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Abstract In the paper, we consider the problem of schedul-
ing jobs on parallel identical machines with the late work
criterion and a common due date, both offline and online
cases. Since the late work criterion has not been studied in
the online mode so far, the analysis of the online problem is
preceded by the analysis of the offline problem, whose com-
plexity status has not been formally stated in the literature
yet. Namely, for the offline mode, we prove that the two-
machine problem is binary NP-hard, and the general case is
unaryNP-hard. In the onlinemodewe assume that jobs arrive
in the system one by one, i.e., we consider the online over
list model. We give an algorithm with a competitive ratio
being a function of the number of machines, and we prove
the optimality of this approach for two identical machines.
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1 Introduction

Time constraints, which can be used to determine feasibility
conditions, as well as to evaluate the quality of feasible solu-
tions, play an important role in scheduling problems which
can be met in the real world. In the scheduling theory, time
constraintsmight bemodeledwith due dates or deadlines and
the quality of schedules is estimated with reference to these
parameters, leading to such criteria as lateness (e.g., McMa-
hon and Florian 1975), tardiness (e.g., Emmons 1969), or the
number of tardy jobs (e.g., Moore 1968).

Late work criterion is one of the less explored objec-
tive functions based on due dates. It was first proposed by
Blazewicz (1984). Soon a number of research groups focused
on this performance measure, obtaining a set of interesting
results. The single-machine case was considered mainly by
Potts and Van Wassenhove (1991), Hochbaum and Shamir
(1990), Hariri et al. (1995), Kovalyov et al. (1994), Keth-
ley and Alidaee (2002), and, more recently, by Lin and Hsu
(2005), Zhang and Wang (2005), as well as by Ren et al.
(2009). The parallel machines environment was studied by
Blazewicz (1984), Blazewicz and Finke (1987), and Leung
(2004),while the dedicatedmachines environmentwas inves-
tigated mainly by Blazewicz et al. (2004a, 2005a, 2007) and
by Leung (2004), as well as by Lin et al. (2006). The state
of the art for late work scheduling was presented by Leung
(2004) in the context of imprecise computations and then by
Sterna (2011). This latter survey shows that the majority of
results obtained for the late work criterion so far concern the
single-machine or shop systems, and not too much attention
has been paid to the parallel machines environment. Besides,
all results presented in the literature concern the offline ver-
sion of the mentioned scheduling problems, and no paper is
devoted to the online case.

123

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/191442643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-015-0464-7&domain=pdf


730 J Sched (2016) 19:729–736

In this work, we consider the problem of scheduling jobs
on parallel identicalmachineswith the latework criterion and
a common due date, both offline and online versions. For the
offline case, we prove that the problem for two machines
(P2|d j = d|Y ) is binary NP-hard, while for an arbitrary
number of machines (P|d j = d|Y ), it is unary NP-hard. In
the online model studied in this paper, jobs appear in the
system one by one: when the previous job is scheduled, the
next one may arrive. Since there is an input sequence of
jobs, this model is called in the literature online “over list.”
For the online version of the analyzed scheduling problem
(P|d j = d, online over list |Y ), we propose an algorithm

with competitive ratio
√
2m2−2m+1−1

m−1 , wherem is the number
of machines. Then, we prove the optimality of this method
for two identical machines. More precisely, we show that
when m = 2, the competitive ratio, equal to

√
5− 1, is iden-

tical with the lower bound of the problem, so the proposed
algorithm is optimal for P2|d j = d, online over list |Y .
Moreover, when m → ∞, the competitive ratio converges
to

√
2, which is constant.

The rest of the paper is organized as follows: Section 2
presents the formal definition of the considered problem and
provides some information on the related work. Section 3
shows that the offline problem is NP-hard. The online case
is investigated in Sect. 4, where an online algorithm with
the constant competitive ratio is proposed together with the
proof of its optimality for two machines. Some conclusions
and future research directions are given in Sect. 5.

2 Problem definition and related work

The problem of scheduling jobs on parallel identical
machines with the late work criterion can be defined as
follows: There are given n jobs J = {J1, . . . , Jn} and
m identical machines M = {M1, . . . , Mm}. Each job J j
( j = 1, . . . , n) is described by its processing time p j , due
date d j (representing the preferred completion time for this
job), and optionally weight w j (representing the relative
importance of this job). In this paper, we consider a com-
mon due date for all the jobs (i.e., d j = d, for j = 1, . . . , n),
and we assume that jobs have the same unit weight (i.e.,
w j = 1, for j = 1, . . . , n). To solve the problem, it is neces-
sary to schedule all jobs (i.e., to assign jobs tomachines and to
determine their sequence on particular machines), such that
all jobs are executed without preemption and each machine
executes at most one job at the same time (i.e., for each job J j
its feasible completion timeC j is determined). The schedule
should minimize the total late work Y .

The late work for job J j is equal to the length of the late
part of this job (if any), i.e., Y j = min{p j ,max{0, C j −d j }}
(cf. Fig. 1 for the common due date case). The total late
work is equal to the sum of late parts of all jobs in the system
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Fig. 1 Late work definition for particular jobs

i.e., Y = ∑n
j=1 Y j = ∑n

j=1 min{p j , max{0, C j − d j }}. In
general, for different weights the total weighted late work
criterion Yw might be considered, i.e., Yw = ∑n

j=1 w j Y j =∑n
j=1 w j min{p j ,max{0, C j − d j }}.
In the offline version, P|d j = d|Y [according to the three-

field classification scheme (Graham et al. 1979)], the set of
all jobs to be scheduled is known in advance. Moreover, we
assume that all jobs are available at time zero (i.e., job release
times are equal to zero, r j = 0 for j = 1, . . . , n).

In the online version, P|d j = d, online over list |Y , jobs
arrive in the system “over list.” This means that the set of all
jobs is unknown in advance, and the next job might appear
in the system only after scheduling the previous one.

The late work scheduling problems model many practical
situations (Sterna 2011). For example, jobs may represent
customer orders in internet shops (cf. Wojciechowski and
Musial 2010; Blazewicz and Musial 2011; Blazewicz et al.
2014) or tasks in production systems (cf. Sterna 2007b),
which have to be executed on identical machines working
in parallel, e.g., by workers having the same qualifications
or on identical stages in a flexible manufacturing system,
within given time, e.g., before a shipping term or within a
planning horizon. The late work models the amount of work
not executed on time, which determines, e.g., the loss of
income caused by not executing parts of jobs on time, the
fine which has to be paid to customers in case of delay, or
just the amount of work which has to be scheduled in the fol-
lowing interval, because it was not completed in the assumed
planning horizon. Jobs may also model pieces of informa-
tion (Blazewicz 1984) which have to be collected by sensing
devices before a given deadline. Minimizing late work corre-
sponds to minimizing information loss, directly influencing
the efficiency of control algorithms. Other applications arise
in agriculture, where stretches of land have to be harvested
before a given time resulting from the vegetation cycle (Potts
and VanWassenhove 1991). In such a case, late work models
perished goods not harvested on time. Depending on the real
world conditions, i.e., whether the situation is static (all jobs
are known) or dynamic (jobs arrive one after the other), the
offline or online version of the model should be applied.
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Late work parameter, Y j , was first introduced by
Blazewicz (1984), who called it information loss, referring to
a possible application of this performance measure in con-
trol systems. The phrase late work was proposed by Potts
and Van Wassenhove (1991), who denoted this parameter as
Vj , which appears in the literature alongside Y j . The relation
between late work and other performance measures (such as
makespan Cmax, maximum lateness Lmax, mean (weighted)
tardiness D/Dw, earliness E /Ew, and flow time F /Fw, as
well as the (weighted) number of tardy jobs U /Uw) was
determined by Blazewicz et al. (2000), who showed that
problems with the late work criterion are at least as diffi-
cult as the analogous problems with the maximum lateness
performance measure.

The majority of results for the late work criterion have
been obtained for single-machine problems. For example,
Potts and Van Wassenhove (1991) proposed a polynomial
time algorithm with the complexity O(nlogn) to solve the
problem 1|pmtn|Y and showed that its non-preemptive case
is NP-hard. Hariri et al. (1995) proposed an algorithm which
solves 1|pmtn|Yw with the same time complexity O(nlogn).
Then, a fully polynomial time approximation scheme was
proposed for 1||Y , which is an example of DP-benevolent
problem defined by Woeginger (2000). For the case with
job release times (1|r j , pmtn|Y ), Lin and Hsu (2005) pro-
posed a polynomial time algorithm, also with the complexity
O(nlogn).

There are also a series of results concerning dedicated
machines problems. Blazewicz et al. proved the binary NP-
hardness of open, flow and job shop problems: O2|d j =
d|Yw (Blazewicz et al. 2004a), F2|d j = d|Yw (Blazewicz
et al. 2005a), and J2|d j = d, n j ≤ 2|Yw (Blazewicz et al.
2007). They gave NP-hardness proofs and three dynamic
programming methods with pseudo-polynomial complexity
O(nd3), O(n2d4), and O(n3d11), respectively. Besides this
research group, Leung (2004) proved that when jobs have
two distinct due dates, problems O2|d j ∈ {d1, d2}|Y and
F2|d j ∈ {d1, d2}|Y are NP-hard. Using a similar approach,
Lin et al. (2006) proved that F2|d j = d|Y is NP-hard. In
addition to these theoretical results, computational experi-
ments with metaheuristic approaches for shop systems were
reported in the literature (cf., e.g., Blazewicz et al. 2005b, c;
Pesch and Sterna 2009).

Although the late work criterion was originally proposed
for parallel machines, only a few results have been obtained
for this machine environment so far. To the best of our
knowledge, only three papers focus directly on this subject.
Blazewicz (1984) and Blazewicz and Finke (1987) investi-
gated problems P||Y , P|r j , pmtn|Yw and Q|r j , pmtn|Yw.
Then, Leung (2004) gave some results for unweighted cases
P|r j , pmtn|Y and Q|r j , pmtn|Y . The non-preemptive
problem mentioned above is NP-hard, while the preemptive
ones are polynomially solvable.

3 Offline problem P|d j = d|Y
The complexity status of the offline scheduling problem
P2|d j = d|Y has not been determined so far, despite
the fact that it might be quite easily predicted. Based on
the literature, we know that the problem with an arbitrary
number of machines and arbitrary due dates, P||Y , is NP-
hard (Blazewicz 1984). Actually, already the single-machine
problem, 1||Y , is binary NP-hard (Potts andVanWassenhove
1991). In consequence, the two-machine problem with arbi-
trary due dates, P2||Y , has to be at least binary NP-hard. By
contrast, the single-machine problem with a common due
date, 1|d j = d|Y , is polynomially solvable, since any sched-
ule without idle time is optimal (Potts and Van Wassenhove
1991). There is no known result concerning the complexity
of the two-machine non-preemptive problem with a com-
mon due date. On the other hand, it is known that late work
scheduling problems are at least as difficult as the problems
of minimizing the makespan (Blazewicz et al. 2000). We
know that the makespan minimization problem on two iden-
tical parallel machines, P2||Cmax, is binary NP-hard (Garey
and Johnson 1979). But this result does not determine the
complexity of the problem P2|d j = d|Y (but P2||Y ). Nev-
ertheless, there is a very close relation between P2||Cmax

and P2|d j = d|Y .
Theorem 1 In the offline case, any optimal solution for
P2||Cmax is optimal for P2|d j = d|Y .
Proof Consider the schedule which is optimal for problem
P2||Cmax. Denote the makespan on Mi as Ci (i = 1 and
2). Then the optimal schedule length is equal to C∗

max =
max{C1,C2}. Let us assume without loss of generality that
C1 = C∗

max; therefore, C
2 ≤ C1.

Case 1 If d ≥ C1, then all jobs in the schedule are early,
the total late work equals zero (Y = 0), and the schedule is
optimal for P2|d j = d|Y .
Case 2 If d < C1 and d ≥ C2, then Y = C1−d = C∗

max−d,
and it cannot be smaller, since C∗

max is minimal; therefore,
the schedule is optimal for P2|d j = d|Y .
Case 3 If d < C2, then there are late jobs on both machines
and the total late work equals Y = (C1 − d) + (C2 − d) =
(C∗

max −d)+ (C2 −d) > 0. Since jobs are executed without
idle time and machines are busy in the whole interval [0, d],
the amount of early work cannot be increased; thus, the late
work cannot be decreased, so the schedule is optimal for
P2|d j = d|Y . 	


Theorem 1 shows that using a method of solving the prob-
lem with the makespan criterion, which is NP-hard, we can
also solve the problem with the late work criterion and a
common due date. But it does not mean that the solution for
the late work criterion cannot be found in polynomial time.
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The NP-hardness of problem P2|d j = d|Y results from its
similarity to the Partition Problem, which is NP-complete
(Garey and Johnson 1979).

Theorem 2 The problem P2|d j = d|Y is NP-hard.

Proof The decision counterpart of problem P2|d j = d|Y
obviously belongs to NP, since its solution can be verified in
polynomial time.

Consider the NP-complete Parti tion Problem, formu-
lated as follows: There is given a set A = {a1, . . . , an} of n
elements of size s j . The question is does there exist a subset
A′ ⊆ A, such that

∑
a j∈A′ s j = ∑

a j∈A\A′ s j?
Consider the scheduling problemwith two identical paral-

lel machines and a common due date, P2|d j = d|Y , where n
jobs J j (1 ≤ j ≤ n) from set J correspond to n elements a j

from A, i.e., p j = s j , and d = 1
2

∑
a j∈A s j = 1

2

∑n
j=1 p j .

The question is does there exist a solution for P2|d j = d|Y
with the total late work equal to zero (Y = 0)?

Both problems are equivalent. If the Partition Problem
has a solution, then we can execute jobs corresponding to
A\A′ on M1 and to A′ on M2. The schedule length on both
machines is equal to 1

2

∑
a j∈A s j = 1

2

∑n
j=1 p j , and all jobs

are early, leading to zero total late work.
On the other hand, if there is a schedule with zero late

work, then all jobs finish not later than at common due date
d. Since d = 1

2

∑n
j=1 p j , the jobs have to be executed on

bothmachineswithout idle times exactly ford timeunits. The
division of jobs between machines determines the solution
of the Partition Problem. 	


Moreover, problem P2|d j = d|Y is binary NP-hard,
because it can be solved in pseudo-polynomial time by
a simple dynamic programming method. Assuming that
f ( j, A, B) denotes the total late work for j jobs scheduled
on the machines, where fully early jobs are executed for at
most A and B units on M1 and M2, respectively, the optimal
total late work is equal to f (n, d, d). The criterion value can
be determined by the recurrence function with zero initial
conditions:

f ( j, A, B)

= min
{
f
(
j − 1,max

{
0, A − p j

}
, B

) + max
{
0, p j − A

}
,

f
(
j − 1, A,max

{
0, B − p j

}) + max
{
0, p j − B

}}
.

The first formula represents schedules with job J j assigned
to machine M1, while the second one represents schedules
with J j executed on M2. Since jobs are scheduled with-
out idle time on both machines and their sequence is not
important from the criterion value point of view, then the
solution process is reduced to assigning jobs to machines
or—in other words—to packing jobs before the due date.
Because the recurrence function has to be determined for

n jobs and 0 ≤ A ≤ d, 0 ≤ B ≤ d, the method runs in
pseudo-polynomial time O(nd2).

Taking into account the fact that the two-machine case,
P2|d j = d|Y , is NP-hard, its generalization for an arbitrary
number of machines P|d j = d|Y is also NP-hard (Garey and
Johnson 1979).

Actually, using analogous reasoning as in Theorem 2, it
is easy to show that problem P|d j = d|Y is unary NP-hard
due to the transformation from the 3-Partition Problem. The
general idea of the proof is as follows.

In the unaryNP-complete 3-Partition Problem (Garey and
Johnson 1979), there is given a set A = {a1, . . . , a3n} of 3n
elements of size s j , such that

∑
a j∈A s j = nB, where 1

4 B <

s j < 1
2 B for each j = 1, . . . , 3n. The question is does there

exist a partition of A into A1, . . . , An , such that
∑

s j∈Ai
s j =

B for each i = 1, . . . , n? Constructing a schedule with 3n
jobs, corresponding to elements a j , on n machines with zero
total late work with regard to common due date d = B, is
equivalent to solving the 3-Partition Problem.

Theorems 1 and 2 show the similarity of problems
P2|d j = d|Y and P2||Cmax. We know that solutions mini-
mizing makespan are optimal from the total late work point
of view, and no other schedule minimizing the total late
work can be constructed in polynomial time. Moreover, the
dynamic programming method proposed above shows the
similarity of the considered scheduling problem to theKnap-
sack Problem or the Bin Packing Problem, because we try to
pack as many time units of jobs before a common due date
as possible.

Although problem P2|d j = d|Y is closely related to
these classical combinatorial problems, determining its com-
putational complexity, and consequently the complexity of
P|d j = d|Y , was necessary to start research on online
versions of these cases, because the efficiency of online algo-
rithms is evaluated based on the comparison of online and
offline solutions.

4 Online problem P|d j = d, onl ine over l i st|Y
In the literature (cf., e.g., Tan and Zhang 2013), two basic
models of online scheduling are discussed: 1) online “over
list” model and 2) online “over time” one. In online “over
list” scheduling, it is assumed that jobs come into the sys-
tem one after another, i.e., the information on the next job
becomes available—without any delay—after the previous
one has been processed . In online “over time” scheduling,
each job has its release time, and the information on this job
becomes known only after this time.

Within the reported research, we focus on the first branch
of online scheduling. All the problem parameters defined
for the offline case in Sect. 3 apply to the online case, too.
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Particularly, each job J j has processing time p j and all jobs
should be preferably executed before common due date d.
Our goal is to schedule all jobs on m identical machines, so
that the total late work Y is minimized.

Since the set of jobs is unknown in advance, a schedule
has to be constructed by an online algorithm. Obviously, due
to incomplete knowledge about the whole set of jobs, online
schedule might be worse than an optimal offline schedule,
determined under perfect knowledge about all problem para-
meters.

To estimate the quality of online scheduling algorithms,
we often use competi tive ratio—a classic measure which
shows how close an online solution is to an offline opti-
mal solution (cf., e.g., Borodin and El-Yaniv 1998; Fiat and
Woeginger 1998). For example, in a scheduling problemwith
an objective function which is minimized, for an input π and
an online algorithm A, where CA

max(π) denotes the criterion
value produced by A, andC∗

max(π) denotes the optimal solu-
tion value in an offlinemodel, the competitive ratio of A is the
infimum r such that for any input, CA

max(π) ≤ r · C∗
max(π).

We call A an r − competi tive algorithm.
Moreover, an online problem has a lower bound ρ, if no

online scheduling algorithm has a competitive ratio strictly
smaller than ρ.

An online scheduling algorithm is called optimal, if its
competitive ratio is equal to this lower bound.

However, as we see from the following lemma, we cannot
use the competitive ratio to estimate the quality of online
scheduling algorithms minimizing late work directly.

Lemma 3 There is no constant lower bound of competitive
ratio for P|d j = d, online over list |Y .
Proof Denote the total late work produced by an online algo-
rithm A as Y A and the optimal total late work for an offline
solution as Y ∗. Let m = 2 and d = 2− ε, where 0 < ε < 1.
Assume that the first two jobswhich arrive in the system have
unit processing times p1 = p2 = 1.
Case 1Assume that these two jobs have been assigned by any
online algorithm to the samemachine. Then the job sequence
ends and no more jobs arrive in the system. Hence, we get
Y A = 2−d = ε. But in the optimal offline solution, we have
Y ∗ = 0, by assigning the jobs to different machines.
Case 2 Now assume that this online algorithm has assigned
these two jobs to different machines; then the third job with
p3 = 2 comes. We must assign it to one of the machines,
and we have Y A = 3− d = 1+ ε. But in the optimal offline
solution, we have Y ∗ = (2−d)+(2−d) = 2ε, by assigning
the first two jobs to onemachine and the third one to the other.

Then Y A

Y ∗ = 1+ε
2ε = 1

2ε + 1
2 → ∞, when ε → 0. 	


FromLemma3we see that the competitive ratio calculated
based on the total late work is useless for investigating online
problems, since itmight be notwell defined (as inCase1 ) or it

might be infinite (as in Case 2), and another approach should
be applied. Actually, to determine the competitive ratio for
online algorithms for P|d j = d, online over list |Y , we
can use the concept of early work (X ), which is of course
complementary to late work (Blazewicz et al. 2005a). Early
work denotes the part of job J j executed before (instead after)
the due date (X j ) and any algorithm solving the problem
should maximize the total early work (X = ∑n

j=1 X j ). For
the offline problem both concepts are fully equivalent, but
for the online case only early work allows us to investigate
the competitive ratio. As it was shown, the total late work
could be zero in an optimal offline solution, and, in this case,
we could not use the competitive ratio to estimate the quality
of an online solution (we cannot use zero as denominator).
On the contrary, early work is always positive (except for the
trivial cases with d = 0 or n = 0).

Hence, we will denote with X A the total early work of a
solution constructed by the online algorithm A and with X∗
the criterion value of an optimal offline solution. Then the
competitive ratio for the early work scheduling problem can
be defined as infimum r such that for any input X∗

X A ≤ r .

4.1 Algorithm for P|d j = d, onl ine over l i st|Y

To solve the considered problem, we propose an online algo-
rithm called EFFm (ExtendedFirst Fit formmachines), with

the competitive ratio
√
2m2−2m+1−1

m−1 . We use the following
notation:

– Li
j : the load on machine Mi (i = 1, . . . ,m) after job J j

( j = 1, . . . , n) has been assigned (i.e., current makespan
on Mi ),

– Sum: the total size of all jobs, Sum = ∑n
j=1 p j ,

– XEFFm : the total early work of online solution con-
structed by EFFm ,

– X∗: the optimal early work of offline solution (note that
X∗ ≤ min{Sum,md} from the definition of early work),

– rm =
√
2m2−2m+1−1

m−1 : the desired competitive ratio (m ≥
2).

The online algorithm EFFm assigns a new job to the first
suitable machine or to the machine with the minimum load,
if there is no suitable one. The machine is suitable, if after
assigning a new job its loadwill not exceed the assumed ratio,
i.e., rmd.

Algori thm EFFm

1. Set t = 1, Li
0 = 0 for i = 1, . . . ,m.

2. When job Jt comes, assign it to the first machine which
fits it, without violating the ratio (First Fit), i.e.,
for (i = 1; i ≤ m; i + +)
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if (Li
t−1 + pt ≤ rmd){

assign Jt to Mi (i.e., Li
t = Li

t−1 + pt )
break;

}.
3. If (i > m), then assign Jt to the machine with the mini-

mum load.
4. If there is another job in the input sequence, set t = t +1

and go to Step 2, else stop.

Theorem 4 The competitive ratio of Algorithm EFFm is

rm =
√
2m2−2m+1−1

m−1 (m ≥ 2).

Proof For the sake of simplicity, we assume that the
machines are numbered in the non-increasing order of their
loads when Algorithm EFFm stops.
Consider the time after the last job Jn has been assigned to a
machine.
Case 1 If maxi=1,...,m{Li

n} ≤ d, we have XEFFm = Sum,
and the solution is optimal.
Case 2 If mini=1,...,m{Li

n} ≥ d, we have XEFFm = md, and
the solution is also optimal.
So we focus on Case 3 with

min
i=1,...,m

{Li
n} < d < max

i=1,...,m
{Li

n}

Subcase 3.1:

min
i=1,...,m

{Li
n} < d < max

i=1,...,m
{Li

n} ≤ rmd

Assume there are k machines with late work (i.e., their
load exceeds d). Then we have X∗

XEFFm ≤ Sum
XEFFm =

∑k
j=1 L

j
n+∑m

j=k+1 L
j
n

kd+∑m
j=k+1 L

j
n

. Note a+c
b+c ≤ a

b , when a ≥ b > 0 and

c ≥ 0, so we have X∗
XEFFm ≤

∑k
j=1 L

j
n

kd ≤ krmd
kd = rm .

Subcase 3.2:

min
i=1,...,m

{Li
n} < d < rmd < max

i=1,...,m
{Li

n}

Let JL be the last job on the machine with the maximum
load. Then this machine had the minimum load (let denote
this load with A) before assigning JL (according to Step 3
of Algorithm EFFm). Let B ≥ A be the second smallest
machine load before assigning job JL .

If A > 0, then A and B contain processing times of some
jobs, and we have A+ B > rmd; else these jobs would have
been assigned to the same machine according to First Fit
rule applied within EFFm . Since B ≥ A, we have B >
1
2rmd. Then we have XEFFm ≥ (m − 1)B + d, since there
is at least one machine with late work and others with load
greater than B. Then X∗

XEFFm ≤ md
(m−1)B+d < md

(m−1)rmd
2 +d

=
2m

(m−1)rm+2 .

According to its definition, rm =
√
2m2−2m+1−1

m−1 , so we

have X∗
XEFFm < 2m√

2m2−2m+1+1
=

√
2m2−2m+1−1

m−1 = rm .
Otherwise A = 0 , which means that there is a “big” job with
processing time p > rmd. Exclude temporarily this job and
themachine onwhich it has been scheduled from the analysis.
We get a new job sequence J

′
and a new schedule for it. Let

X
′
be the total early work of this new schedule constructed

by EFFm and let X
′∗ be the optimal offline early work for

this instance. Using the reasoning presented before, we can

show that X
′∗

X ′ ≤ rm . Then we have X∗
XEFFm = X

′∗+d
X ′+d

≤ rm ,
since rm ≥ 1. 	

Lemma 5 The competitive ratio of Algorithm EFFm, i.e.,

rm =
√
2m2−2m+1−1

m−1 =
√

(m−1)2+m2−1
m−1 , is an increasing

function of m.

Proof To prove this lemma, it is sufficient to prove that
rm+1 > rm , i.e.,

rm+1 > rm

⇔
√

m2+(m+1)2−1
m >

√
(m−1)2+m2−1

m−1
⇔ (m − 1)(

√
m2 + (m + 1)2 − 1)

> m(
√

(m − 1)2 + m2 − 1)
⇔ (m − 1)(

√
m2 + (m + 1)2)

> m
√

(m − 1)2 + m2 − 1
⇔ (m − 1)2(m2 + (m + 1)2)

> m2((m − 1)2 + m2) − 2m
√

(m − 1)2 + m2 + 1
⇔ (m − 1)2(m + 1)2

> m4 − 2m
√

(m − 1)2 + m2 + 1
⇔ m4 − 2m2 + 1 > m4 − 2m

√
(m − 1)2 + m2 + 1

⇔ √
(m − 1)2 + m2 > m

⇔ (m − 1)2 + m2 > m2

⇔ (m − 1)2 > 0.

Thus, this lemma holds for m ≥ 2. 	

Taking into account that form → ∞, the competitive ratio

of the proposed method converges to r∞ = √
2 ≈ 1.414.

Hence, we can state that the competitive ratio of Algorithm
EFFm is bounded by constant

√
2.

4.2 Lower bound of P2|d j = d, onl ine over l i st|Y

Now, we show that the lower bound of problem P2|d j =
d, online over list |Y is equal to

√
5 − 1 ≈ 1.236.

Theorem 6 For P2|d j = d, online over list |Y , no online
algorithm has its competitive ratio strictly less than

√
5− 1.

Proof Let d = 1+√
5

2 and assume that the first two jobs
appearing in the system have unit processing times. There
are only two possible ways of scheduling them.
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Case 1 If these jobs have been assigned to the samemachine,
then the input job sequence ends. We have X A = d, while
X∗ = 2, and X∗

X A = 2
d = √

5 − 1.
Case 2 If these two jobs have been assigned to different
machines, then the last job with processing time equal to 2
comes into the system. We have X A = 1 + d and X∗ = 2d,

then X∗
X A = 2d

1+d = 1+√
5

1+ 1+√
5

2

= √
5 − 1. 	


Taking into account the fact that for two machines Algo-
rithm EFFm has the competitive ratio r2 which is equal to
the lower bound presented above, EFF2 is an optimal online
algorithm.

5 Conclusions

The scheduling problems with the late work criterion have
been investigated for nearly 30 years, but most of the liter-
ature focused on single-machine and shop environments. In
this paper we returned to the parallel machines environment,
forwhich this performancemeasurewas originally proposed.
We investigated, for the first time, the onlinemodel, initiating
studies on online versions of late work minimization prob-
lems.

Namely, for the offline case, we established the com-
putational complexity of the problem with a common due
date and an arbitrary number of machines, showing its
unary NP-hardness, and we proved binary NP-hardness of
the two-machine case. The research on the offline prob-
lems might be continued, as for others intractable prob-
lems, by exploring the structure of their optimal offline
solutions (cf., e.g., Sterna 2007a) or by designing heuris-
tic/metaheuristic approaches (cf., e.g., Blazewicz et al.
2004b, 2008).

For the online case, the constant competitive ratio algo-
rithm was given for an arbitrary number of machines, which
appears to be optimal for two identical machines. Since
the online environment has not been taken into account in
the context of late work minimization so far, the scope for
future research is overwhelming. For the parallel machines
case with a common due date, one can take into account—
for example—semi-online problems, allowing some jobs
rearrangements (cf., e.g., Tan and Yu 2008; Chen et al. 2011)
or assuming existence of buffers (cf., e.g., Englert et al. 2008;
Lan et al. 2012).

The natural step would be also investigating other prob-
lems, whose offline versions’ complexity status has been
already determined, in the online mode.
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