
Taming XPath Queries by Minimizing Wildcard Steps

Chee-Yong Chan∗

National University of Singapore
chancy@comp.nus.edu.sg

Wenfei Fan
University of Edinburgh & Bell Laboratories

wenfei@inf.ed.ac.uk

Yiming Zeng
National University of Singapore

zengyimi@comp.nus.edu.sg

Abstract

This paper presents a novel and complementary
technique to optimize an XPath query by mini-
mizing its wildcard steps. Our approach is based
on using a general composite axis called the layer
axis, to rewrite a sequence of XPath steps (all
of which are wildcard steps except for possibly
the last) into a single layer-axis step. We de-
scribe an efficient implementation of the layer axis
and present a novel and efficient rewriting algo-
rithm to minimize both non-branching as well as
branching wildcard steps in XPath queries. We
also demonstrate the usefulness of wildcard-step
elimination by proposing an optimized evaluation
strategy for wildcard-free XPath queries that en-
ables selective loading of only the relevant input
XML data for query evaluation. Our experimen-
tal results not only validate the scalability and ef-
ficiency of our optimized evaluation strategy, but
also demonstrate the effectiveness of our rewrit-
ing algorithm for minimizing wildcard steps in
XPath queries. To the best of our knowledge, this
is the first effort that addresses this new optimiza-
tion problem.

1 Introduction

XPath [15] is a widely-used language for XML data, and it
is a core component of several important XML languages
including XSLT [6] and XQuery [4]. While there has been
a host of work on the efficient evaluation of XPath queries

∗Supported in part by NUS grants R-252-000-164-112/101.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

(e.g., structural join algorithms [1, 5, 11], specialized in-
dexing techniques [16, 14]), research on the optimization
of XPath queries itself has only begun to attract more at-
tention. Since the size of an XPath query (in terms of the
number of steps) is a key determinant of its evaluation com-
plexity (e.g., [8]), an obvious optimization that has been
explored is to minimize the size of a XPath query by elim-
inating redundant steps [17, 2, 13]. More recent work has
shifted to understanding the properties of XPath expres-
sions to identify useful rewriting rules [3], eliminating re-
verse axes in queries to facilitate their evaluation on stream-
ing data [12], and to transforming queries to algebraic form
for efficient evaluation [10].

In this paper, we present a novel and complemen-
tary approach to optimizing XPath queries by minimizing
(non-redundant) wildcard steps. A wildcard step refers to
an XPath step with the wildcard nodetest; examples in-
clude child::* and ancestor::*. Wildcard steps are com-
monly used when the element names are unknown or
do not matter. For example, wildcard steps are com-
mon when querying against some secured XML views
in the form of DTDs where some element labels have
been intentionally replaced with wildcard-equivalent la-
bels to hide their original labels [7]. Wildcard steps are
also useful as shorthand notation to represent a set of
element names. For example, if a publication element
has either a journal or conference subelement, then the
query /child::publication/child::journal/child::title union
/child::publication/child::conference/ child::title can be ex-
pressed more succinctly using the wildcard-based path ex-
pression /child::publication/child::*/child::title. Further-
more, queries generated from certain optimization tech-
niques (e.g., rewriting techniques to eliminate reverse axes
[12]) may also contain wildcard steps. Thus, wildcard steps
are very convenient and useful in XPath queries.

However, wildcard steps can be rather expensive to eval-
uate; for example, evaluating desc::* would require ac-
cessing all the descendant nodes of a context node. Thus
removing/reducing wildcard steps in a query q is an im-
portant optimization issue. The basic idea of our approach
is to rewrite a sequence of two steps s1 and s2, where s1

156

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191444691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is a wildcard step and either s2 is the next step follow-
ing s1 in q (i.e., s1[. . .] . . . [. . .]/s2) or s2 is the first step
in some qualifier expression of s1 (i.e., s1[. . .] . . . [s2 . . .]),
into an equivalent single, composite step. Removing wild-
card steps leads to performance improvement on query-
evaluation not only by reducing query size, but also by al-
lowing selective loading of only the relevant input XML
data. To enable this query rewriting approach, we intro-
duce a new axis, called the layer axis, which is a natural
generalization of XPath’s “vertical” navigation axes (i.e.,
self, child, descendant, parent, and ancestor).

To give an idea of how the wildcard steps in a query can
be eliminated via rewriting with the layer axis, consider the
following XPath query q = desc::a/desc:*[par::b/child::c]
[anc::d/child::e][child::f]/desc::g, which is depicted as a
rooted tree in Figure 4(a). Observe that there is a sin-
gle wildcard step desc::* in q which happens to be also a
“branching” step in the sense that it has more than one child
steps in Figure 4(a) comprising of the next step after itself
and the first step of each of its qualifier expressions. The
wildcard step desc::* in q can be eliminated by transform-
ing q into an equivalent query q′′′ (shown in Figure 4(d))
which contains three instances of the layer axis represented
by LX . Note that our rewriting approach does not require
knowledge of the data schema, and the size of the rewritten
query (in terms of the number of steps) is no more than that
of the input query.

In this paper, we make the following contributions:

• We introduce a novel and complementary approach to
optimizing an XPath query by minimizing its wildcard
steps. Our approach is based on using a new com-
posite axis, called the layer axis, to facilitate efficient
query rewriting to eliminate wildcard steps.

• We develop a novel and efficient query rewriting al-
gorithm to minimize wildcard steps based on the layer
axis.

• We propose an efficient and scalable evaluation algo-
rithm for wildcard-free XPath queries, capitalizing on
a selective loading strategy.

• We also experimentally demonstrate the benefits of
our rewriting and evaluation optimizations for pro-
cessing XPath queries.

Organization. The rest of this paper is organized as fol-
lows. Section 2 presents some definitions and notations.
In Section 3, we define a new navigation axis called the
layer axis. Section 4 presents rewriting techniques using
the layer axis to eliminate wildcard steps in XPath expres-
sions. In Section 5, we present an efficient and scalable
approach to evaluate wildcard-free XPath queries. We re-
view related work in Section 6, and present our experimen-
tal performance results in Section 7. Finally, we conclude
with some future research directions in Section 8.

2 Preliminaries

In this paper, we consider the class of XPath queries that are
formed using only the following axes: self, child, descen-
dant, parent, and ancestor (which are abbreviated to self,
child, desc, par, and anc, respectively). We refer to these
five axes as vertical axes1, and refer to a step with axis χ
as a χ-axis step. This fragment of XPath is syntactically
defined as follows:

q ::= χ :: l | χ :: ∗ | q/q | q[q],

where l is an XML tag, ∗ is the wildcard, and ‘/’ and ‘[.]’
denote concatenation and qualifier, respectively. This frag-
ment does not contain the union, negation, and the logi-
cal or operator. Observe that logical and is implicitly sup-
ported: q[q1 and q2] is equivalent to q[q1][q2].

We consider the two common semantics of XPath query
evaluation that are used in practice: the first returns only
the selected nodes without their subtrees, while the second
returns both the selected nodes and subtrees. Based on the
type of query evaluation being considered, we shall refer to
an XPath query as a node-selecting XPath query if it is the
first case; and as a standard query, otherwise.

Given an XPath query q, one can represent q by an un-
ordered rooted tree, denoted by Tree(q), where each step
si in q is represented by a node vi in Tree(q) such that
there is an edge (vi, vj) in Tree(q) if steps si and sj are
“consecutive” steps in q of the form si/sj or si[sj]. Ob-
serve that there could be zero or more qualifier expressions
between si and sj (or [sj]) in q. Given two steps si and sj

in q, we say that sj is a child step of si (or equivalently,
si is a parent step of sj)2 if vj is a child node of vi in
Tree(q). A step si in q is said to be a branching step if
its corresponding node vi in Tree(q) has out-degree of at
least 2. Furthermore, if the branching step is also a wild-
card step (i.e., its nodetest is *), then we refer to it as a
branching wildcard step, abbreviated as B*-step. A wild-
card step that is not a B*-step is abbreviated as NB*-step
(for non-branching wildcard step). In the tree representa-
tion of the XPath query q, nodes that are underlined indi-
cate the selected nodes to be returned as the query result.

Example 2.1 Figure 1 shows the tree representation of
the XPath query /desc::a[child::*[child::b][desc::c]/anc::d
/desc::*/child::e, which has two wildcard steps: a B*-step
child::* and a NB*-step desc::*. 2

Consider a data node v in an XML data tree. We define
the level of v, denoted by level(v), as follows: level(v) =
0 if v is the root node; otherwise, level(v) = level(v′)+1,
where v′ is the parent node of v. We use δ(x, y) to de-
note the difference in levels between nodes x and y; i.e.,
δ(x, y) = level(x) − level(y). We define the height of
v, denoted by ht(v), as ht(v) = maxv′∈V {level(v′)} −
level(v)}, where V is the set of descendant leaf nodes of

1For simplicity and without loss of generality, we omit the descendant-
or-self and ancestor-or-self axes.

2A child (parent) step is not to be confused with a child-axis (parent-
axis) step!

157

desc::a

child::*

child::b desc::c

anc::d

desc::*

child::e

Figure 1: Tree representation Tree(q) of query q

v. Thus, level(v) and ht(v) represent the maximum verti-
cal distances between v and respectively, the top-most and
bottom-most nodes reachable from v. More generally, for
a given set of nodes V , we define the height of V , denoted
by ht(V), as ht(V) = maxv∈V {ht(v)}.

We use vc to denote the context node, and η (or ηi for
some value i) to denote a nodetest that is either an element
label or the wildcard ∗.

3 Layer Axis

In this section, we introduce a new navigation axis, called
the layer axis, which is a natural generalization of the basic
vertical axes (i.e., self, child, descendant, parent, and an-
cestor). We show that the layer axis is capable of express-
ing all the vertical axes, and thus XPath queries in our frag-
ment can be rewritten into an intermediate form in terms
of the layer axis. Furthermore, the layer axis can be imple-
mented very efficiently. In the next section we shall present
an algorithm for minimizing wildcard steps by capitalizing
on the layer axis, followed by an efficient selective load-
ing strategy for evaluating wildcard-free XPath queries in
Section 5.

3.1 Basic Layer Axis

The basic form of the layer axis, denoted by Li, selects the
“layer” of nodes that are exactly i levels away from the con-
text node vc either below the context node if i is positive; or
above the context node if i is negative. More formally, Li

(where i is an integer) can be defined inductively in terms
of the self, child, and parent axes as follows:

• L0 is defined to be self;

• Li+1 = Li.child if i > 0 (downward);

• Li−1 = Li.par otherwise (upward).

For example, when the root is vc, the sequence of three
steps /child::*/child::*/child::η is equivalent to the single
step /L3::η.

More generally, it is often convenient to refer to consec-
utive layers of data nodes that are located at a certain num-
ber of levels away from the context node. For example,
the sequence of steps child::*/child::*/child::*/anc::η will
select a “subtree” of nodes (with nodetest η) starting from
the root layer to two layers below the layer containing the
context node. The layer axis Li can be easily extended to

a

b

c

d e

f

g

h i j

k

l m

Figure 2: Example XML Data Tree

support such navigations in terms of L≥i and L≤i as fol-
lows:

L≥i =

{
∅ if i > ht(vc)
Li ∪ L≥i+1 otherwise

L≤i =

{
∅ if i < −level(vc)
Li ∪ L≤i−1 otherwise

Clearly, both the descendant and ancestor axes are special
cases of L≥i and L≤−i, respectively, with i = 1. For ex-
ample, L−3::*/anc::* can be expressed as L≤−4::η.

For notational convenience, we define L[i,j], with i ≤ j,
as follows:

L[i,j] = L≥i ∩ L≤j

Observe that L≥i and L≤i can be expressed as L[i,ht(vc)]

and L[−level(vc),i], respectively. As a special case, Li =
L[i,i]. Thus in the sequel we shall focus on the general
form L[i,j] of the layer axis.

We sometimes also use the layer axis with respect to
an explicit context node v, which is expressed as L[i,j](v).
Thus, L[i,j] refers to L[i,j](vc).

Example 3.1 Consider the XML data tree in Figure 2. If
g is the context node, then L1::* = {h,i,j}, L−2::* = {a},
L≤1::* = {a,f,g,h,i,j}, and L≥−1::* = {f,g,h,i,j}. 2

The layer axis provides a concise specification for a se-
quence of XPath steps s1/s2/ · · · /sn, where all the steps,
except for possibly the last step sn, are wildcard steps. For
example, the query q1 = child::*/ · · · /child::*

︸ ︷︷ ︸

i−1

/child::η1, is

equivalent to Li::η1.

3.2 Height Constraints

In many cases, it is necessary to augment the layer-axis
specification with additional constraints on the height of
the selected nodes to preserve equivalence. For example,
the query q2 = Li::*/par::η2, where i ≥ 1, is equivalent to

{v ∈ Li−1::η2 | ht(v) ≥ 1}

Here, the additional constraint on the height of the selected
nodes indicates that the selected nodes must not be leaf
nodes. Clearly, q2 6≡ Li−1::η2.

More generally, there is a need to be able to spec-
ify constraints on the height of both the selected nodes
as well as their ancestors. For example, the query q3 =
Li::*/par::*/par::*/child::η3, where i ≥ 2, is equivalent
to

{v ∈ Li−1::η3 | ht(L−1(v)) ≥ 2}

158

Here, each selected node needs to satisfy the constraint that
its parent node can reach some descendant node that is at
least 2 levels below the parent node. Observe that the con-
straint on L−1(v) is not equivalent to the following height
constraint on v: ht(v) ≥ 1. Thus, supporting height con-
straints on ancestors of selected nodes is necessary. How-
ever, note that height constraints on descendants of selected
nodes can be rewritten to equivalent constraints on the se-
lected nodes themselves. For example, Li::*/par::*/par::*
≡ {v ∈ Li−2::* | ht(L1(v)) ≥ 1}, and the constraint on
L1(v) can be rewritten as a constraint on v: ht(v) ≥ 2.

As a final example, let us consider the query q4 = {v ∈
L[i,j]::* | ht(v) ≥ h} / desc::η4. This query is equivalent
to

{v ∈ L≥i+1::η4 | ∃ r ∈ [δ(v, vc) − j, δ(v, vc) − i],

ht(L−r(v)) ≥ h}

Here, we have a height constraint that specifies that each
selected node v must have some ancestor node w that is r
levels above v (i.e., w is in L[i,j]) such that the height of w
is at least h.

More formally, height constraints can be defined as fol-
lows. Let cexp denote an integer expression defined in
terms of integer constants as well as ‘+’ and ‘−’. Let exp1

and exp2 denote integer expressions defined in terms of
level(v), level(vc), integer constants, as well as ‘+’ and
‘−’. Then a height constraint φ on a selected node v can be
specified as one of the following two forms:

(F1) ht(Lcexp(v)) ≥ exp1; or

(F2) ∃ i ∈ I φ, where I = [exp1, exp2] (with exp1 ≤
exp2) is a range of consecutive integers, and φ is a
height constraint of the form (F1).

Note that height constraints of the form ht(v) ≥ exp1 are
allowed in (F1) since ht(v) = ht(L0(v)).

For example, ∃ i ∈ I (ht(Li(v)) ≥ h) states that v
must have some ancestor/descendant node w that is i levels
above/below v, where i is some value from a set of consec-
utive integers I , such that the height of w is at least h.

Putting these together, the layer axis is typically associ-
ated with a set of height constraints, and is thus denoted as
LX(S)::η, where X is a set of consecutive integers (of the
form i, ≤ i, ≥ i, or [i, j]), and S is a (possibly empty) set
of height constraints as defined above; it extracts nodes that
are reachable via the layer axis and satisfies every height
constraint in S.

Example 3.2 Using the new notation LX(S)::η, the ex-
ample queries q3 and q4 given above can be specified
as Li−1({ht(L−1(v)) ≥ 2})::η3 and L≥i+1({∃ r ∈
[δ(v, vc)− j, δ(v, vc)− i](ht(L−r(v)) ≥ h)})::η4, respec-
tively. 2

As a final remark, the vertical axes in XPath can be spec-
ified in terms of the layer axis as follows: self ≡ L0(∅),
child ≡ L1(∅), desc ≡ L≥1(∅), par ≡ L−1(∅), and anc ≡
L≤−1(∅).

3.3 Implementation of Layer Axis

In order for a rewriting-based approach using the layer axis
to be effective, it is critical that the layer axis be imple-
mented efficiently. In this section, we describe how the
layer axis can be efficiently supported by precomputing
certain additional information as the input XML document
is parsed and loaded into main memory for query evalua-
tion.

There are essentially two key operations that need to
be efficiently supported in a layer-axis step evaluation.
Specifically, to determine if a data node v is selected by
a layer axis L[i,j](S), we need to (1) check if v is in
L[i,j](vc); and (2) check if v satisfies each height con-
straint in S. These two checkings can be efficiently sup-
ported by precomputing level(v) and ht(v) for each data
v. With these precomputed values, v is in L[i,j](vc) if
δ(v, vc) = level(v) − level(vc) is in [i, j]; and v satisfies
the height constraint “ht(Lk(v)) ≥ h” if ht(v) ≥ h + k
(for non-negative k values), and if ht(u) ≥ h (for negative
k values), where u is the ancestor node of v that is k levels
above v.

The level(.) and ht(.) information can be easily pre-
computed by a single parse of the input XML data file as
it is loaded into main memory, by using a stack of size H
(where H is the height of the input XML data tree T) to
store information about the current path of data nodes be-
ing parsed. In particular, ht(v) is computed by using the
property that ht(v) =maxw{ht(w)+1}, where w is a child
node of v in T . Note that the height H of an XML data tree
T is usually a small value (independent of the size of T).

Thus, an efficient implementation of the layer axis can
be easily supported by precomputing some information
during the parsing of the input XML data file.

3.4 Extended Layer Axis

Recall that the motivation for the layer axis is to have a gen-
eral composite axis (that can be efficiently implemented)
to be used for eliminating wildcard steps. Specifically, the
goal is to be able to rewrite any sequence of XPath steps
that consists of all wildcard steps (except for possibly the
last step) into a single layer-axis step. However, even with
the most general form of the layer axis presented in Sec-
tion 3.2, there are certain sequences of steps that can not
be expressed using a single layer-axis step. For example,
consider the query q = L−i(∅)::*/child::η, where i > 0.
Note that q 6≡ L−i+1(∅)::η. This is because L−i+1(∅)::*
will select at most one single node, which is the ancestor
node of the context node vc that is i − 1 levels above vc,
instead of a set of child nodes as intended. Thus, q can not
be rewritten using a single layer-axis step.

This limitation arises whenever a sequence of steps first
navigates upwards to some ancestor node of the current
context node vc, and is then followed by a downward nav-
igation. In this case, some of the nodes selected by the
downward navigation are neither ancestors nor descendants
of vc, which means that they can not be be captured using a
single layer-axis step (which is defined with respect to vc).

159

To overcome this restriction, we propose a simple ex-
tension of the layer axis of the form LX/Y (S), where for
some non-negative integer i, X (which is of the form −i
or ≤ −i) specifies an upward navigation; Y (which is of
the form i or ≥ i) specifies a downward navigation; and S
is a set of height constraints. More formally, the extended
variant of the layer axis LX/Y (S) is defined as follows:

LX/Y (S)::η ≡ LX(∅)::* / LY (S)::η (1)

We refer to the two variants of the layer axis as basic layer
axis and extended layer axis. Thus, using the extended
layer axis, q can now be rewritten as L−i/1(∅)::η.

Supporting the extended variant is, however, more in-
volved. Checking whether or not two data nodes v1 and v2

are related by the axis L−i/j , for example, is equivalent to
checking if v1 and v2 have a common ancestor node that
is i and j levels above them, respectively. Clearly, there
is a need to balance the tradeoff between the generality of
the layer axis and the efficiency of its implementation. In-
tuitively, a more general layer specification should be able
to eliminate wildcard steps for a larger class of queries, but
its implementation cost is likely to be higher. In this paper,
for practical reasons, we will focus on the basic layer axis
together with a special case of the extended variant of the
form L−1/Y (S), which can be efficiently implemented by
additionally storing a pointer to the parent node for each
data node. We intend to explore the tradeoffs of more gen-
eral variants as part of future work.

4 Minimizing Wildcard Steps

The basic idea of our rewriting algorithm is to iteratively
eliminate one wildcard step at a time until either all the
wildcard steps have been eliminated or none of the remain-
ing wildcard steps can be eliminated. Each iteration there-
fore merges a sequence of two steps s1 and s2, either of the
form s1/s2 or of the form s1[s2] (at least one of which is a
wildcard step) into a single layer-axis step.

We first discuss the simpler case of minimizing NB*-
steps in Section 4.1 and then extend our techniques to han-
dle B*-steps in Section 4.2. Finally, we combine these
techniques to present an algorithm to minimize wildcard
steps in Section 4.3.

4.1 Non-branching Wildcard Steps

In this section, we consider the elimination of wildcard
steps that appear in “linear” path expressions (without qual-
ifier expressions) of the form s1/s2, where s1 is a wildcard
step; i.e., s1 is of the form L[i,j](S)::* with i ≤ j. Step s2

is of the form χ::η, where χ is any vertical XPath axis and
η is either an element name or a wildcard.

Our goal is to rewrite a two-step path expression of the
form

p = L[i,j](S)::* / χ::η

into an equivalent layer-axis step:

Algorithm Rewrite-NB*-step (s1, s2)
Input: A NB*-step s1 = L[i,j](S)::*

A step s2 = χ::η
Output: A step s′ = L[i′,j′](S′)::η (equivalent to s1/s2)

if s1 can be removed; or s1/s2 otherwise
1) if (i < 0) and (χ ∈ {child, desc}) then
2) return s1/s2;
3) Apply appropriate rule from (R1) to (R4) to

rewrite L[i,j](∅)::*/χ::η to L[i′,j′](Snew)::η;
4) Supdate = ∅;
5) for each φ ∈ S do
6) rewrite φ to φ′ as described in Section 4.1.1;
7) Supdate = Supdate ∪ {φ′};
8) return L[i′,j′](Snew ∪ Supdate)::η;

Figure 3: Algorithm to remove NB*-steps

p′ = L[i′,j′](S′)::η

to eliminate the wildcard step L[i,j](S)::*.
Note that if step s1 was of the form L−1/[i,j](S), then p′

is simply replaced with L−1/[i′,j′](S′)::η. Thus, the rewrit-
ings involving the basic layer axis can be easily extended
over to the extended variant; therefore, for simplicity and
with loss of generality, we will focus our discussion on the
basic layer axis.

Our rewriting algorithm to eliminate a NB*-step is
shown in Figure 3. We explain the rewriting rules in terms
of two cases, depending on whether or not i ≥ 0.

4.1.1 Case 1: i ≥ 0

We first consider the case where the set of constraints S in
p is empty and then extend the results to the general case
where S could be non-empty.

When i ≥ 0 and S = ∅, p can be transformed into p′

using the following set of four rewriting rules3:

(R1) L[i,j](∅)::* / child::η ≡ L[i+1,j+1](∅)::η

(R2) L[i,j](∅)::* / desc::η ≡ L≥i+1(∅)::η

(R3) L[i,j](∅)::* / par::η ≡ L[i−1,j−1](S′)::η where
S′ = {ht(v) ≥ 1}

(R4) L[i,j](∅)::* / anc::η ≡ L≤j−1(S′)::η where S′ =
{ht(v) ≥ i − δ(v, vc), ht(v) ≥ 1}.

The rewriting from L[i,j] to L[i′,j′] in each rule is self-
explanatory: in (R1), for example, the transformation es-
sentially adjusts the relative location of the selected nodes
(w.r.t. vc) down by one level from [i, j] to [i + 1, j + 1]
due to the second child-axis step. Note that only rules (R3)
and (R4), which have a reverse-axis for their second steps,
require a height constraint to be specified to preserve equiv-
alence. For (R3), the height constraint is necessary to se-
lect only non-leaf nodes that are in L[i−1,j−1](S′)::η. For

3Note that the expression x + 1 is actually min{x + 1, ht(vc)}, and
the expression x − 1 is actually max{x − 1,−level(vc)}.

160

(R4), a selected node v in L≤j−1(S′)::η must have a de-
scendant node w in L[i,j]. Clearly, v is a non-leaf node,
and so its height must be at least one. Furthermore, if v
is in L≤i−1(S′)::η, then v must be able to reach some de-
scendant node w in Li, and so the height of v must be at
least i−δ(v, vc). Combining these two constraints, we have
ht(v) ≥ max{i − δ(v, vc), 1}, which is shorthand for the
set of two constraints given above for (R4).

We now explain how the above results can be extended
to the scenario where S is non-empty. The rewriting rules
(R1) to (R4) are still applicable except that the set of ex-
isting constraints in S need to be updated. Thus the set of
height constraints S ′ can be represented as S ′ = Supdate ∪
Snew; where Supdate denotes the set of updated constraints
in S, and Snew is the set of new constraints as defined by
the above rules. Note that the updating of S to Supdate is
independent of the generation of any new height constraint
in Snew. Moreover, each constraint in S is updated inde-
pendently of the other updates.

To simplify the discussion, let us consider p =
L[i,j](S)::* / χ::η where S = {ht(L−k(v)) ≥ h}, k and h
are non-negative integers4. The constraint S is updated by
incorporating the distance between the old selected nodes
and the new selected nodes as follows.

1 If χ = child, then Supdate = {ht(L−(k+1)(v)) ≥ h}.

2 If χ = par, then Supdate = {ht(L−(k−1)(v)) ≥ h}.

3 If χ = desc, then

Supdate = {∃ r ∈ [δ(v, vc) − j, δ(v, vc) − i]

(ht(L−(r+k)(v)) ≥ h)}.

That is, v has an ancestor w in L[i,j] such that
ht(L−k(w)) ≥ h.

4 If χ = anc, then

Supdate = {∃ r ∈ [i − δ(v, vc), j − δ(v, vc)]

(ht(Lr−k(v)) ≥ h)}.

That is, v has a descendant w in L[i,j] such that
ht(L−k(w)) ≥ h.

In general, height constraints may involve level(v),
which can occur on the left hand side of “≥” (in
[exp1, exp2] of the form (F2)) or on the right hand side of
“≥” (in exp1 of the form (F1)).

As an example of the first case, consider L[i,j](S)::*
/ desc::η, where S = {∃ r ∈ [δ(v, vc) − a, δ(v, vc) −
b](ht(Lr−k(v)) ≥ h)} for some integer constant expres-
sions a, b, and k. The updated constraint Supdate is to as-
sert that a new selected node v has an ancestor w in L[i,j]

such that there exists r ∈ [δ(w, vc) − a, δ(w, vc) − b] with
ht(Lr−k(w)) ≥ h. This requires adjustment to the range

4Recall that if k < 0, then the constraint ht(L−k(v)) ≥ h can be
rewritten as ht(v) ≥ h − k.

of r by incorporating δ(v, w). In a nutshell, this is done by
capitalizing on the following relations:

δ(v, w) + δ(w, vc) = δ(v, vc)

δ(w, vc) ≤ j

δ(w, vc) ≥ i

It is easy to verify that the height constraint S is updated
to Supdate = {∃ r ∈ [δ(v, vc) − j − a, δ(v, vc) − i −
b](ht(Lr−k(v)) ≥ h)}.

As an example of the second case, consider L[i,j](S)::*
/ desc::η, where S = {ht(Lk(v)) ≥ δ(v, vc)+h} for some
integer constant expressions k and h. By similar reasoning
as in the example for the first case, it can be verified that
the height constraint S is updated to Supdate = {∃ r ∈
[δ(v, vc)−j, δ(v, vc)−i](ht(Lk−r(v)) ≥ δ(v, vc)+h−r)}.

Due to the lack of space we omit updating of height con-
straints of other forms, which can be derived by a straight-
forward structural induction. We should remark that the
new and updated constraints can be checked efficiently
with the implementation strategy described in Section 3.3.

4.1.2 Case 2: i < 0

When i < 0, the rules (R3) and (R4) remain intact and are
applicable. However, rules (R1) and (R2) no longer hold
when i < 0 because the sequence s1/s2 now corresponds
to an upward navigation followed by a downward naviga-
tion, which can not be handled by the basic layer axis as
explained in Section 3.4. Thus, for such cases, the wild-
card step s2 can not be eliminated. However, if the upward
navigation is restricted only to a single level, then the ex-
tended layer axis variant L−1/[i,j](S) can be applied.

Similarly, when it comes to updating existing height
constraints, the rules for par and anc given above remain
unchanged when i < 0, whereas those for child and desc
do not apply here.

4.2 Branching Wildcard Steps

In this section, we extend the techniques for eliminating
NB*-steps to eliminate B*-steps. Our algorithm (shown
in Figure 5) to eliminate a B*-step s in an XPath query
consists of two rewriting steps:

PullUpChildStep The first rewriting step tries to trans-
form s into a NB*-step by “pulling up” some of the
child steps of s to become above s. The goal is try
to reduce the problem of eliminating a B*-step to the
simpler case of eliminating a NB*-step.

MergeChildStep If s still remains a B*-step after the
PullUpChildStep, the second rewriting step then tries
to merge s with one of its child steps to eliminate s.

Example 4.1 Consider the XPath query q, where Tree(q)
is shown in Figure 4(a). To eliminate the B*-step
desc::*, PullUpChildStep first transforms Tree(q)
into Tree(q′) (shown in Figure 4(b)) by pulling up the

161

desc::a

desc::*

par::b

child::c

anc::d

child::e

child::f desc::g

desc::a

L[0,ht(vc)−1](∅)::b

child::c child::*

anc::d

child::e

child::f desc::g

desc::a

L[0,ht(vc)−1](∅)::b

child::c anc::d

child::e

child::*

child::f desc::g

desc::a

L[0,ht(vc)−1](∅)::b

child::c anc::d

child::e

L2(∅)::f

L−1,≥1(∅)::g

(a) Tree(q) (b) Tree(q′) (c) Tree(q′′) (d) Tree(q′′′)

Figure 4: Example of branching wildcard step elimination

Algorithm Rewrite-B*-step (q, s)
Input: An XPath query q with a B*-step s.
Output:An equivalent query q′,

where s may be removed
1) if (s has a par-axis child step spar) then
2) Pull up step spar in q;
3) for each anc-axis child step sanc of s do
4) Pull up step sanc in q;
5) if (s is now a NB*-step in q) then
6) let schild be the child step of s in q;
7) s′ = Rewrite-NB*-step (s, schild);
8) Modify q by replacing s/schild with s′;
9) else
10) if (s has some child-axis child step schild) then
11) Merge s with schild in q;
12) return q;

Figure 5: Algorithm to remove a B*-step

subtree rooted at par::b to become above desc::*; the axes
of these two steps are updated to L[0,ht(vc)−1](∅)::b and
child::*. Next, Tree(q′) is transformed into Tree(q′′)
(shown in Figure 4(c)) by pulling up the subtree rooted
at anc::d to become a child subtree of L[0,ht(vc)−1](∅)::b.
Note that the transformed wildcard step child::* in
Tree(q′′) is still a B*-step with two child steps.

The second rewriting step MergeChildStep then
transforms Tree(q′′) into Tree(q′′′) (shown in Fig-
ure 4(d)) by the following two changes: (1) the step child::*
is merged with its child step child::f into L2(∅)::f; and (2)
the axis of desc::g is changed to L−1,≥1(∅). 2

We now elaborate on the two rewriting steps in the fol-
lowing subsections.

4.2.1 Pulling Up Child Steps

To eliminate a B*-step s1 in an XPath query q, our algo-
rithm first tries to transform s1 into a NB*-step (which can
then be eliminated by algorithm Rewrite-NB*-step
described in the preceding section) by “pulling up” all the
child steps of s1 that have reverse axes (i.e., par or anc) to
become above step s1 in Tree(q).

This transformation is best explained with a diagram as
shown in Figure 6 to eliminate the B*-step s1 in query q.
Here, the par-axis child step s2 in Figure 6(a) is pulled up
to become above step s1 in Figure 6(b); and the axes for

steps s1 and s2 are updated accordingly to obtain an equiv-
alent query q′. Note that the set of height constraints S
associated with the B*-step s1 is not affected by the trans-
formation of Tree(q) to Tree(q′).

More formally, given an XPath query of the form
s0/s1[s2 T2][s3 T3] · · ·, where s1 = L[x,y](S)::* is a B*-
step that has a par-axis child step s2 = par::η2, the rewrite
rule for pulling up s2 above s1 can be stated as follows:

s0/s1[s2 T2][s3 T3] · · · ≡ s0/s′2[T2]/s′1[s3 T3] · · ·

where s2 is rewritten to s′2 = L[x−1,y−1](∅)::η2, and s1 is
rewritten to s′1 = L1(S)::*.

Once a par-axis child step5 has been pulled up above the
B*-step s1, each of the anc-axis child steps of s1 (if any)
can also be pulled up to transform q′ to q′′ as illustrated
in Figure 6(c). Specifically, the subtree rooted at step s3

in Figure 6(b) is pulled up to become a child subtree of
step s′2, and its axis is changed from anc to anc-or-self to
preserve equivalence. Note that if both the nodetests η2

and η3 in Figure 6(c) have distinct element labels, then the
axis of s′3 can be simplified from anc-or-self to anc, as
illustrated by the step anc::d in Figure 4(c). Here again, the
transformation of Tree(q′) to Tree(q′′) does not affect the
set of height constraints S associated with the B*-step s1.

Note that if the B*-step s1 = L[x,y](S)::* does not have
any par-axis child steps, then it is only possible to pull up
any of its anc-axis child steps provided if s1 is a child-axis
step (i.e., x = 1 and y = 1).

4.2.2 Merging With Child Step

The second MergeChildStep rewriting step is used to elimi-
nate a B*-step s1 that could not be transformed into a NB*-
step by the PullUpChildStep rewriting. As its name sug-
gests, the idea of this second rewriting is to try to merge
s1 with one of its child steps to transform s1 into a non-
wildcard step. Note that, after applying the PullUpChild-
Step rewriting, s1 does not have any par-axis child step
(i.e., each child step of s1 must be either a child-, desc-,
or anc-axis step).

The simplest way to perform the merging is to merge
the B*-step with a child-axis child step as illustrated in
Figure 7, which shows the elimination of a B*-step s1 =

5In the event that s1 has multiple par-axis child steps, the collection
of par-axis child steps can be first combined and optimized to remove
redundancies (e.g., [13]). Such issues are, however, orthogonal to the
techniques described here and are beyond the scope of this paper.

162

s0

s1 = L[x,y](S)::*

s2 =par::η2

T2

s3 =anc::η3

T3

· · · · · ·

s0

s′2 = L[x−1,y−1](∅)::η2

T2 s′1 = L1(S)::*

s3 =anc::η3

T3

· · · · · ·

s0

s′2 = L[x−1,y−1](∅)::η2

T2 s′3 = anc-or-self::η3

T3

s′1 = L1(S)::*

· · · · · ·

(a) Tree(q) (b) Tree(q′) (c) Tree(q′′)

Figure 6: Pulling up par-axis and anc-axis steps

s1 = L[x,y](S)::*

s2 =child::η2

T2

s3 =child::η3

T3

s4 =desc::η4

T4

s5 =anc::η5

T5

(a) Tree(q)

s′1 = L[x+1,y+1](S′)::η2

T2 s′3 = L−1/1(∅)::η3

T3

s′4 = L−1/≥1(∅)::η4

T4

s′5 = L−1/≤0(∅)::η5

T5

(b) Tree(q′)

Figure 7: Merging a B*-step with a child-axis child step

L[x,y](S)::* in a query q = s1[s2 T2][s3 T3] · · ·. Here,
Tree(q) in Figure 7(a) is transformed into Tree(q′) in Fig-
ure 7(b) by merging s1 with its child step s2 = child::η2,
which can be viewed as eliminating the NB*-step s1 in a
“linear” expression s1/s2 Thus, by rule (R1) in Section 4.1,
s2 becomes rewritten into s′2 = L[x+1,y+1](S′)::η2; note
that S is updated to S ′ using the updating rules as discussed
in Section 4.1. Other child steps sj (or [sj]) of s1 are up-
dated accordingly to cope with the merging, as follows:

• child::η is changed to L−1/1(∅)::η, namely, moving
upward one level and then moving one level down;

• desc::η now becomes L−1/≥1(∅)::η; and

• anc::η is changed to L−1/≤0(∅)::η.

For a concrete illustration of the MergeChildStep rewrit-
ing, the reader can refer to Figure 4(c) again, where the B*-
step child::* is eliminated by merging with its child step
child::f to transform q′′ to q′′′ as shown Figure 4(d).

Observe that the transformed query produced by the
MergeChildStep rewriting step is not unique as it depends
on the choice of the child step selected for merging with the
B*-step. Referring again to the example in Figure 7, note
that if the child step s3 had been selected (instead of s2) for
merging with the B*-step s1, the transformed query tree in
Figure 7(b) would have been different with T2 and η2 being
swapped with T3 and η3, respectively.

4.3 Rewriting Algorithm

In this section, we combine the techniques developed in the
preceding sections to present a rewriting-based approach
(shown in Figure 9) to minimize wildcard steps in an input
XPath query.

The algorithm consists of two stages: the first stage
(lines 1 to 4) calls Rewrite-NB*-step to remove
NB*-steps, and the second stage (lines 5 to 8) calls
Rewrite-B*-step to remove B*-steps.

In both stages, the algorithm traverses the tree in a top-
down manner to search for wildcard steps; this is important
to guarantee that a wildcard step s1 is rewritten before its
descendant wildcard step s2 of the same type (i.e., both B*-
steps or NB*-steps). The purpose of this requirement is to
maximize the number of wildcard steps that can be elim-
inated. For NB*-steps, recall that the rewriting rules for
them are of the form L[i,j](S)::* / χ::η ≡ L[i′,j′](S′)::η,
with the wildcard-based layer axis “on top” and a basic ver-
tical axis “below”. Thus, rewriting a “lower” NB*-step first
before its “upper” NB*-step could deprive the latter from
being eliminated. A similar reasoning also applies to B*-
steps, which is why a top-down traversal is preferred over
an arbitrary traversal for both stages.

Furthermore, the reason for eliminating NB*-steps first
before B*-steps is also for the purpose of maximizing the
number of wildcard step eliminations. For example, con-
sider the query q in Figure 8(a) containing two wildcard
steps s0 and s1. If the B*-step s0 is first rewritten, then q is
transformed to q′ in Figure 8(b), and the B*-step s′0 in q′

can not be eliminated by Algorithm Rewrite-B*-step.
On the other hand, if the NB*-step s1 is first rewritten,
then q is transformed to q′′ in Figure 8(c), and the re-
maining B*-step can still be eliminated using Algorithm
Rewrite-NB*-step. Thus, to maximize the number of
wildcard step eliminations, NB*-steps are eliminated first
before B*-steps.

The algorithm takes at most quadratic time in the size of
the input XPath query q. The overhead is negligible since q
is typically small in practice. Note that since the output of
the MergeChildStep rewriting is not unique, it follows that
the output of the rewrite algorithm is also not unique.

163

s0 =child::*

s1 =child::*

s2 =child::a

s3 =desc::b s4 =child::c

s′
0 = L2(∅)::*

s2 =child::a s′
3 = L−1/≥1(∅)::b s′

4 = L−1/1(∅)::c

s0 =child::*

s′
2 = L2(∅)::a s3 =desc::b s4 =child::c

(a) Tree(q) (b) Tree(q′) (c) Tree(q′′)

Figure 8: Example showing the advantage of eliminating NB*-steps before B*-steps

Algorithm Rewrite(q)
Input: An XPath query q.
Output: An equivalent query to q that has the

minimal number of wildcard steps.
1) Traverse Tree(q) top-down:
2) for each step s visited do
3) if (s is a NB*-step in s/s′) then
4) Rewrite-NB*-step (s, s′);
5) Traverse Tree(q) top-down:
6) for each step s visited do
7) if (s is a B*-step) then
8) Rewrite-B*-step (q, s);
9) return q;

Figure 9: Rewrite Algorithm

5 Optimized Evaluation of Wildcard-free
Queries

In this section, we demonstrate the usefulness of wildcard
step elimination by presenting a simple and yet effective
optimized evaluation strategy for XPath queries that are
free of wildcard steps.

One limitation of XPath query evaluators that rely on a
main-memory representation of the input XML data (e.g.,
DOM-based implementations) is that they can not scale to
process large input XML data due to their large space re-
quirement. An obvious idea to alleviate this problem is to
selectively load only the necessary portion of the input data
into main memory to evaluate the input query. However,
determining the necessary portion of the data to load seems
to be a difficult problem itself when the input XPath query
contains wildcard steps since a desc-axis wildcard step in
a query can potentially refer to the entire data. However, if
the input query is wildcard-free or if its wildcard steps can
be completely eliminated, then it becomes possible to em-
ploy a selective data-loading strategy to improve both the
scalability as well as the efficiency of query evaluation.

In this section, we present an optimized evaluation strat-
egy for wildcard-free XPath queries that is based on the
simple idea of selectively loading only a portion of the data
nodes into main memory based on the set of element labels
that appear in the input query. We first explain the idea for
evaluating node-selecting XPath queries and then discuss
how this strategy can also be applied (to some extent) to
standard XPath queries.

5.1 Node-selecting XPath Queries

To illustrate the basic idea, let us consider a simple node-
selecting XPath query q =/child::a/desc::*/child::b. In-
stead of loading the entire input data into main memory to
evaluate q, a more efficient approach is to first rewrite q into
an equivalent wildcard-free query q′ =/child::a/L≥2(∅)::b.
Then, by exploiting the absence of wildcard steps in q′, it is
now possible to selectively load only the data nodes whose
labels are explicitly referenced in the query (i.e., data nodes
that are labeled a or b).

More specifically, as the input data file is parsed, the
necessary node information is precomputed as described in
Section 3.3. If an input data node’s label is referenced in the
rewritten query q′, this data node is cached in main memory
(to be used for evaluating the query); otherwise, this node
is “irrelevant” for the query evaluation and it is only cached
temporarily in the stack (described in Section 3.3) for the
purpose of precomputing the ht(.) and level(.) informa-
tion. Once the input data has been completely parsed and
selectively loaded, the query can now be processed using
the loaded relevant data.

However, note that even though an irrelevant node v it-
self is not needed for query evaluation, its precomputed
ht(v) value might still be needed for checking the height
constraints for some other relevant data node. This can be
solved by storing the precomputed height information of
all ancestors of each relevant data node v (including v it-
self) in an array Htv[0, ..., H] (where H is the height of
the data tree) such that Htv [i] = ht(Li−level(v)(v)) for
i ≤ level(v). Clearly, the storage of the collection of ar-
rays Htv for the relevant data nodes can be optimized given
that there are overlapping entries in them.

Since the set of element labels that are explicitly ref-
erenced in the input query (in the earlier example, only
{a, b}) is generally a small subset of the set of element
labels that appear in the input XML data, this selective-
loading strategy can lead to significant reduction in the
data that need to be loaded for query evaluation, thereby
improving its scalability. Furthermore, since the data size
(more accurately, the size of the loaded data) is a key deter-
minant of the time-complexity of XPath query evaluation
(e.g., [8]), the query processing can also be significantly
improved using this optimized evaluation strategy.

As a final remark on the implementation of the opti-
mized evaluation, we note that it is necessary to precom-
pute the array Htv[0, ..., H] only for data nodes v (with
element label η) if there is some layer axis LX(S)::η in
the rewritten query with S 6= ∅. For the example query

164

q′, since the only layer-axis there does not have any height
constraints, the array Htv[0, ..., H] need not be precom-
puted at all.

5.2 Standard XPath Queries

The above optimized evaluation strategy can also be ap-
plied to standard XPath queries, but the portion of input
data that needs to be loaded is likely to be larger (compared
to node-selecting queries). This is due to the semantics of
standard XPath queries which require returning not only
the selected target nodes but also the subtrees rooted un-
der them. Consequently, data nodes that are descendants of
potential target nodes must also be cached in main mem-
ory (in addition to the data nodes whose element labels are
explicitly referenced in the query) for evaluation.

6 Related Work
To the best of our knowledge, this is the first paper that ad-
dresses the problem of reducing the size of XPath queries
by minimizing wildcard steps. Our proposed rewriting op-
timizations are different from but complementary to exist-
ing XPath query rewriting techniques.

In contrast to the research on minimizing redundant
XPath steps [17, 2, 13] which relies on integrity constraints
of the data schema, our rewriting techniques are designed
for minimizing non-redundant wildcard steps and do not
require knowledge of the data schema. Another difference
from these work is that our techniques apply to a larger
fragment of XPath queries beyond the child and descen-
dant axes considered for twig queries there.

Our work also differs from the recent research on elim-
inating reverse axes in XPath queries [12]; indeed, the
rewriting techniques there can actually introduce additional
wildcard steps into the transformed queries.

7 Performance Study
To verify the effectiveness of our rewriting algorithms and
optimized evaluation strategy for XPath queries, we con-
ducted a performance study using the XMark benchmark
data [18]. Our results indicate that our proposed optimiza-
tions achieve a significant performance improvement over
traditional evaluation methods for XPath queries, with our
selective data loading evaluation strategy (based on wild-
card step elimination) outperforming a conventional evalu-
ation method by a factor ranging from 2 to 4.

7.1 Experimental Testbed and Methodology

Data Sets: We used the XMark benchmark data [18] for
our experiments and generated four data files of size 70MB,
175MB, 260MB, and 340MB. The number of element
nodes contained in these files are, respectively, about 1.1
million, 2.5 million, 3.8 million, and 5 million.

Queries: We generated node-selecting XPath queries us-
ing the XMark benchmark schema by varying three param-
eters: the number of non-consecutive NB*-steps (denoted

by Nnc), the number of consecutive NB*-steps (denoted by
Nc), and the number of B*-steps (denoted by Nb). Nnc is
varied from 0 to 3, where the query with Nnc = 3 consists
of a single step followed by three predicates (each of which
contains a wildcard step) as follows: “/desc::mailbox
[anc::*/anc::site] [desc::*/desc::from] [desc::*/desc::to]”.
Queries with Nnc < 3 are generated from this query by
removing the appropriate number of predicates. Nc is var-
ied from 0 to 3, where the query with Nc = 3 is of the
form “/desc::site/desc::*/desc::*/desc::*/child::keyword”,
and queries with Nc < 3 are generated from this query
by removing the appropriate number of wildcard steps.
Finally, Nb is varied from 0 to 3 as follows. The
query with no B*-steps is /desc::bidder [par::openauction]
[anc::regions] /anc::site, and the query with a single B*-
step is q1 = /desc::personref /anc::* [par::openauction]
[anc::regions] /anc::site. A query with n B*-steps, n > 1,
is generated by concatenating n copies of q1.

Algorithms: We compared the performance of three differ-
ent methods for evaluating XPath queries. The first method
(“eval”) corresponds to an unoptimized approach where
the wildcard steps in the input query are not eliminated,
and the query is evaluated by first constructing a main-
memory representation of the entire input XML data before
query evaluation. We implemented this evaluation method
based on [9]. The second method (“layer+eval”) is an
enhancement of the first method that optimizes the input
query by eliminating its wildcard steps using the layer axis.
Finally, the third method (“layer+optEval”) is a fur-
ther improvement of the second method which is based on
our proposed optimized evaluation strategy using selective
loading together with wildcard step elimination.

We compared the evaluation methods in terms of the to-
tal evaluation time that includes two components: the pars-
ing time as well as the querying time. The parsing time
includes the time to parse and load the data into main mem-
ory (either partially or entirely) as well as the time to per-
form any precomputations (e.g., both the layer+eval
and layer+optEval methods might need to precom-
pute level(.) and ht(.) values). The querying time refers
to the actual time required to evaluate the input query using
the loaded data and any precomputed information to com-
pute the query’s result. Our experiments were conducted
on a 2.6 GHz Intel Pentium IV machine with 1 GB of main
memory running Windows XP; and all algorithms were im-
plemented using Java.

7.2 Experimental Results

Figures 10(a), (b), and (c), compare the performance re-
sults of the three evaluation algorithms on the 70MB data
file by varying the parameters Nnc, Nc, and Nb, respec-
tively. Figure 10(d) compares the performance of evalu-
ating the single NB*-step query with Nc = 1 by vary-
ing the size of the XML data file. Our results demon-
strate that both the wildcard-step elimination strategy (i.e.,
layer+eval) as well as the selective-loading evalua-
tion strategy (i.e., layer+optEval) consistently outper-

165

0

2

4

6

8

10

12

14

16

0 1 2 3

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Number of non-consecutive wildcard steps

eval
layer+eval

layer+optEval

(a) Varying Nnc

0

5

10

15

20

25

0 1 2 3

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Number of consecutive wildcard steps

eval
layer+eval

layer+optEval

(b) Varying Nc

0

5

10

15

20

0 1 2 3

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Number of branching wildcard steps

eval
layer+eval

layer+optEval

(c) Varying Nb

0

20

40

60

80

100

120

70 140 210 280 350

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Size of XML data (MB)

eval
layer+eval

layer+optEval

(d) Varying input data size

Figure 10: Evaluation of Node-selecting XPath Queries.

form the traditional evaluation method (i.e., eval), with
layer+optEval giving the best performance. Specifi-
cally, layer+eval improves eval by a factor of up to
2.3, and layer+optEval improves eval by a factor of
up to 4.2.

Figure 10(a) shows that as a query’s complexity in-
creases (with a larger number of non-consecutive wildcard
steps), its total evaluation time also increases as expected;
and generally, the performance gain of our proposed opti-
mizations over eval also increases. Note that when the
query has no wildcard steps (i.e., Nnc = 0), both eval
and layer+eval are essentially the same and they have
the same evaluation cost.

The parsing time turns out to be the dominant compo-
nent of the total evaluation cost for all three methods. In
particular, for both layer+eval and layer+optEval,
the parsing time constitutes over 90% of the total evalua-
tion cost. For eval, while the parsing time is about 90%
of the total cost when Nnc = 0, this reduces to about
55% when Nnc > 0 due to the higher querying cost for

queries with wildcard steps. Among the three methods,
the parsing time for layer+eval is the highest, while
layer+optEval incurs the lowest parsing cost. The rea-
son for the latter is due to the effectiveness of selective
data loading. layer+eval is more costly than eval in
terms of parsing because layer+eval incurs the addi-
tional overhead of precomputation without the benefit of
selective loading; however, the overall evaluation cost of
layer+eval is still lower than that of eval due to the
significant performance benefit with wildcard step elimina-
tion.

In terms of querying time, layer+eval is more
efficient than eval because the wildcard steps in the
queries are eliminated by layer+eval which results in
faster query evaluations. The querying performance of
layer+eval is further improved by layer+optEval
which significantly reduces the data nodes loaded for eval-
uation; indeed, the proportion of data nodes being loaded
by layer+optEval ranges from 1.3% to 3.8% as Nnc

increases from 0 to 3.

166

Similar trends are also observed for the performance
comparisons with varying number of consecutive non-
branching wildcard steps Nc and varying number of
branching wildcard steps Nb in Figures 10(b) and (c), re-
spectively. In particular, the performance improvement of
both layer+eval and layer+optEval over eval is
greater as the query’s complexity increases.

Finally, Figure 10(d) compares the performance of eval-
uating the single NB*-step query with Nc = 1 as a func-
tion of the size of the XML data file. The results indicate
that the performance benefits of both layer+eval and
layer+optEval over eval become more significant as
the data size increases.

8 Conclusions

In this paper, we have proposed a new and complementary
approach to optimize XPath queries by minimizing their
wildcard steps. Our approach is based on using a general,
composite axis called the layer axis, to rewrite a sequence
of XPath steps into a single layer-axis step. We have de-
scribed an efficient implementation of the layer axis and
presented a novel and efficient rewriting algorithm to min-
imize both non-branching as well as branching wildcard
steps in XPath queries. We have also demonstrated the use-
fulness of wildcard-step elimination by proposing an opti-
mized evaluation strategy that capitalizes on the absence
(or reduction) of wildcard steps in XPath queries. Our ex-
perimental results show that both the rewriting techniques
and optimized evaluation strategy can result in significant
performance improvement for XPath query evaluation. To
the best of our knowledge, this is the first paper that ad-
dresses this new optimization problem.

As part of our future work, we intend to investigate the
optimality and completeness of our rewriting algorithm,
and also examine the possibility of extending the layer axis
to handle the “horizontal” axes (i.e., preceding, following,
and sibling-related axes) as well.

References

[1] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu,
N. Koudas, and D. Srivastava. Structural joins: a
primitive for efficient XML query pattern matching.
In ICDE, pages 141–152, 2002.

[2] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and
D. Srivastava. Minimization of tree pattern queries.
In SIGMOD, pages 497–508, March 2001.

[3] M. Benedikt, W. Fan, and G. M. Kuper. Structural
properties of XPath fragments. In ICDT, pages 79–
95, 2003.

[4] S. Boag, D. Chamberlin, M. Fernandez,
D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML query language.
"http://www.w3.org/TR/xquery", Novem-
ber 2003.

[5] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: optimal xml pattern matching. In SIGMOD,
pages 310–321, 2002.

[6] J. Clark. XSL Transformations (XSLT) 1.0.
"http://www.w3.org/TR/xslt", November
1999.

[7] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML
querying with security views. In SIGMOD, 2004.

[8] G. Gottlob, C. Koch, and R. Pichler. Efficient algo-
rithms for processing XPath queries. In VLDB, pages
95–106, 2002.

[9] G. Gottlob, C. Koch, and R. Pichler. XPath query
evaluation: improving time and space efficiency. In
ICDE, pages 379–390, 2003.

[10] S. Helmer, C.-C. Kanne, and G. Moerkotte. Opti-
mized translation of XPath into algebraic expressions
parameterized by programs containing navigational
primitives. In WISE, pages 215–224, 2002.

[11] H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holistic twig
joins on indexed XML documents. In VLDB, pages
273–284, 2003.

[12] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
looking forward. In Workshop on XML-based Data
Management, pages 109–127, March 2002.

[13] P. Ramanan. Efficient algorithms for minimizing tree
pattern queries. In SIGMOD, pages 299–309, 2002.

[14] P. Rao and B. Moon. PRIX: indexing and querying
XML using Prufer sequences. In ICDE, pages 288–
300, 2004.

[15] W3C. XML Path Language (XPath) 1.0.
"http://www.w3.org/TR/xpath", 1999.

[16] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: a dy-
namic index method for querying XML data by tree
structures. In SIGMOD, pages 110–121, 2003.

[17] P. T. Wood. Minimising simple XPath expressions. In
WebDB, pages 13–18, 2001.

[18] XMark Project. XMark – an XML benchmark project.
"http://www.xml-benchmark.org", 2001.

167

