Finally, with
the convergence of s2, we may conclude the conver-
gence of s1 from (16a). To design these update laws,
we would like to apply the function approximation
technique [8, 17–20]. Define d4 = f and d̂4 = f̂ , then
we have the representations

di = wT
i zi + εi,

d̂i = ŵT
i zi ,

i = 1, . . . ,4 (17)

where zi is a known vector of basis functions, wi and
ŵi are respectively the coefficient vector and its es-
timate, and εi is the approximation error. Note that
d1 = 0, and the representation in (17) for d1 and d̂1

is only for convenience in the following derivation.
Hence, we may rewrite (16a)–(16d) as

ṡ1 = −η1s1 + s2,

ṡ2 = −η2s2 + s3 + w̃T
2 z2 + ε2,

ṡ3 = −η3s3 + s4 + w̃T
3 z3 + ε3,

ṡ4 = −η4s4 + w̃T
4 z4 + ε4

+ (1 − �b)

(
f̂ + c4

s4

φ4

)
− �bur,

(18)

where w̃i = wi − ŵi are approximation errors for the
coefficient vectors, and ηi = ci

φi
, i = 1, . . . ,4 are posi-

tive constants. Define a Lyapunov-like function

V4 = 1

2
s2

4 + 1

2
w̃T

4 Γ 4w̃4, (19)

where Γ 4 is a positive definite matrix. Taking the time
derivative of (19) along the trajectory of (18), we have

V̇4 ≤ −η4s
2
4 + s4ε4 + (1 + δmax)|f̂ + η4s4||s4|

− δmins4ur + w̃T
4 (s4z4 − Γ 4

˙̂w4). (20)

Select the update law for ŵ4 as

˙̂w4 = Γ −1
4 (s4zf − σ4ŵ4), (21a)

ur = 1 + δmax

δmin
|f̂ + η4s4|sgn(s4), (21b)

where σ4 is a positive number. Hence, (20) can be writ-
ten as

V̇4 ≤ −η4s
2
4 + |s4||ε4| + σ4

(
w̃T

4 w4 − ‖w̃4‖2). (22)
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By using the inequalities

− η4s
2
4 + |s4||ε4| ≤ −1

2

(
η4s

2
4 − ε2

4

η4

)
,

w̃T
4 w4 − ‖w̃4‖2 ≤ −1

2

(‖w̃4‖2 − ‖w4‖2),

Eq. (22) can be derived as

V̇4 ≤ −1

2

(
η4s

2
4 − ε2

4

η4

)
− 1

2
σ4

(‖w̃4‖2 − ‖w4‖2)

≤ −α4V4 +
[
α4

2
− η4

2

]
s2

4 +
[
α4

2
λmax(Γ 4) − σ4

2

]

× ‖w̃4‖2 + σ4

2
‖w4‖2 + 1

2η4
ε2

4,

where α4 is selected as α4 ≤ min{η4,
σ4

λmax(Γ 4)
} to give

V̇4 ≤ −α4V4 + σ4

2
‖w4‖2 + 1

2η4
ε2

4. (23)

Hence, V̇4 < 0 whenever

(s4, w̃4) ∈ E4 ≡
{
(s4, w̃4)|V4 > ϕ4 ≡ σ4

2α4
‖w4‖2

+ 1

2α4η4
sup
τ≥t0

ε2
4(τ )

}
.

Note that ϕ4 is a positive constant, and hence we
may conclude that (s4, w̃4) is uniformly ultimately
bounded. In addition, given any μ4 > 0, there exist
T4 ≥ t0 ≥ 0 such that

V4(t) ≤ ϕ4 + μ4 for t ≥ T4.

Along the same line, we can choose the Lyapunov-like
functions

Vi = 1

2
s2
i + 1

2
w̃T

i Γ iw̃i , i = 1,2,3. (24)

By taking the time derivatives of these functions along
the trajectory of (18), we may have the update laws to
be selected as

˙̂wi = Γ −1
i (sizi − σiŵi ), σi > 0, i = 1,2,3. (25)

After some rearrangements, the time derivative of Vi

becomes

V̇i ≤ −αiVi + σi

2
‖wi‖2 + 1

2ηi

(εi + si+1)
2 (26)

where αi ≤ min{ηi,
σi

λmax(Γ i )
}, i = 1,2,3. For t0 ≤ t <

Ti+1, we may have V̇i < 0 whenever

(si , w̃i ) ∈ Ei ≡ {
(si , w̃i )|Vi > ϕi

}
, (27)

ϕi ≡ σi

2αi
‖wi‖2 + 1

2αiηi
[supτ≥t0

|εi(τ )| +
√

2 max{Vi+1(t0), φi+1 + μi+1 }]2. This implies that
Vi is bounded for all t ∈ [t0, Ti+1], i.e., before conver-
gence of Vi+1, Vi is bounded. Define ϕ′

i ≡ σi

2αi
‖wi‖2 +

1
2αiηi

[supτ≥t0
|εi(τ )| + √

2(φi+1 + μi+1)]2, then af-
ter the convergence of Vi+1 (i.e., when t ≥ Ti+1) to
ϕ′

i+1 + μi+1, Vi is bounded. We have thus proved that
(si , w̃i ) is uniformly ultimately bounded. Therefore,
we have established the order of convergence from s4

to s1. During the convergence of si , the boundedness
of sj , j = i − 1, . . . ,1 is ensured. Specifically, when
t ≥ T1, we have

∣∣s1(t)
∣∣ = |z1 − z1d | = √

2V1 ≤
√

2
(
φ′

1 + μ1
)
. (28)

Hence the proposed controller ensures that the output
error of the rotary inverse pendulum system will be
bounded by some constants adjustable by controller
parameters. In this work, the performance is achieved
subject to mismatched time-varying uncertainties.

4 Computer simulations

To verify the effectiveness of the proposed design, let
us consider the system in Fig. 1 again. The initial
condition is assumed to be θ(0) = [1 0 −1 0 ]T , and
we would like to bring the desired state to the ori-
gin. The actual values of system parameters [10] are
m3 = 5.38 × 10−2 kg, J3 = 1.98 × 10−4 kg m2, �3 =
0.113 m, g = 9.8 m/s2, L1 = 0.215 m, I1 = 1.75 ×
10−2 kg m2. The parameters for modeling b2 can
be computed to be bmin = −81.79, bmax = −40.08,
bm = 57.26, δmax = −0.69997, δmin = −1.4284. The
weighting matrices are chosen as Γ 2 = 32I, Γ 3 = 35I,
Γ 4 = 40I, and the constant σ is set to zero. The exter-
nal disturbance is applied to the system during 4 to 6
seconds with Fd = 20 sin(20t) as shown in Fig. 2. The
initial weighting matrices for the function approxima-
tion are set to ŵi(0) = [0 0 · · ·0]T , i = 2,3,4. The 21-
term Fourier series is used as the basis in the function
approximation. Two cases are considered in the simu-
lation study.
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Fig. 2 External force

Fig. 3 System response (a) arm angle (b) pendulum angle

4.1 CASE 1. Constant parameters

In this case, system parameters m3 and �3 are as-
sumed to be unknown constants. The controller pa-
rameters are selected as c1 = 50, c2 = 20, c3 = 0.06,
c4 = 1 × 10−9 and φi = 1, i = 1, . . . ,4. The simula-
tion results are shows in Figs. 3 and 4. Figure 3 shows
that both the arm and pendulum positions converge
to their desired values in 3 seconds regardless of the
system uncertainties. With the presence of the exter-
nal disturbances during 4 to 6 seconds, the pendulum
exhibits some deviations in the trajectories. However,
the proposed controller is robust enough to keep the

Fig. 4 Control input

Fig. 5 System response (a) arm angle (b) pendulum angle

states in the neighborhoods of the equilibrium points
and bring them back to the desired values right after
the absence of the disturbance. Figure 4 shows that the
control law is realizable.

4.2 CASE 2. Time-varying parameters

In this case, we consider the case when both values
of the pendulum mass and center of gravity are time-
varying as

m3 = 0.0538 + 0.04 cos 50t kg,

�3 = 0.113 + 0.1 sin 4t m.
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Fig. 6 Control input

All other system parameters remain the same as those
in the previous case. The controller parameters are se-
lected as c1 = 60, c2 = 30, c3 = 0.06, c4 = 1 × 10−8

and φi = 1, i = 1, . . . ,4. The simulation results are
presented in Figs. 5 and 6. Figure 5 shows that both the
arm and pendulum converge to their desired values in
3 seconds even with the time-varying parameters. The
robustness of the controller is still sufficient to regu-
late the system in a bounded region near the equilib-
rium point when the external force appears during 4 to
6 seconds. Figure 6 depicts the control effort.

5 Conclusions

We have proposed an adaptive controller for a rotary
inverted pendulum system subject to time-varying un-
certainties and external disturbances. We first apply
Olfati’s transformation to the system dynamics, and
then the function approximation technique is utilized
to estimate the uncertainties. Based on the Lyapunov-
like stability theory, the closed-loop stability is proved
to be ultimately uniformly bounded. Experimental re-
sults show that the proposed design is able to give
proper performance regardless of various uncertainties
and disturbances.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the orig-
inal author(s) and the source are credited.
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